Ultrastructural and Immunohistochemical Characterization of Maternal Myofibroblasts in the Bovine Placenta around Parturition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Sample Collection
2.2. Immunofluorescence (IF) Staining and Confocal Microscopy
2.3. Transmission Electron Microscopy (TEM)
2.4. Serial Block-Face Scanning Electron Microscopy (SBF-SEM) and 3D Reconstruction
2.5. Tissue Contraction Assay (CA) and Histology
2.6. Statistical Analysis
3. Results
3.1. Immunohistochemical Characteristics of Myofibroblasts in the Bovine Placenta Stroma around Term and in Caruncle Tissue of Non-Pregnant Cows
3.1.1. α -SMA and VIM Expression Pattern
3.1.2. Progesterone Receptor (PGR) Expression Pattern
3.1.3. Connexin 43 Expression Pattern
3.1.4. Fibronectin Expression Pattern
3.2. Ultrastructural Characterization of Myofibroblasts in the Bovine Maternal Placenta Stroma around Term and in Caruncle Tissue of Non-Pregnant Cows
3.2.1. Representative Features of Myofibroblasts
3.2.2. Ultrastructural Network and Grouping of Myofibroblasts in Caruncle Tissue
3.2.3. D Reconstruction of Placental Myofibroblast
3.3. Ang-II Stimulates Contraction in Placental Caruncular Tissue Sections In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabbiani, G.; Ryan, G.B.; Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experentia 1971, 27, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Majno, G.; Gabbiani, G.; Hirschel, B.J.; Ryan, G.B.; Statkov, P.R. Contraction of granulation tissue in vitro: Similarity to smooth muscle. Science 1971, 173, 548–550. [Google Scholar] [CrossRef]
- Ryan, G.B.; Cliff, W.J.; Gabbiani, G.; Irlé, C.; Montandon, D.; Statkov, P.R.; Majno, G. Myofibroblasts in human granulation tissue. Hum. Pathol. 1974, 5, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002, 3, 349–363. [Google Scholar] [CrossRef]
- Tomasek, J.J.; Vaughan, M.B.; Kropp, B.P.; Gabbiani, G.; Martin, M.D.; Haaksma, C.J.; Hinz, B. Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair Regen. 2006, 14, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Tabone, E.; Andujar, M.B.; de Barros, S.S.; dos Santos, M.N.; Barros, C.L.; Graca, D.L. Myofibroblast-like cells in non-pathological bovine endometrial caruncle. Cell Biol. Int. Rep. 1983, 7, 395–400. [Google Scholar] [CrossRef]
- Oliver, C.; Montes, M.J.; Galindo, J.A.; Ruiz, C.; Olivares, E.G. Human decidual stromal cells express α-smooth muscle actin and show ultrastructural similarities with myofibroblasts. Hum. Reprod. 1999, 14, 1599–1605. [Google Scholar] [CrossRef] [Green Version]
- Wooding, P.; Burton, G. Comparative Placentation—Structures, Functions and Evolution, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Younesi, F.S.; Son, D.O.; Firmino, J.; Hinz, B. Myofibroblast markers and microscopy detection methods in cell culture and histology. Methods Mol. Biol. 2021, 2299, 17–47. [Google Scholar] [CrossRef]
- van de Water, L.; Varney, S.; Tomasek, J.J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: Opportunities for new therapeutic intervention. Adv. Wound Care 2013, 2, 122–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakshir, P.; Noskovicova, N.; Lodyga, M.; Son, D.O.; Schuster, R.; Goodwin, A.; Karvonen, H.; Hinz, B. The myofibroblast at a glance. J. Cell Sci. 2020, 133, jcs227900. [Google Scholar] [CrossRef]
- Hinz, B.; Mastrangelo, D.; Iselin, C.E.; Chaponnier, C.; Gabbiani, G. Mechanical tension controls granulation tissue contractile activity and myofibroblast Differentiation. Am. J. Pathol. 2001, 159, 1009–1020. [Google Scholar] [CrossRef] [Green Version]
- Jaslove, J.M.; Nelson, C.M. Smooth muscle: A stiff sculptor of epithelial shapes. Phil. Trans. R. Soc. B 2018, 373, 20170318. [Google Scholar] [CrossRef] [Green Version]
- Hinz, B.; Phan, S.H.; Thannickal, V.J.; Galli, A.; Bochaton-Piallat, M.L.; Gabbiani, G. The myofibroblast: One function, multiple origins. Am. J. Pathol. 2007, 170, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Lecarpentier, Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinz, B. The myofibroblast: Paradigm for a mechanically active cell. J. Biomech. 2010, 43, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, H.; Koyama, K.; Sawai, K.; Fujii, T.; Naito, A.; Fukuda, S.; Kageyama, S. Localization of TGF-β and TGF-β receptor in bovine term placentome and expression differences between spontaneous and induced parturition. Placenta 2015, 36, 1239–1245. [Google Scholar] [CrossRef]
- Follonier, L.; Schaub, S.; Meister, J.J.; Hinz, B. Myofibroblast communication is controlled by intercellular mechanical coupling. J. Cell Sci. 2008, 121, 3305–3316. [Google Scholar] [CrossRef] [Green Version]
- Gabbiani, G.; Chaponnier, C.; Huttner, I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J. Cell Biol. 1978, 76, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Gaudesius, G.; Miragoli, M.; Thomas, S.P.; Rohr, S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 2003, 93, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.; Duffy, H.S. Fibroblasts and myofibroblasts: What are we talking about? J. Cardiovasc. Pharmacol. 2011, 57, 376–379. [Google Scholar] [CrossRef]
- Schultz, F.; Swiatlowska, P.; Alvarez-Laviada, A.; Sanchez-Alonso, J.L.; Song, Q.; de Vries, A.A.F.; Pijnappels, D.A.; Ongstad, E.; Braga, V.M.M.; Entcheva, E.; et al. Cardiomyocyte–myofibroblast contact dynamism is modulated by connexin-43. FASEB J. 2019, 33, 10453–10468. [Google Scholar] [CrossRef]
- Gabriel, S.; Winterhager, E.; Pfarrer, C.D.; Traub, O.; Leiser, R. Modulation of connexin expression in sheep endometrium in response to pregnancy. Placenta 2004, 25, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Pfarrer, C.D.; Heeb, C.; Leiser, R. Expression of gap junctional connexins 26, 32 and 43 in bovine placentomes during pregnancy. Placenta 2006, 27, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Schauser, K.H.; Nielsen, A.H.; Winther, H.; Dantzer, V.; Poulsen, K. Autoradiographic localization and characterization of angiotensin II receptors in the bovine placenta and fetal membranes. Biol. Reprod. 1998, 59, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Schauser, K.H.; Nielsen, A.H.; Dantzer, V.; Poulsen, K. Angiotensin-converting enzyme activity in the bovine uteroplacental unit changes in relation to the cycle and pregnancy. Placenta 2001, 22, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Ehanire, T.; Ren, L.; Bond, J.; Medina, M.; Li, G.; Bashirov, L.; Chen, L.; Kokosis, G.; Ibrahim, M.; Selim, A.; et al. Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction. J. Mol. Med. 2015, 93, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, M.; Yamamoto, D.; Ogawa, S.; Otoi, T.; Ohtani, M.; Miyamoto, A. Messenger RNA expression of angiotensin-converting enzyme, endothelin, cyclooxygenase-2 and prostaglandin synthases in bovine placentomes during gestation and the postpartum period. Vet. J. 2008, 177, 398–404. [Google Scholar] [CrossRef]
- Tower, C.L.; Lui, S.; Charlesworth, N.R.; Smith, S.D.; Aplin, J.D.; Jones, R.L. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: Potential roles in early placental development. Reproduction 2010, 140, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Arosh, J.A.; Parent, J.; Chapdelaine, P.; Sirois, J.; Fortier, M.A. Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the estrous cycle. Biol. Reprod. 2002, 67, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Arosh, J.A.; Banu, S.K.; Chapdelaine, P.; Emond, V.; Kim, J.J.; Maclaren, L.A.; Fortier, M.A. Molecular cloning and characterization of bovine prostaglandin E2 receptors EP2 and EP4: Expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 2003, 144, 3076–3091. [Google Scholar] [CrossRef]
- Arosh, J.A.; Banu, S.K.; Chapdelaine, P.; Fortier, M.A. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology 2004, 145, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooding, F.B.P. The synepitheliochorial placenta of ruminants: Binucleate cell fusions and hormone production. Placenta 1992, 13, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Boos, A.; Stelljes, A.; Kohtes, J. Collagen types I, III and IV in the placentome and interplacentomal maternal and fetal tissues in normal cows and in cattle with retention of fetal membranes. Cells Tissues Organs 2003, 174, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, M.; Leiser, R.; Johnson, G.A.; Tinneberg, H.R.; Pfarrer, C. Development of an in vitro model for bovine placentation: A comparison of the in vivo and in vitro expression of integrins and components of extracellular matrix in bovine placental cells. Cells Tissues Organs 2007, 186, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Liang, X.; Liang, X.H.; Wang, T.S.; Qi, Q.R.; Deng, W.B.; Sha, A.G.; Yang, Z.M. The mesenchymal-epithelial transition during in vitro decidualization. Reprod. Sci. 2013, 20, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Owusu-Akyaw, A.; Krishnamoorthy, K.; Goldsmith, L.T.; Morelli, S.S. The role of mesenchymal-epithelial transition in endometrial function. Hum. Reprod. Update 2018, 25, 114–133. [Google Scholar] [CrossRef]
- Shanker, Y.G.; Rao, A.J. Progesterone receptor expression in the human placenta. Mol. Hum. Reprod. 1998, 5, 481–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlino, A.; Welsh, T.; Erdonmez, T.; Madsen, G.; Zakar, T.; Smith, R.; Mercer, B.; Mesiano, S. Nuclear progesterone receptor expression in the human fetal membranes and decidua at term before and after labor. Reprod. Sci. 2009, 16, 357–363. [Google Scholar] [CrossRef]
- Abrahamsohn, P.A.; Zorn, T.M.T. Implantation and decidualization in rodents. J. Exp. Zool. 1993, 266, 603–628. [Google Scholar] [CrossRef]
- Fang, X.; Ni, N.; Gao, Y.; Lydon, J.P.; Ivanov, I.; Rijnkels, M.; Bayless, K.J.; Li, Q. Transforming growth factor beta signaling and decidual integrity in mice. Biol. Reprod. 2020, 103, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.P.; Beceriklisoy, H.B.; Pfarrer, C.; Aslan, S.; Kindahl, H.; Kücükaslan, I.; Hoffmann, B. Canine placenta: A source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction 2010, 139, 655–664. [Google Scholar] [CrossRef]
- Hooshmandabbasi, R.; Kazemian, A.; Zerbe, H.; Kowalewski, M.P.; Klisch, K. Macrophages in bovine term placenta: An ultrastructural and molecular study. Reprod. Domest. Anim. 2021, 56, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Schuler, G.; Wirth, C.; Klisch, K.; Pfarrer, C.; Leiser, R.; Hoffmann, B. Immunolocalization of progesterone receptors in bovine placentomes throughout mid and late gestation and at parturition. Biol. Reprod. 1999, 61, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Attupuram, N.M.; Kumaresan, A.; Narayanan, K.; Kumar, H. Cellular and molecular mechanisms involved in placental separation in the bovine: A review. Mol. Reprod. Dev. 2016, 83, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Braunert, A. Bedeutung Immunologischer Mechanismen für die Pathogenese der Retentio Secundinarum Beim Rind. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2012. [Google Scholar]
- Kenngott, R.A.M.; Sinowatz, F. Fetal development of the bovine uterus: A light microscopy and immunohistochemical study. Sex. Dev. 2016, 9, 316–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denk, W.; Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2004, 2, e329. [Google Scholar] [CrossRef] [PubMed]
- Schuler, G.; Teichmann, U.; Kowalewski, M.P.; Hoffmann, B.; Madore, E.; Fortier, M.A.; Klisch, K. Expression of cyclooxygenase-II (COX-II) and 20α-hydroxysteroid dehydrogenase (20α-HSD)/prostaglandin F-synthase (PGFS) in bovine placentomes: Implications for the initiation of parturition in cattle. Placenta 2006, 27, 1022–1029. [Google Scholar] [CrossRef]
- Hooshmandabbasi, R.; Zerbe, H.; Bauersachs, S.; de Sousa, N.M.; Boos, A.; Klisch, K. Pregnancy-associated glycoproteins in cows with retained fetal membranes. Theriogenology 2018, 105, 158–163. [Google Scholar] [CrossRef]
- Kowalewski, M.P.; Fox, B.; Gram, A.; Boos, A.; Reichler, I. Prostaglandin E2 functions as a luteotrophic factor in the dog. Reproduction 2013, 145, 213–226. [Google Scholar] [CrossRef]
- Graubner, F.R.; Pereira, M.T.; Boos, A.; Kowalewski, M.P. Canine decidualization in vitro: Extracellular matrix modification, progesterone mediated effects and selective blocking of prostaglandin E2 receptors. J. Reprod. Dev. 2020, 66, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Kautz, E.; de Carvalho Papa, P.; Reichler, I.M.; Gram, A.; Boos, A.; Kowalewski, M.P. In vitro decidualisation of canine uterine stromal cells. Reprod. Biol. Endocrinol. 2015, 13, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klisch, K.; Schraner, E.M. Intermembrane distances at the feto-maternal interface in epitheliochorial placentation. Placenta 2021, 109, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, L.; Koch, R.; Blume, I.; Rohn, K.; Wrede, C.; Pfarrer, C. Bovine trophoblast giant cells maintain contact to the fetal basement membrane until birth—First evidence by serial block-face scanning electron microscopy. In The International Federation of Placental Associations, Virtual Conference from Amsterdam; Placenta: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Cardona, A.; Saalfeld, S.; Schindelin, J.; Arganda-Carreras, I.; Preibisch, S.; Longair, M.; Tomancak, P.; Hartenstein, V.; Douglas, R.J. TrakEM2 software for neural circuit reconstruction. PLoS ONE 2012, 7, e38011. [Google Scholar] [CrossRef] [Green Version]
- Schnorr, B.; Kressin, M. Altersbeurteilung der Frucht. In Embryologie der Haustiere; Enke: Stuttgart, Germany, 2006; Volume 5. [Google Scholar] [CrossRef]
- van Bodegraven, E.J.; Etienne-Manneville, S. Intermediate filaments from tissue integrity to single molecule mechanics. Cells 2021, 10, 1905. [Google Scholar] [CrossRef] [PubMed]
- Sapra, K.T.; Medalia, O. Bend, Push, Stretch: Remarkable structure and mechanics of single intermediate filaments and meshworks. Cells 2021, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.G.; Kojima, S.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 24, 1838–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikstrom, K.L.; Borisyt, G.G.; Goldman, R.D. Dynamic aspects of intermediate filament networks in BHK-21 cells. Cell Biol. 1989, 86, 549–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patteson, A.E.; Vahabikashi, A.; Pogoda, K.; Adam, S.A.; Mandal, K.; Kittisopikul, M.; Sivagurunathan, S.; Goldman, A.; Goldman, R.D.; Janmey, P.A. Vimentin protects cells against nuclear rupture and DNA damage during migration. J. Cell Biol. 2019, 218, 4079–4092. [Google Scholar] [CrossRef]
- Patteson, A.E.; Vahabikashi, A.; Pogoda, K.; Adam, S.A.; Goldman, A.; Goldman, R.; Janmey, P.A. Vimentin protects the structural integrity of the nucleus and suppresses nuclear damage caused by large deformations. bioRxiv 2019, 566174. [Google Scholar] [CrossRef] [Green Version]
- Patteson, A.E.; Carroll, R.J.; Iwamoto, D.V.; Janmey, P.A. The vimentin cytoskeleton: When polymer physics meets cell biology. Phys. Biol. 2021, 18, 011001. [Google Scholar] [CrossRef] [PubMed]
- Chwalisz, K.; Garfield, R.E. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. Ann. NY Acad. Sci. 1997, 828, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Johnson, G.A.; Burghardt, R.C.; Bazer, F.W. Progesterone and placental hormone actions on the uterus: Insights from domestic animals. Biol. Reprod. 2004, 71, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Arck, P.; Hansen, P.J.; Jericevic, B.M.; Piccinni, M.-P.; Szekeres-Bartho, J. Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 2007, 58, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Vermeirsch, H.; Simoens, P.; Hellemans, A.; Coryn, M.; Lauwers, H. Immunohistochemical detection of progesterone receptors in the canine uterus and their relation to sex steroid hormone levels. Theriogenology 2000, 53, 773–788. [Google Scholar] [CrossRef]
- Rocher, M.; Robert, P.Y.; Desmoulière, A. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea. Eye 2020, 34, 232–240. [Google Scholar] [CrossRef]
- Afzal, J.; Du, W.; Novin, A.; Liu, Y.; Wali, K.; Murthy, A.; Garen, A.; Wagner, G.; Kshitiz. Paracrine HB-EGF signaling reduce enhanced contractile and energetic state of activated decidual fibroblasts by rebalancing SRF-MRTF-TCF transcriptional axis. Front. Cell Dev. Biol. 2022, 10, 927631. [Google Scholar] [CrossRef]
- Bosco, C.; Díaz, E. Presence of telocytes in a non-innervated organ: The placenta. Adv. Exp. Med. Biol. 2016, 913, 149–161. [Google Scholar] [CrossRef]
- Wrobel, L.K.; Fray, T.R.; Molloy, J.E.; Adams, J.J.; Armitage, M.P.; Sparrow, J.C. Contractility of single human dermal myofibroblasts and fibroblasts. Cell Motil. Cytoskelet. 2002, 52, 82–90. [Google Scholar] [CrossRef]
- Takagi, M.; Fujimoto, S.; Ohtani, M.; Miyamoto, A.; Wijagunawardane, M.P.B.; Acosta, T.J.; Miyazawa, K.; Sato, K. Bovine retained placenta: Hormonal concentrations in fetal and maternal placenta. Placenta 2002, 23, 429–437. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Zhou, W.; Chan, H.C. Regulation of smooth muscle contraction by the epithelium: Role of prostaglandins. Physiology 2011, 26, 156–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boos, A. Immunohistochemical assessment of prostaglandin H-synthase in bovine endometrial biopsy samples collected throughout the oestrous cycle 1. Anim. Reprod. Sci. 1998, 51, 261–273. [Google Scholar] [CrossRef]
- Bridger, P.S.; Haupt, S.; Klisch, K.; Leiser, R.; Tinneberg, H.R.; Pfarrer, C. Validation of primary epitheloid cell cultures isolated from bovine placental caruncles and cotyledons. Theriogenology 2007, 68, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Haeger, J.-D.; Hambruch, N.; Pfarrer, C. Placental development and its control in cattle. Biosci. Proc. 2019, 8, 12. [Google Scholar] [CrossRef]
- McNaughton, A.P.; Murray, R.D. Structure and Function of the Bovine Fetomaternal Unit in Relation to the Causes of Retained Fetal Membranes. Vet. Rec. 2009, 165, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Wawrzykowski, J.; Franczyk, M.; Kankofer, M. Patterns of protein glycosylation in bovine placentomes as a function of gestational age and in retained versus non-retained placenta. Reprod. Domest. Anim. 2019, 54, 1384–1392. [Google Scholar] [CrossRef]
- Shenavai, S.; Hoffmann, B.; Dilly, M.; Pfarrer, C.; Özalp, G.R.; Caliskan, C.; Seyrek-Intas, K.; Schuler, G. Use of the progesterone (P4) receptor antagonist aglepristone to characterize the role of P4 withdrawal for parturition and placental release in cows. Reproduction 2010, 140, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Streyl, D.; Kenngott, R.; Herbach, N.; Wanke, R.; Blum, H.; Sinowatz, F.; Wolf, E.; Zerbe, H.; Bauersachs, S. Gene expression profiling of bovine peripartal placentomes: Detection of molecular pathways potentially involved in the release of foetal membranes. Reproduction 2012, 143, 85–105. [Google Scholar] [CrossRef]
Methods | Samples | Grouping and Number of Animals (n) | Reference or Collection Data |
---|---|---|---|
Immunofluorescence (IF) staining | Placentomes | Pregnant (P) Pre-partum n = 3 Parturition n = 3 | Schuler et al. (2006) |
IF staining and Transmission Electron Microscopy (TEM) | Caruncles | Non-Pregnant (NP) Post-partum n = 3 * Nulliparous n = 3 * Multiparous n = 3 * | collected at local slaughterhouse in Zurich |
TEM | Placentomes | Pregnant Parturition n = 3 | Boos et al. (2003) |
Contraction Assay (CA) | Placentomal Caruncles | Pregnant n = 3 | collected at local slaughterhouse in Zurich |
3D Reconstruction | Placentome SBF-SEM Stack | Pregnant n = 1 | Tiedje et al. (2021) |
Antibody | Company | Reference Number | Host | Dilution | Targets & Purpose |
---|---|---|---|---|---|
α-Smooth Muscle-Actin | Dako | GA611 | Mouse monoclonal, anti-human | 1:200 | Myofibroblasts, primary antibody |
Progesterone Receptor | Invitrogen | MA1-411 | Mouse monoclonal | 1:200 | Nuclear expression in maternal stromal cells, primary antibody |
Vimentin | Abcam | ab92547 | Rabbit monoclonal | 1:500 | Mesenchymal cells, intermediate filament, primary antibody |
Connexin 43 | Abcam | ab11370 | Rabbit polyclonal | 1:200 | Intercellular/gap junction marker, primary antibody |
Fibronectin | Novus Biologicals | NBP1-91258 | Rabbit polyclonal | 1:200 | Extracellular-Matrix (ECM), primary antibody |
anti-Mouse IgG (H+L), Alexa Fluor Plus 488 | Thermo Fisher | A32723 | Goat polyclonal | 1:200 | Secondary Antibody |
anti-Rabbit IgG (H+L), Alexa Fluor 594 | Thermo Fisher | A-11012 | Goat polyclonal | 1:500 | Secondary Antibody |
Mouse IgG2a antibody | Exbio | 11-458-C025 | Mouse | 1:200 | Isotype Control |
Mouse IgG antibody | Vector Laboratories | I-2000-1 | Mouse | 1:200 | Isotype Control |
Rabbit IgG antibody | Vector Laboratories | I-1000-5 | Rabbit | 1:400 | Isotype Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuczwara, V.; Schuler, G.; Pfarrer, C.; Tiedje, L.; Kazemian, A.; Tavares Pereira, M.; Kowalewski, M.P.; Klisch, K. Ultrastructural and Immunohistochemical Characterization of Maternal Myofibroblasts in the Bovine Placenta around Parturition. Vet. Sci. 2023, 10, 44. https://doi.org/10.3390/vetsci10010044
Kuczwara V, Schuler G, Pfarrer C, Tiedje L, Kazemian A, Tavares Pereira M, Kowalewski MP, Klisch K. Ultrastructural and Immunohistochemical Characterization of Maternal Myofibroblasts in the Bovine Placenta around Parturition. Veterinary Sciences. 2023; 10(1):44. https://doi.org/10.3390/vetsci10010044
Chicago/Turabian StyleKuczwara, Valentina, Gerhard Schuler, Christiane Pfarrer, Louiza Tiedje, Ali Kazemian, Miguel Tavares Pereira, Mariusz P. Kowalewski, and Karl Klisch. 2023. "Ultrastructural and Immunohistochemical Characterization of Maternal Myofibroblasts in the Bovine Placenta around Parturition" Veterinary Sciences 10, no. 1: 44. https://doi.org/10.3390/vetsci10010044