Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Bacterial Growth from Patient Samples
3.2. Distribution of Bacterial Species in Patients Diagnosed with Corneal Stromal Ulcers
3.3. Antibiotic Susceptibility Pattern of Bacteria Isolated from Corneal Stromal Ulcers
3.4. Increase in Acquired Resistance in Isolates from Corneal Stromal Ulcers
3.5. Distribution of Bacterial Species in Patients Diagnosed with Corneal Stromal Ulcers Relative to Previous Patient’s Antibiotic Treatment
3.6. Susceptibility Profile of Isolates from Corneal Stromal Ulcers Relative to Patient’s Previous Antibiotic Treatments
3.7. Resistance Profile Based on the Percentage of Isolates Resistant to Multiple Antibiotics in Canine Corneal Stromal Ulcers
3.8. Distribution of Multidrug-Resistant (MDR) Bacteria in Clinical Corneal Ulcers
3.9. Methicillin-Resistant Staphylococcus spp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, C.M.; Scott, E.M.; Sarawichitr, B.; Arnold, C.; Suchodolski, J.S. Evaluation of the bacterial ocular surface microbiome in ophthalmologically normal dogs prior to and following treatment with topical neomycin-polymyxin-bacitracin. PLoS ONE 2020, 15, e0234313. [Google Scholar] [CrossRef]
- Leis, M.L.; Costa, M.O. Initial description of the core ocular surface microbiome in dogs: Bacterial community diversity and composition in a defined canine population. Vet. Ophthalmol. 2019, 22, 337–344. [Google Scholar] [CrossRef]
- Ledbetter, E.C.; Franklin-Guild, R.J.; Edelmann, M.L. Capnocytophaga keratitis in dogs: Clinical, histopathologic, and microbiologic features of seven cases. Vet. Ophthalmol. 2018, 21, 638–645. [Google Scholar] [CrossRef]
- Asbell, P.A.; Sanfilippo, C.M.; Sahm, D.F.; DeCory, H.H. Trends in Antibiotic Resistance Among Ocular Microorganisms in the United States From 2009 to 2018. JAMA Ophthalmol. 2020, 138, 439–450. [Google Scholar] [CrossRef] [Green Version]
- McKeever, J.M.; Ward, D.A.; Hendrix, D.V.H. Comparison of antimicrobial resistance patterns in dogs with bacterial keratitis presented to a veterinary teaching hospital over two multi-year time periods (1993–2003 and 2013–2019) in the Southeastern United States. Vet. Ophthalmol. 2021, 24, 653–658. [Google Scholar] [CrossRef]
- Tolar, E.L.; Hendrix, D.V.; Rohrbach, B.W.; Plummer, C.E.; Brooks, D.E.; Gelatt, K.N. Evaluation of clinical characteristics and bacterial isolates in dogs with bacterial keratitis: 97 cases (1993–2003). J. Am. Vet. Med. Assoc. 2006, 228, 80–85. [Google Scholar] [CrossRef]
- Hindley, K.E.; Groth, A.D.; King, M.; Graham, K.; Billson, F.M. Bacterial isolates, antimicrobial susceptibility, and clinical characteristics of bacterial keratitis in dogs presenting to referral practice in Australia. Vet. Ophthalmol. 2016, 19, 418–426. [Google Scholar] [CrossRef]
- Suter, A.; Voelter, K.; Hartnack, S.; Spiess, B.M.; Pot, S.A. Septic keratitis in dogs, cats, and horses in Switzerland: Associated bacteria and antibiotic susceptibility. Vet. Ophthalmol. 2018, 21, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Pan, Q.; Zhang, L.; Xue, Q.; Cui, J.; Qi, C. Investigation of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Beijing, China. Vet. Ophthalmol. 2008, 11, 145–149. [Google Scholar] [CrossRef]
- Tsvetanova, A.; Powell, R.M.; Tsvetanov, K.A.; Smith, K.M.; Gould, D.J. Melting corneal ulcers (keratomalacia) in dogs: A 5-year clinical and microbiological study (2014–2018). Vet. Ophthalmol. 2021, 24, 265–278. [Google Scholar] [CrossRef]
- Ekapopphan, D.; Srisutthakarn, A.; Moonarmart, W.; Buddhirongawatr, R.; Bangphoomi, N. Identification and antimicrobial susceptibility of microorganisms isolated from severe corneal ulcers of dogs in Thailand. J. Vet. Med. Sci. 2018, 80, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinks, M.R.; Miller, E.J.; Diaz-Campos, D.; Mollenkopf, D.F.; Newbold, G.; Gemensky-Metzler, A.; Chandler, H.L. Using minimum inhibitory concentration values of common topical antibiotics to investigate emerging antibiotic resistance: A retrospective study of 134 dogs and 20 horses with ulcerative keratitis. Vet. Ophthalmol. 2020, 23, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Ledbetter, E.C.; Hendricks, L.M.; Riis, R.C.; Scarlett, J.M. In vitro fluoroquinolone susceptibility of Pseudomonas aeruginosa isolates from dogs with ulcerative keratitis. Am. J. Vet. Res. 2007, 68, 638–642. [Google Scholar] [CrossRef] [PubMed]
- LoPinto, A.J.; Mohammed, H.O.; Ledbetter, E.C. Prevalence and risk factors for isolation of methicillin-resistant Staphylococcus in dogs with keratitis. Vet. Ophthalmol. 2015, 18, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, J.S.; Allbaugh, R.A.; Kenne, D.E.; Sebbag, L. Prevalence and Antibiotic Susceptibility of Bacterial Isolates From Dogs With Ulcerative Keratitis in Midwestern United States. Front. Vet. Sci. 2020, 7, 583965. [Google Scholar] [CrossRef]
- Ledbetter, E.C.; Mun, J.J.; Kowbel, D.; Fleiszig, S.M. Pathogenic phenotype and genotype of Pseudomonas aeruginosa isolates from spontaneous canine ocular infections. Investig. Ophthalmol. Vis. Sci. 2009, 50, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigue, L.; Montiani-Ferreira, F.; Moore, B.A. Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species. Open Vet. J. 2016, 6, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Bonjean, M.; Hodille, E.; Dumitrescu, O.; Dupieux, C.; Nkoud Mongo, C.; Allam, C.; Beghin, M.; Paris, M.; Borrel, O.; Chardon, H.; et al. Disk Diffusion Testing for Detection of Methicillin-Resistant Staphylococci: Does Moxalactam Improve upon Cefoxitin? J. Clin. Microbiol. 2016, 54, 2905–2909. [Google Scholar] [CrossRef] [Green Version]
- Auten, C.R.; Urbanz, J.L.; Dees, D.D. Comparison of bacterial culture results collected via direct corneal ulcer vs conjunctival fornix sampling in canine eyes with presumed bacterial ulcerative keratitis. Vet. Ophthalmol. 2020, 23, 135–140. [Google Scholar] [CrossRef]
- Gerding, P.A., Jr.; McLaughlin, S.A.; Troop, M.W. Pathogenic bacteria and fungi associated with external ocular diseases in dogs: 131 cases (1981–1986). J. Am. Vet. Med. Assoc. 1988, 193, 242–244. [Google Scholar]
- Prado, M.R.; Rocha, M.F.; Brito, E.H.; Girão, M.D.; Monteiro, A.J.; Teixeira, M.F.; Sidrim, J.J. Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceará, Brazil. Vet. Ophthalmol. 2005, 8, 33–37. [Google Scholar] [CrossRef]
- Lin, C.T.; Petersen-Jones, S.M. Antibiotic susceptibility of bacterial isolates from corneal ulcers of dogs in Taiwan. J. Small Anim. Pract. 2007, 48, 271–274. [Google Scholar] [CrossRef]
- Varges, R.; Penna, B.; Martins, G.; Martins, R.; Lilenbaum, W. Antimicrobial susceptibility of Staphylococci isolated from naturally occurring canine external ocular diseases. Vet. Ophthalmol. 2009, 12, 216–220. [Google Scholar] [CrossRef]
- Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Gupta, B.; Bhoi, S.; Farooque, K.; Sharma, V.; Misra, M.C. Evaluation of susceptibility testing methods for polymyxin. Int. J. Infect. Dis. 2010, 14, e596–e601. [Google Scholar] [CrossRef] [Green Version]
- Jerke, K.H.; Lee, M.J.; Humphries, R.M. Polymyxin Susceptibility Testing: A Cold Case Reopened. Clin. Microbiol. Newsl. 2016, 38, 69–77. [Google Scholar] [CrossRef]
- Khan, M.; Summers, S.; Rice, S.A.; Stapleton, F.; Willcox, M.D.P.; Subedi, D. Acquired fluoroquinolone resistance genes in corneal isolates of Pseudomonas aeruginosa. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 85, 104574. [Google Scholar] [CrossRef]
- Soimala, T.; Lubke-Becker, A.; Hanke, D.; Eichhorn, I.; Fessler, A.T.; Schwarz, S.; Eule, J.C. Molecular and phenotypic characterization of methicillin-resistant Staphylococcus pseudintermedius from ocular surfaces of dogs and cats suffering from ophthalmological diseases. Vet. Microbiol. 2020, 244, 108687. [Google Scholar] [CrossRef]
- Rich, M. Staphylococci in animals: Prevalence, identification and antimicrobial susceptibility, with an emphasis on methicillin-resistant Staphylococcus aureus. Br. J. Biomed. Sci. 2005, 62, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Peng, H.; Barton, M.D. Antibiotic resistance in staphylococci associated with cats and dogs. J. Appl. Microbiol. 2005, 99, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.D.; Kania, S.A.; Rohrbach, B.W.; Frank, L.A.; Bemis, D.A. Prevalence of oxacillin- and multidrug-resistant staphylococci in clinical samples from dogs: 1,772 samples (2001–2005). J. Am. Vet. Med. Assoc. 2007, 230, 221–227. [Google Scholar] [CrossRef] [PubMed]
Organism | (n = 167) |
---|---|
Staphylococcus pseudintermedius | 22% |
Staphylococcus epidermidis | 12% |
Staphylococcus capitis | 11% |
Pseudomonas aeruginosa | 10% |
enteric Gram-negative rods a | 7% |
coagulase negative staphylococci b | 5% |
Streptococcus canis | 5% |
Corynebacterium sp. | 2% |
Enterococcus faecalis | 2% |
Streptococcus sp. | 2% |
Rothia sp. | 2% |
Enterococcus faecium | 1% |
Staphylococcus aureus | 1% |
Staphylococcus intermedius | 1% |
Other c | 5% |
Other d | 10% |
Antibiotic | Total | Intrinsic | Acquired |
---|---|---|---|
polymyxin B | 60% | 1% | 59% |
oxacillin | 59% | 0% | 59% |
cefoxitin | 46% | 7% | 39% |
cefazolin | 46% | 11% | 35% |
amoxicillin/clavulanic acid * | 44% | 10% | 34% |
tetracycline | 38% | 5% | 33% |
tobramycin | 32% | 5% | 27% |
neomycin | 29% | 10% | 19% |
bacitracin | 26% | 0% | 26% |
ofloxacin | 23% | 0% | 23% |
gentamicin | 21% | 4% | 17% |
amikacin | 16% | 6% | 10% |
Organism | No Previous Antibiotic Treatment (n = 61) | Previous Antibiotic Treatment (n = 106) |
---|---|---|
Staphylococcus pseudintermedius | 34% | 15% |
Staphylococcus epidermidis | 2% | 18% |
Staphylococcus capitis | 8% | 13% |
Pseudomonas aeruginosa | 15% | 8% |
enteric Gram-negative rodsa | 7% | 7% |
coagulase negative staphylococcib | 7% | 5% |
Streptococcus canis | 5% | 6% |
Corynebacterium sp. | 0% | 3% |
Enterococcus faecalis | 2% | 2% |
Streptococcus sp. | 3% | 1% |
Rothia sp. | 2% | 3% |
Enterococcus faecium | 0% | 2% |
Staphylococcus aureus | 0% | 2% |
Staphylococcus intermedius | 3% | 0% |
Otherc | 3% | 7% |
Otherd | 10% | 10% |
Location | Author, Year | Staphylococcus spp. | Pseudomonas aeruginosa | Streptococcus spp. |
---|---|---|---|---|
Australia | Hindley et al., 2015 [7] | 18% | 31% | 31% |
Taiwan | Lin et al., 2007 [25] | 49% | 8% | 7% |
Thailand | Ekapopphan et al., 2018 [11] | 46% | 21% | 8% |
UK | Tsvetanova et al., 2020 [10] | 14% | 40% | 28% |
Switzerland | Suter et al., 2018 [8] | 41% | 11% | 26% |
Brazil | Prado et al., 2005 [24] | 57% | 5% | 11% |
Brazil | Varges et al., 2009 [26] | 59% | - | - |
Southeast US | Tolar et al., 2006 [6] | 33% | 21% | 17% |
Southeast US | McKeever, 2021 [5] | 34% | 18% | 28% |
Midwest US | Jinks et al., 2020 [12] | 36% | 10% | 34% |
Midwest US | Hewitt et al., 2020 [15] | 32% | 12% | 19% |
Midwest US | this study, 2022 | 50% | 10% | 7% |
Topical Antibiotic Susceptibility | ||
Antibiotic | Hewitt et al. | This Study |
amikacin | 77% | 84% |
amikacin and cefazolin | 79% | 93% |
bacitracin | 7% | 74% |
cefazolin | 8% | 54% |
gentamicin | 74% | 79% |
gentamicin and cefazolin | 76% | 90% |
gentamicin and ofloxacin | 87% | 88% |
neomycin | 76% | 71% |
neopoly | 76% | 79% |
neopolybac | 77% | 96% |
ofloxacin | 53% | 77% |
ofloxacin and cefazolin | 55% | 87% |
polymyxin B | 0% | 40% |
tobramycin | 57% | 68% |
Systemic Antibiotic Susceptibility | ||
amoxicillin/clavulanic acid | 78% | 56% |
cephalexin | 23% | 35% |
clindamycin | 61% | 41% |
doxycycline | 56% | 66% |
enrofloxacin | 64% | 79% |
marbofloxacin | 75% | 85% |
penicillin | 35% | 26% |
trimethoprim/sulfamethoxazole | 53% | 59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joksimovic, M.; Ford, B.A.; Lazic, T.; Soldatovic, I.; Luzetsky, S.; Grozdanic, S. Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers. Vet. Sci. 2023, 10, 66. https://doi.org/10.3390/vetsci10020066
Joksimovic M, Ford BA, Lazic T, Soldatovic I, Luzetsky S, Grozdanic S. Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers. Veterinary Sciences. 2023; 10(2):66. https://doi.org/10.3390/vetsci10020066
Chicago/Turabian StyleJoksimovic, Milan, Bradley A. Ford, Tatjana Lazic, Ivan Soldatovic, Sergey Luzetsky, and Sinisa Grozdanic. 2023. "Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers" Veterinary Sciences 10, no. 2: 66. https://doi.org/10.3390/vetsci10020066
APA StyleJoksimovic, M., Ford, B. A., Lazic, T., Soldatovic, I., Luzetsky, S., & Grozdanic, S. (2023). Antibiotic Recommendations for Treatment of Canine Stromal Corneal Ulcers. Veterinary Sciences, 10(2), 66. https://doi.org/10.3390/vetsci10020066