Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chemicals and Plant Material
Lyophilization Method
2.3. Conventional Extraction Method
2.3.1. Sample Preparation for Conventional Extraction Method
Microwave-Assisted Extraction (MAE)
2.3.2. Analytical Methods
Total Phenolic Content
Proanthocyanin Content
2.4. Antimicrobial Activity Testing
2.5. Statistics
3. Results
3.1. Total Phenolic Composition
3.2. Proanthocyanidin (PAC) Content
3.3. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In Comprehensive Pharmacology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 408–422. [Google Scholar] [CrossRef]
- Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep. 2017, 6, 612–614. [Google Scholar] [CrossRef] [Green Version]
- Pulak, K.M. (Ed.) Evidence—Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-012-800874-4. [Google Scholar]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Mattalia, G.; Belichenko, O.; Kalle, R.; Kolosova, V.; Kuznetsova, N.; Prakofjewa, J.; Stryamets, N.; Pieroni, A.; Volpato, G.; Sõukand, R. Multifarious Trajectories in Plant-Based Ethnoveterinary Knowledge in Northern and Southern Eastern Europe. Front. Vet. Sci. 2021, 8, 710019. [Google Scholar] [CrossRef] [PubMed]
- Schlittenlacher, T.; Knubben-Schweizer, G.; Cero, M.D.; Vogl, C.R.; Maeschli, A.; Hamburger, M.; Walkenhorst, M. What can we learn from past and recent Bavarian knowledge for the future development of European veterinary herbal medicine? An ethnoveterinary study. J. Ethnopharmacol. 2022, 288, 114933. [Google Scholar] [CrossRef] [PubMed]
- Bartha, S.G.; Quave, C.L.; Balogh, L.; Papp, N. Ethnoveterinary practices of Covasna County, Transylvania, Romania. J. Ethnobiol. Ethnomedicine 2015, 11, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cășaru, C.; Bulgaru, A.; Daneș, D. Medicinal plants used in traditional veterinary medicine to treat ruminants in the curvature Subcarpathians area, Romania. Scientific Works. Series C. Vet. Med. 2020, LXVI, 93–103. [Google Scholar]
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef]
- Pieroni, A.; Giusti, M.E.; Münz, H.; Lenzarini, C.; Turković, G.; Turković, A. Ethnobotanical knowledge of the Istro-Romanians of Zejane in Croatia. Fitoterapia 2003, 74, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Florin, M.; Alexandra, T.; Gabriela, S.L.; Romeo, C.T.; Corina, G.; Ioan, M.; Eugenia, D. Protective Effects of Aqueous Extract of Sempervivum tectorum L. (Crassulaceae) on Aluminium-Induced Oxidative Stress in Rat Blood. Trop. J. Pharm. Res. 2014, 13, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Byalt, V.V. The adventive species of Crassulaceae. Russ. J. Biol. Invasions 2021, 2, 155–157. [Google Scholar] [CrossRef]
- Marevci, M.K.; Bjelić, S.; Dariš, B.; Knez, Ž.; Leitgeb, M. The Influence of Extracts from Common Houseleek (Sempervivum tectorum) on the Metabolic Activity of Human Melanoma Cells WM-266-4. Processes 2021, 9, 1549. [Google Scholar] [CrossRef]
- Gentscheva, G.; Karadjova, I.; Minkova, S.; Nikolova, K.; Andonova, V.; Petkova, N.; Milkova-Tomova, I. Optical Properties and Antioxidant Activity of Water-Ethanolic Extracts from Sempervivum tectorum L. from Bulgaria. Horticulturae 2021, 7, 520. [Google Scholar] [CrossRef]
- Kovac-Besovic, E.E.; Duric, K.; Suljevic, L. Investigation of Flavonoids Presence in Houseleek, Sempervivum tectorum L. Sci. Pharm. 2009, 77, 256. [Google Scholar] [CrossRef]
- Stojković, D.; Barros, L.; Petrović, J.; Glamoclija, J.; Santos-Buelga, C.; Ferreira, I.C.; Soković, M. Ethnopharmacological uses of Sempervivum tectorum L. in southern Serbia: Scientific confirmation for the use against otitis linked bacteria. J. Ethnopharmacol. 2015, 176, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, F.; De Marino, S.; Parisi, M.; Festa, C.; Castaldo, M.; Finamore, C.; Duraturo, F.; Zollo, C.; Ammendola, R.; Zollo, F.; et al. Wound healing activity and phytochemical screening of purified fractions of Sempervivum tectorum L. leaves on HCT 116. Phytochem. Anal. 2019, 30, 524–534. [Google Scholar] [CrossRef]
- Alberti, Á.; Béni, S.; Lackó, E.; Riba, P.; Al-Khrasani, M.; Kéry, Á. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. J. Pharm. Biomed. Anal. 2012, 70, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Alberti, Á.; Riethmüller, E.; Béni, S.; Kéry, Á. Evaluation of Radical Scavenging Activity of Sempervivum tectorum and Corylus avellana Extracts with Different Phenolic Composition. Nat. Prod. Commun. 2016, 11, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Segneanu, A.-E.; Cepan, C.; Grozescu, I.; Cziple, F.; Olariu, S.; Ratiu, S.; Lazar, V.; Murariu, S.M.; Velciov, S.M.; Marti, T.D. Therapeutic Use of Some Romanian Medicinal Plants. In Pharmacognosy-Medicinal Plants; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Javad, S.; Mubarik, M.; Aftab, A.; Tariq, A. Microwave Assisted Extraction of Phenolics from Trachyspermum ammi (L.) Sprague. J. Bioresour. Manag. 2016, 3, 4. [Google Scholar] [CrossRef]
- Akhtar, I.; Javad, S.; Yousaf, Z.; Iqbal, S.; Jabeen, K. Review: Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pak. J. Pharm. Sci. 2019, 32, 223–230. [Google Scholar] [PubMed]
- Kontogeorgis, G.M.; Holster, A.; Kottaki, N.; Tsochantaris, E.; Topsøe, F.; Poulsen, J.; Bache, M.; Liang, X.; Blom, N.S.; Kronholm, J. Water structure, properties and some applications—A review. Chem. Thermodyn. Therm. Anal. 2022, 6, 100053. [Google Scholar] [CrossRef]
- Leonard, C.; Thiry, D.; Taminiau, B.; Daube, G.; Fontaine, J. External Ear Canal Evaluation in Dogs with Chronic Suppurative Otitis Externa: Comparison of Direct Cytology, Bacterial Culture and 16S Amplicon Profiling. Vet. Sci. 2022, 9, 366. [Google Scholar] [CrossRef]
- Dégi, J.; Imre, K.; Cătană, N.; Morar, A.; Sala, C.; Herman, V. Frequency of isolation and antibiotic resistance of staphylococcal flora from external otitis of dogs. Vet. Rec. 2013, 173, 42. [Google Scholar] [CrossRef]
- Dégi, J.; Moțco, O.-A.; Dégi, D.; Suici, T.; Mareș, M.; Imre, K.; Cristina, R. Antibiotic Susceptibility Profile of Pseudomonas aeruginosa Canine Isolates from a Multicentric Study in Romania. Antibiotics 2021, 10, 846. [Google Scholar] [CrossRef]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.; Haenni, M.; Gay, E. Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef] [Green Version]
- Moog, F.; Mivielle, J.; Brun, J.; Dumitrache, M.O.; Amalric, N.; Lecru, L.-A.; Pressanti, C.; Kondratjeva, J.; Combarros, D.; Fantini, O.; et al. Clinical and Microbiological Performances and Effects on Lipid and Cytokine Production of a Ceruminolytic Ear Cleaner in Canine Erythemato-Ceruminous Otitis Externa. Vet. Sci. 2022, 9, 185. [Google Scholar] [CrossRef]
- Harvey, R. A Review of Recent Developments in Veterinary Otology. Vet. Sci. 2022, 9, 161. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Volk, A.V.; Soares, T.; Church, D.B.; Brodbelt, D.C.; Pegram, C. Frequency and predisposing factors for canine otitis externa in the UK—A primary veterinary care epidemiological view. Canine Med. Genet. 2021, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Tresch, M.; Mevissen, M.; Ayrle, H.; Melzig, M.; Roosje, P.; Walkenhorst, M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet. Res. 2019, 15, 174. [Google Scholar] [CrossRef]
- Wynn, S.G.; Fougère, B.J. Chapter 20—Veterinary Herbal Medicine: A Systems-Based Approach. In Veterinary Herbal Medicine; Mosby: Maryland Heights, MO, USA, 2007; pp. 291–409. [Google Scholar]
- Beco, L.; Guaguere, E.; Méndez, C.L.; Noli, C.; Nuttall, T.; Vroom, M. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: Part 2—Antimicrobial choice, treatment regimens and compliance. Vet. Rec. 2013, 172, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Cagnoli, G.; Ebani, V. Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Microorganisms 2021, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Gavier-Widén, D.; Hotzel, H.; Peters, M.; Guenther, S.; Lazaris, A.; Loncaric, I.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; et al. Diversity of Staphylococcus aureus Isolates in European Wildlife. PLoS ONE 2016, 11, e0168433. [Google Scholar] [CrossRef] [Green Version]
- Belhout, C.; Elgroud, R.; Butaye, P. Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Methicillin-Resistant Staphylococci and Mammaliicoccus (MRNaS) Associated with Animals and Food Products in Arab Countries: A Review. Vet. Sci. 2022, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ripa, L.; Simón, C.; Ceballos, S.; Ortega, C.; Zarazaga, M.; Torres, C.; Gómez-Sanz, E.S. pseudintermedius and S. aureus lineages with transmission ability circulate as causative agents of infections in pets for years. BMC Vet. Res. 2021, 17, 42. [Google Scholar] [CrossRef]
- The Euro+Med PlantBase. Available online: https://www.emplantbase.org/information.html (accessed on 24 March 2022).
- Costantino, H.R.; Pikal, M.J. Lyophilization of Biopharmaceuticals; AAPS Press: Arlington, VA, USA, 2004. [Google Scholar]
- Vilas, C.; Alonso, A.A.; Balsa-Canto, E.; López-Quiroga, E.; Trelea, I.C. Model-Based Real Time Operation of the Freeze-Drying Process. Processes 2020, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Anokwuru, C.; Sigidi, M.; Zininga, T.; Tshisikhawe, M.; Shonhai, A.; Ramaite, I.; Traoré, A.; Potgieter, N. Phenolic contents, antioxidant activity and spectroscopic characteristics of pterocarpus angolensis DC. Stem bark fractions. Indian J. Tradit. Knowl. 2017, 16, 400–406. [Google Scholar]
- Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Maffei, M.E. Metabolomics-Based Profiling, Antioxidant Power, and Uropathogenic Bacterial Anti-Adhesion Activity of SP4TM, a Formulation with a High Content of Type-A Proanthocyanidins. Antioxidants 2022, 11, 1234. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. In CLSI Standard VET01S, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; CLSI Supplement M100. [Google Scholar]
- KuKanich, K.S.; Bagladi-Swanson, M.; KuKanich, B. Pseudomonas aeruginosa susceptibility, antibiogram and clinical interpretation, and antimicrobial prescribing behaviors for dogs with otitis in the Midwestern United States. J. Vet. Pharmacol. Ther. 2022, 45, 440–449. [Google Scholar] [CrossRef]
- Azzariti, S.; Bond, R.; Loeffler, A.; Zendri, F.; Timofte, D.; Chang, Y.-M.; Pelligand, L. Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma. Antibiotics 2022, 11, 1204. [Google Scholar] [CrossRef] [PubMed]
- Clinical Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—11th Edition; CLSI document M07-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Smith, K.P.; Kirby, J.E. The Inoculum Effect in the Era of Multidrug Resistance: Minor Differences in Inoculum Have Dramatic Effect on MIC Determination. Antimicrob. Agents Chemother. 2018, 62, e00433-18. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [Green Version]
- Arya, P.; Kumar, P. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed. Ultrason. Sonochem. 2021, 74, 105572. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Matkowski, A.; Hadzik, J.; Dobrowolska-Czopor, B.; Olchowy, C.; Dominiak, M.; Kubasiewicz-Ross, P. Proanthocyanidins and Flavan-3-Ols in the Prevention and Treatment of Periodontitis—Antibacterial Effects. Nutrients 2021, 13, 165. [Google Scholar] [CrossRef]
- Ou-Yang, C.; Chai, W.; Xu, X.; Song, S.; Wei, Q.; Huang, Q.; Zou, Z. Inhibitory potential of proanthocyanidins from the fruit pulp of Clausena lansium (Lour.) Skeels against α-glucosidase and non-enzymatic glycation: Activity and mechanism. Process Biochem. 2020, 91, 364–373. [Google Scholar] [CrossRef]
- Barreto-Santamaría, A.; Arévalo-Pinzón, G.; Patarroyo, M.A.; Patarroyo, M.E. How to Combat Gram-Negative Bacteria Using Antimicrobial Peptides: A Challenge or an Unattainable Goal? Antibiotics 2021, 10, 1499. [Google Scholar] [CrossRef]
- Segovia, R.; Solé, J.; Marqués, A.M.; Cajal, Y.; Rabanal, F. Unveiling the Membrane and Cell Wall Action of Antimicrobial Cyclic Lipopeptides: Modulation of the Spectrum of Activity. Pharmaceutics 2021, 13, 2180. [Google Scholar] [CrossRef]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta 2016, 1858, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Abram, V.; Donko, M. Tentative Identification of Polyphenols in Sempervivum tectorum and Assessment of the Antimicrobial Activity of Sempervivum L. J. Agric. Food Chem. 1999, 47, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Rovčanin, B.R.; Ćebović, T.; Stešević, D.; Kekić, D.; Ristić, M. Antibacterial effect of Herniaria hirsuta, Prunus avium, Rubia tinctorum and Sempervivum tectorum plant extracts on multiple antibiotic resistant Escherichia coli. Biosci. J. 2015, 31, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacology 2015, 4, 27–30. [Google Scholar]
- Romero, B.; Susperregui, J.; Sahagún, A.M.; Diez, M.J.; Fernández, N.; García, J.J.; López, C.; Sierra, M.; Díez, R. Use of medicinal plants by veterinary practitioners in Spain: A cross-sectional survey. Front. Vet. Sci. 2022, 9, 1060738. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Sharma, R. Comparitive Analysis of Herbal and Allopathic Treatment systems. Eur. J. Mol. Clin. Med. 2020, 7, 2869–2876. [Google Scholar]
- Memon, M.; Shmalberg, J.; Adair, H.S., III; Allweiler, S.; Bryan, J.; Cantwell, S.; Carr, E.; Chrisman, C.; Egger, C.; Greene, S.; et al. Integrative veterinary medical education and consensus guidelines for an integrative veterinary medicine curriculum within veterinary colleges. Open Vet. J. 2016, 6, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Memon, M.A.; Shmalberg, J.W.; Xie, H. Survey of Integrative Veterinary Medicine Training in AVMA-Accredited Veterinary Colleges. J. Vet. Med. Educ. 2021, 48, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Yang, M.-H.; Ko, H.-J.; Kim, S.-G.; Park, C.; Park, S.-C. Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens 2022, 11, 1215. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; El-Mihyaoui, A.; Arnao, M.B. Essential Oils and Melatonin as Functional Ingredients in Dogs. Animals 2022, 12, 2089. [Google Scholar] [CrossRef]
- Vercelli, C.; Pasquetti, M.; Giovannetti, G.; Visioni, S.; Re, G.; Giorgi, M.; Gambino, G.; Peano, A. In vitro and in vivo evaluation of a new phytotherapic blend to treat acute externa otitis in dogs. J. Vet. Pharmacol. Ther. 2021, 44, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.X.F.; Khazandi, M.; Pi, H.; Venter, H.; Trott, D.J.; Deo, P. Antimicrobial effects of cinnamon essential oil and cinnamaldehyde com-bined with EDTA against canine otitis externa pathogens. J. Appl. Microbiol. 2019, 127, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Oh, T.; Bae, S. The stability and in vitro antibacterial efficacy of enrofloxacin and gentamicin solutions against Staphylococcus pseudintermedius over 28 days. Vet. Dermatol. 2023, 34, 28–32. [Google Scholar] [CrossRef] [PubMed]
Type of Extract | Proanthocyanidin Content (mg PAC/g Extract) | Total Phenol Content (mg GA/g Extract) |
---|---|---|
Ethanolic extract: 50% EtOH + 50% H2O (leaf) | 15.39 ± 0.667 | 126.17 ± 0.334 |
Bacterial Strain | Ethanolic Extract: 50% EtOH + 50% H2O (Leaf) (µg/mL) | Enrofloxacin/5 µg | Gentamycin/10 µg | ||
---|---|---|---|---|---|
MIC | MBC | MBC/MIC Ratio | MIC | MIC | |
S. aureus clinical isolate | 23.25 | 37.23 | 1.60 | 0.5 | 12.5 |
S. aureus ATCC 25923 | 20.33 | 37.29 | 1.83 | 0.25 | 1.125 |
P. aeruginosa clinical isolate | 24.234 | 37.30 | 1.53 | 0.5 | 6.25 |
P. aeruginosa ATCC 27853 | 20.53 | 37.02 | 1.80 | 0.125 | 2.5 |
Plant Extract | Concentration of Extract (µg/mL) | S. aureus Clinical Isolate | S. aureus ATCC 25923 | P. aeruginosa Clinical Isolate | P. aeruginosa ATCC 27853 | ||||
---|---|---|---|---|---|---|---|---|---|
MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | ||
S. tectorum L. ethanolic extract | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2.0 | 0 | 0 | 1.47 ± 0.301 | 0 | 0 | 0 | 1.75 ± 0.25 | 0 | |
4.0 | 3.67 ± 0.381 | 0 | 3.53 ± 0.604 | 0 | 3.58 ± 0.378 | 0 | 3.66 ± 0.453 | 0 | |
8.0 | 7.5 ± 0.661 | 0 | 7.11 ± 0.808 | 0 | 7.7 ± 0.396 | 0 | 7.63 ± 0.436 | 0 | |
16.0 | 14.45 ± 0.5 | 15.93 ± 0.076 | 15.7 ± 0.396 | 15.98 ± 0.028 | 15.51 ± 0.475 | 15.96 ± 0.028 | 15.53 ± 0.604 | 15.75 ± 0.433 | |
32.0 | 30.05 ± 1.64 | 31.9 ± 0.132 | 30.83 ± 1.808 | 31.94 ± 0.06 | 30.95 ± 0.81 | 31.96 ± 0.02 | 30.86 ± 1.125 | 31.58 ± 0.381 | |
64.0 | 63.67 ± 0.381 | 63.86 ± 0.132 | 63.36 ± 0.583 | 63.95 ± 0.028 | 63.43 ± 0.419 | 64 ± 0.00 | 63.75 ± 0.25 | 63.73 ± 0.421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dégi, D.M.; Imre, K.; Herman, V.; Dégi, J.; Cristina, R.T.; Marcu, A.; Morariu, F.; Muselin, F. Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs. Vet. Sci. 2023, 10, 265. https://doi.org/10.3390/vetsci10040265
Dégi DM, Imre K, Herman V, Dégi J, Cristina RT, Marcu A, Morariu F, Muselin F. Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs. Veterinary Sciences. 2023; 10(4):265. https://doi.org/10.3390/vetsci10040265
Chicago/Turabian StyleDégi, Diana Maria, Kálmán Imre, Viorel Herman, János Dégi, Romeo Teodor Cristina, Adela Marcu, Florica Morariu, and Florin Muselin. 2023. "Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs" Veterinary Sciences 10, no. 4: 265. https://doi.org/10.3390/vetsci10040265
APA StyleDégi, D. M., Imre, K., Herman, V., Dégi, J., Cristina, R. T., Marcu, A., Morariu, F., & Muselin, F. (2023). Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs. Veterinary Sciences, 10(4), 265. https://doi.org/10.3390/vetsci10040265