Antimicrobial Susceptibility Profiles of Acinetobacter baumannii Strains, Isolated from Clinical Cases of Companion Animals in Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Selection of the Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. PCR for Detection of the blaOXA-51-like Gene
3. Results
3.1. Origin of the Isolates
3.2. Antimicrobial Susceptibility Testing
3.3. Detection of the blaOXA-51-like Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumann, P.; Doudoroff, M.; Stanier, R.Y. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 1968, 95, 1520–1541. [Google Scholar] [CrossRef] [PubMed]
- Lessel, E.F. International Committee on Nomenclature of Bacteria Subcommittee on the Taxonomy of Moraxella and Allied Bacteria: Minutes of the Meeting, 11 August 1970. Room Constitution C, Maria-Isabel Hotel, Mexico City, Mexico. Int. J. Syst. Bacteriol. 1971, 21, 213–214. [Google Scholar] [CrossRef]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An Increasing Threat in Hospitals: Multidrug-Resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Bhattacharyya, T.; Bhando, T.; Pathania, R. Fosfomycin Resistance in Acinetobacter baumannii Is Mediated by Efflux through a Major Facilitator Superfamily (MFS) Transporter—AbaF. J. Antimicrob. Chemother. 2017, 72, 68–74. [Google Scholar] [CrossRef]
- Van Der Kolk, J.H.; Endimiani, A.; Graubner, C.; Gerber, V.; Perreten, V. Acinetobacter in Veterinary Medicine, with an Emphasis on Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2019, 16, 59–71. [Google Scholar] [CrossRef]
- Nocera, F.P.; Attili, A.-R.; De Martino, L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine. Pathogens 2021, 10, 127. [Google Scholar] [CrossRef]
- Kuzi, S.; Blum, S.E.; Kahane, N.; Adler, A.; Hussein, O.; Segev, G.; Aroch, I. Multi-Drug-Resistant Acinetobacter calcoaceticus-Acinetobacter baumannii Complex Infection Outbreak in Dogs and Cats in a Veterinary Hospital: Nosocomial Acinetobacter Infection Outbreak. J. Small Anim. Pract. 2016, 57, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Klotz, P.; Leidner, U.; Stamm, I.; Prenger-Berninghoff, E.; Göttig, S.; Semmler, T.; Scheufen, S. OXA-23 and IS Aba1 –OXA-66 Class D β-Lactamases in Acinetobacter baumannii Isolates from Companion Animals. Int. J. Antimicrob. Agents 2017, 49, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zordan, S. Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany. Emerg. Infect. Dis. 2011, 17, 1751–1754. [Google Scholar] [CrossRef] [PubMed]
- Biswas, I.; Rather, P.N. Acinetobacter baumannii: Methods and Protocols; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1946, ISBN 9781493991174. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibillity Testing, 32nd ed.; Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 9781684401345. [Google Scholar]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by Detection of the Bla OXA-51-like Carbapenemase Gene Intrinsic to This Species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Leelapsawas, C.; Yindee, J.; Nittayasut, N.; Chueahiran, S.; Boonkham, P.; Suanpairintr, N.; Chanchaithong, P. Emergence and Multi-Lineages of Carbapenemase-Producing Acinetobacter baumannii-calcoaceticus Complex from Canine and Feline Origins. J. Vet. Med. Sci. 2022, 84, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Endimiani, A.; Hujer, K.M.; Hujer, A.M.; Bertschy, I.; Rossano, A.; Koch, C.; Gerber, V.; Francey, T.; Bonomo, R.A.; Perreten, V. Acinetobacter baumannii Isolates from Pets and Horses in Switzerland: Molecular Characterization and Clinical Data. J. Antimicrob. Chemother. 2011, 66, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Lupo, A.; Châtre, P.; Ponsin, C.; Saras, E.; Boulouis, H.-J.; Keck, N.; Haenni, M.; Madec, J.-Y. Clonal Spread of Acinetobacter baumannii Sequence Type 25 Carrying Bla OXA-23 in Companion Animals in France. Antimicrob. Agents Chemother. 2017, 61, e01881-16. [Google Scholar] [CrossRef]
- Francey, T.; Gaschen, F.; Nicolet, J.; Burnens, A.P. The Role of Acinetobacter baumannii as a Nosocomial Pathogen for Dogs and Cats in an Intensive Care Unit. J. Vet. Intern. Med. 2000, 14, 177–183. [Google Scholar] [CrossRef]
- Pomba, C.; Endimiani, A.; Rossano, A.; Saial, D.; Couto, N.; Perreten, V. First Report of OXA-23-Mediated Carbapenem Resistance in Sequence Type 2 Multidrug-Resistant Acinetobacter baumannii Associated with Urinary Tract Infection in a Cat. Antimicrob. Agents Chemother. 2014, 58, 1267–1268. [Google Scholar] [CrossRef]
- Fitzpatrick, M.A.; Ozer, E.; Bolon, M.K.; Hauser, A.R. Influence of ACB Complex Genospecies on Clinical Outcomes in a U.S. Hospital with High Rates of Multidrug Resistance. J. Infect. 2015, 70, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Ioannou, P.; Kritsotakis, E.I. Co-Isolates of Acinetobacter baumannii Complex in Polymicrobial Infections: A Meta-Analysis. Access Microbiol. 2022, 4, 348. [Google Scholar] [CrossRef] [PubMed]
- Lashinsky, J.N.; Henig, O.; Pogue, J.M.; Kaye, K.S. Minocycline for the Treatment of Multidrug and Extensively Drug-Resistant A. baumannii: A Review. Infect. Dis. Ther. 2017, 6, 199–211. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Reflection Paper on Use of Aminoglycosides in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health. 2018. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-aminoglycosides-animals-european-union-development-resistance-impact-human_en.pdf (accessed on 20 July 2023).
- Hérivaux, A.; Pailhoriès, H.; Quinqueneau, C.; Lemarié, C.; Joly-Guillou, M.-L.; Ruvoen, N.; Eveillard, M.; Kempf, M. First Report of Carbapenemase-Producing Acinetobacter baumannii Carriage in Pets from the Community in France. Int. J. Antimicrob. Agents 2016, 48, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Klotz, P.; Scheufen, S.; Leidner, U.; Göttig, S.; Semmler, T. Genome Sequence of OXA-23 Producing Acinetobacter baumannii IHIT7853, a Carbapenem-Resistant Strain from a Cat Belonging to International Clone IC1. Gut Pathog. 2016, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Chanchaithong, P.; Prapasarakul, N.; Sirisopit Mehl, N.; Suanpairintr, N.; Teankum, K.; Collaud, A.; Endimiani, A.; Perreten, V. Extensively Drug-Resistant Community-Acquired Acinetobacter baumannii Sequence Type 2 in a Dog with Urinary Tract Infection in Thailand. J. Glob. Antimicrob. Resist. 2018, 13, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Klotz, P.; Jacobmeyer, L.; Leidner, U.; Stamm, I.; Semmler, T.; Ewers, C. Acinetobacter pittii from Companion Animals Coharboring Bla OXA-58, the Tet (39) Region, and Other Resistance Genes on a Single Plasmid. Antimicrob. Agents Chemother. 2018, 62, e01993-17. [Google Scholar] [CrossRef] [PubMed]
- Misic, D.; Asanin, J.; Spergser, J.; Szostak, M.; Loncaric, I. OXA-72-Mediated Carbapenem Resistance in Sequence Type 1 Multidrug (Colistin)-Resistant Acinetobacter baumannii Associated with Urinary Tract Infection in a Dog from Serbia. Antimicrob. Agents Chemother. 2018, 62, e00219-18. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2022: 2020 Data; Publications Office: Luxembourg, 2022. [Google Scholar]
- Voulgari, E.; Politi, L.; Pitiriga, V.; Dendrinos, J.; Poulou, A.; Georgiadis, G.; Tsakris, A. First Report of an NDM-1 Metallo-β-Lactamase-Producing Acinetobacter baumannii Clinical Isolate in Greece. Int. J. Antimicrob. Agents 2016, 48, 761–762. [Google Scholar] [CrossRef]
- Pagano, M.; Martins, A.F.; Barth, A.L. Mobile Genetic Elements Related to Carbapenem Resistance in Acinetobacter baumannii. Braz. J. Microbiol. 2016, 47, 785–792. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 9781684401673. [Google Scholar]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019; ISBN 9789241515528. [Google Scholar]
- Maaland, M.G.; Guardabassi, L.; Papich, M.G. Minocycline Pharmacokinetics and Pharmacodynamics in Dogs: Dosage Recommendations for Treatment of Methicillin-Resistant Staphylococcus pseudintermedius Infections. Vet. Dermatol. 2014, 25, 182-e47. [Google Scholar] [CrossRef] [PubMed]
- Kisil, O.V.; Efimenko, T.A.; Gabrielyan, N.I.; Efremenkova, O.V. Development of Antimicrobial Therapy Methods to Overcome the Antibiotic Resistance of Acinetobacter baumannii. Acta Naturae 2020, 12, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Babapour, E.; Haddadi, A.; Mirnejad, R.; Angaji, S.-A.; Amirmozafari, N. Biofilm Formation in Clinical Isolates of Nosocomial Acinetobacter baumannii and Its Relationship with Multidrug Resistance. Asian Pac. J. Trop. Biomed. 2016, 6, 528–533. [Google Scholar] [CrossRef]
- Black, D.M.; Rankin, S.C.; King, L.G. Antimicrobial Therapy and Aerobic Bacteriologic Culture Patterns in Canine Intensive Care Unit Patients: 74 Dogs (January–June 2006). J. Vet. Emerg. Crit. Care 2009, 19, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Naing, S.Y.; Hordijk, J.; Duim, B.; Broens, E.M.; Van Der Graaf-van Bloois, L.; Rossen, J.W.; Robben, J.H.; Leendertse, M.; Wagenaar, J.A.; Zomer, A.L. Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands. Pathogens 2022, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Schmitt, R.; Wöhrmann, A.; Stefanik, D.; Seifert, H. Resistance to Disinfectants in Epidemiologically Defined Clinical Isolates of Acinetobacter baumannii. J. Hosp. Infect. 2007, 66, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Corbella, X.; Pujol, M.; Argerich, M.J.; Ayats, J.; Sendra, M.; Peña, C.; Ariza, J. Environmental Sampling of Acinetobacter baumannii: Moistened Swabs Versus Moistened Sterile Gauze Pads. Infect. Control Hosp. Epidemiol. 1999, 20, 458–460. [Google Scholar] [CrossRef]
- Meschiari, M.; Lòpez-Lozano, J.-M.; Di Pilato, V.; Gimenez-Esparza, C.; Vecchi, E.; Bacca, E.; Orlando, G.; Franceschini, E.; Sarti, M.; Pecorari, M.; et al. A Five-Component Infection Control Bundle to Permanently Eliminate a Carbapenem-Resistant Acinetobacter baumannii Spreading in an Intensive Care Unit. Antimicrob. Resist. Infect. Control 2021, 10, 123. [Google Scholar] [CrossRef]
Antibacterial Agent | Disk Content (μg) | Breakpoints Used in this Study | |
---|---|---|---|
Inhibition Zone (mm) | MIC (μg/mL) | ||
Ampicillin + Sulbactam | 20 + 10 | S: ≥ 15, I:12–14, R: ≤ 11 | --- |
Ceftazidime | 30 | S: ≥ 18, I:15–17, R: ≤ 14 | --- |
Cefepime | 30 | S: ≥ 18, I:15–17, R: ≤ 14 | --- |
Piperacillin + Tazobactam | 100 + 10 | S: ≥ 21, I:18–20, R: ≤ 17 | S ≤ 16/4, I:32/4–64/4, R: ≥ 128/4 |
Imipenem | 10 | S: ≥ 22, I:19–21, R: ≤ 18 | S ≤ 2, I:4, R: ≥ 8 |
Meropenem | --- | --- | S ≤ 2, I:4, R: ≥ 8 |
Amikacin | 30 | S: ≥ 17, I:15–16, R: ≤ 14 | S ≤ 16, I:32, R: ≥ 64 |
Gentamicin | 10 | S: ≥ 15, I:13–14, R: ≤ 12 | S ≤ 4, I:8, R: ≥ 16 |
Tobramycin | 10 | S: ≥ 15, I:13–14, R: ≤ 12 | S ≤ 4, I:8, R: ≥ 16 |
Enrofloxacin | 5 | ES | --- |
Ciprofloxacin | 5 | S: ≥ 21, I:16–20, R: ≤ 15 | S ≤ 1, I:2, R: ≥ 4 |
Levofloxacin | --- | --- | S ≤ 2, I:4, R: ≥ 8 |
Sulph/zole + Trimethoprim | 23.75 + 1.25 | S: ≥ 16, I:11–15, R: ≤ 10 | S ≤ 2/38, R: ≥ 4/76 |
Doxycycline | 30 | S: ≥ 13, I:10–12, R: ≤ 9 | --- |
Minocycline | 30 | S: ≥ 16, I:13–15, R: ≤ 12 | S ≤ 4, I:8, R: ≥ 16 |
Colistin | --- | --- | S ≤ 2, R: ≥ 4 |
Sample | Total Samples (%) | Canine Samples (%) | Feline Samples (%) |
---|---|---|---|
Soft tissue | 20 (48.8%) | 16 (61.5%) | 4 (26.7%) |
Urine | 12 (29.3%) | 4 (15.4%) | 8 (53.3%) |
Ear canal | 4 (9.7%) | 3 (11.5%) | 1 (6.7%) |
Pleural effusion | 2 (4.9%) | 2 (7.7%) | - |
Nasal cavity | 2 (4.9%) | - | 2 (13.3%) |
Blood | 1 (2.4%) | 1 (3.9%) | - |
Total | 41 (100.0%) | 26 (100.0%) | 15 (100.0%) |
Code | Sample | Origin | Gender/Age | Co-Current Isolates 1 |
---|---|---|---|---|
A1 | Soft tissue | Canine | M/4 | Ε. coli (SDR) |
A2 | Pleural effusion | Canine | F/4 | Klebsiella pneumoniae (MDR) |
A3 | Soft tissue | Canine | F/2 | ΜRSP (MDR) |
A4 | Soft tissue | Feline | M/9 | MRSA (MDR) |
A5 | Urine | Feline | M/5 | ND |
A6 | Urine | Feline | M/9 | ND |
A7 | Soft tissue | Canine | M/10 | Staphylococcus epidermidis |
A8 | Soft tissue | Canine | F/NA | ΜRSP (MDR), K. pneumoniae (MDR) |
A9 | Soft tissue | Canine | M/12 | ND |
A10 | Soft tissue | Canine | F/5 | Ε. coli (SDR) |
A11 | Soft tissue | Canine | F/2,5 | MRSA (MDR), E. coli (MDR) |
A12 | Nasal cavity | Feline | Μ/3 | Streptococcus spp (SDR) |
A13 | Soft tissue | Canine | F/11 | ΜRSA (MDR), K. pneumoniae (MDR) |
A14 | Urine | Feline | Μ/1 | ND |
A15 | Soft tissue | Canine | F/2 | ΜRSP (MDR) |
A16 | Soft tissue | Feline | Μ/1 | Enterococcus spp (SDR), S. epidermidis (MDR) |
A17 | Pleural effusion | Canine | Μ/3 | Klebsiella oxytoca (MDR) |
A18 | Soft tissue | Feline | F/1,5 | Enterobacter cloacae (MDR) |
A19 | Soft tissue | Canine | F/9 | Proteus mirabilis (MDR) |
A20 | Urine | Feline | Μ/NA | ND |
A21 | Urine | Canine | F/11 | ND |
A22 | Urine | Feline | Μ/5 | Enterococcus spp (MDR) |
A23 | Urine | Feline | Μ/8 | E. cloacae (MDR) |
A24 | Nasal cavity | Feline | Μ/7 | ND |
A25 | Ear canal | Canine | Μ/11 | Staphylococcus pseudintermedius |
A26 | Urine | Canine | M/NA | Klebsiella aerogenes (SDR) |
A27 | Ear canal | Feline | F/2,5 | Bacillus spp |
A28 | Ear canal | Canine | F/6 | MRSP (MDR) |
A29 | Urine | Feline | M/3 | ND |
A30 | Ear canal | Canine | M/12 | E. coli (MDR) |
A31 | Soft tissue | Canine | F/6 | P. mirabilis (MDR), E. cloacae |
A32 | Soft tissue | Canine | M/13 | MRSP (MDR) |
A33 | Soft tissue | Canine | M/5 | Staphylococcus intermedius, P. mirabilis (SDR) |
A34 | Soft tissue | Canine | M/8 | Enterococcus spp (SDR) |
A35 | Urine | Canine | M/13 | ND |
A36 | Soft tissue | Canine | M/NA | E. coli (MDR) |
A37 | Urine | Canine | F/6 | ND |
A38 | Soft tissue | Feline | M/13 | Pseudomonas aeruginosa (SDR) |
A39 | Urine | Feline | M/5 | ND |
A40 | Soft tissue | Canine | M/3,5 | Pluralibacter gergoviae (MDR) |
A41 | Blood | Canine | M/9 | ND |
Antibacterial Agent | Resistant Isolates % (n) | Intermediate Isolates % (n) | Susceptible Isolates % (n) | Resistant Isolates in Dogs | Resistant Isolates in Cats | Fischer’s Exact Test p-Value |
---|---|---|---|---|---|---|
Ampicillin + sulbactam | 48.8% (20) | 0% (0) | 51.2% (21) | 14 | 6 | p = 0.5204 |
Piperacillin + tazobactam | 48.8% (20) | 9.8% (4) | 41.4% (17) | 14 | 6 | p = 0.5204 |
Ceftazidime | 51.2% (21) | 0% (0) | 48.8% (20) | 14 | 7 | p = 0.7513 |
Cefepime | 51.2% (21) | 19.5% (8) | 29.3% (12) | 14 | 7 | p = 0.7513 |
Imipenem | 48.8% (20) | 7.3% (3) | 43.9% (18) | 14 | 6 | p = 0.5204 |
Amikacin | 43.9% (18) | 17.1% (7) | 39% (16) | 13 | 5 | p = 0.3457 |
Gentamicin | 75.6% (31) | 17.1% (7) | 7.3% (3) | 19 | 12 | p = 0.7197 |
Tobramycin | 41.4% (17) | 4.9% (2) | 53.7% (22) | 12 | 5 | p = 0.5194 |
Enrofloxacin | 100% (41) | 0% (0) | 0% (0) | 26 | 15 | p = 1 |
Ciprofloxacin | 100% (41) | 0% (0) | 0% (0) | 26 | 15 | p = 1 |
Sulph/zole + Trimethoprim | 63.4% (26) | 0% (0) | 36.6% (15) | 17 | 9 | p = 0.7485 |
Doxycycline | 68.3% (28) | 19.5% (8) | 12.2% (5) | 19 | 9 | p = 0.4917 |
Minocycline | 12.2% (5) | 29.3% (12) | 58.6% (24) | 2 | 3 | p = 0.3365 |
No | Resistance Profile | Related Isolates |
---|---|---|
1 | ENR—CIP | A2, A9, A10, A16, A19, A41 |
2 | GEN—ENR—CIP | A12, A23, A24, A30, A38 |
3 | GEN—ENR—CIP—SXT | A27, A36 |
4 | ENR—CIP—SXT—DOX | A18, A26 |
5 | GEN—ENR—CIP—DOX | A17, A25, A29 |
6 | GEN—ENR—CIP—SXT—DOX | A28 |
7 | AK—GEN—ENR—CIP—DOX | A33 1 |
8 | CAZ—FEP—ENR—CIP—SXT—DOX | A22 |
9 | SAM—PIT—CAZ—FEP—IMP—ENR—CIP—SXT—DO | A21 |
10 | SAM—PIT—CAZ—FEP—IMP—GEN—ENR—CIP—SXT—DOX | A5, A35 |
11 | SAM—PIT—CAZ—FEP—IMP—AK—GEN—TOB—ENR—CIP—SXT—DOX | A1, A3, A7 2, A8, A11, A14 2, A15, A32, A34, A37, A39, A40 2 |
12 | SAM—PIT—CAZ—FEP—IMP—AK—GEN—TOB—ENR—CIP—SXT—DOX—MIN | A4, A6 3, A13, A20, A31 3 |
Antibacterial Agent | Resistance Rate in CR Isolates Isolates % (n) | Resistant Rate in Carbapenem Non-Resistant Isolates % (n) | Fischer’s Exact p-Value |
---|---|---|---|
Ampicillin + sulbactam | 100% (20/20) | 0% (0/21) | p < 0.00001 |
Piperacillin + tazobactam | 100% (20/20) | 0% (0/21) | p < 0.00001 |
Ceftazidime | 100% (20/20) | 4.8% (1/21) | p < 0.00001 |
Cefepime | 100% (20/20) | 4.8% (1/21) | p < 0.00001 |
Amikacin | 85% (17/20) | 4.8% (1/21) | p < 0.00001 |
Gentamicin | 95% (19/20) | 57.1% (12/21) | p = 0.0089 |
Tobramycin | 85% (17/20) | 0% (0/21) | p < 0.00001 |
Enrofloxacin | 100% (20/20) | 100% (21/21) | p = 1 |
Ciprofloxacin | 100% (20/20) | 100% (21/21) | p = 1 |
Sulph/zole + trimethoprim | 100% (20/20) | 28.6% (6/21) | p < 0.00001 |
Doxycycline | 100% (20/20) | 38.1% (8/21) | p < 0.00001 |
Minocycline | 25% (5/20) | 0% (0/21) | p = 0.0207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysitsas, M.; Triantafillou, E.; Chatzipanagiotidou, I.; Antoniou, K.; Valiakos, G. Antimicrobial Susceptibility Profiles of Acinetobacter baumannii Strains, Isolated from Clinical Cases of Companion Animals in Greece. Vet. Sci. 2023, 10, 635. https://doi.org/10.3390/vetsci10110635
Lysitsas M, Triantafillou E, Chatzipanagiotidou I, Antoniou K, Valiakos G. Antimicrobial Susceptibility Profiles of Acinetobacter baumannii Strains, Isolated from Clinical Cases of Companion Animals in Greece. Veterinary Sciences. 2023; 10(11):635. https://doi.org/10.3390/vetsci10110635
Chicago/Turabian StyleLysitsas, Marios, Eleutherios Triantafillou, Irene Chatzipanagiotidou, Konstantina Antoniou, and George Valiakos. 2023. "Antimicrobial Susceptibility Profiles of Acinetobacter baumannii Strains, Isolated from Clinical Cases of Companion Animals in Greece" Veterinary Sciences 10, no. 11: 635. https://doi.org/10.3390/vetsci10110635