Derivation of the Omega-3 Index from EPA and DHA Analysis of Dried Blood Spots from Dogs and Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Laboratory
2.3. Statistical
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.H.; Polreis, J.M.; Tintle, N.L.; Kris-Etherton, P.M.; Harris, W.S. Association of reported fish intake and supplementation status with the omega-3 index. Prostaglandins Leukot. Essent. Fat. Acids 2019, 142, 4–10. [Google Scholar] [CrossRef]
- Harris, W.S.; Sands, S.A.; Windsor, S.L.; Ali, H.A.; Stevens, T.L.; Magalski, A.; Porter, C.B.; Borkon, A.M. Omega-3 Fatty Acids in Cardiac Biopsies from Heart Transplant Patients: Correlation with Erythrocytes and Response to Supplementation. Circulation 2004, 110, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, R.G.; Cleland, L.G.; Gibson, R.A.; Roberts-Thomson, K.C.; Edwards, J.R.; Sanders, P.; Stuklis, R.; James, M.J.; Young, G.D. Relation between blood and atrial fatty acids in patients undergoing cardiac bypass surgery. Am. J. Clin. Nutr. 2010, 91, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent. Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Thomas, R.M. Biological variability of blood omega-3 biomarkers. Clin. Biochem. 2010, 43, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Varvel, S.A.; Pottala, J.V.; Warnick, G.R.; McConnell, J.P. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: Implications for clinical utility. J. Clin. Lipidol. 2013, 7, 433–440. [Google Scholar] [CrossRef]
- Harris, W.S.; Tintle, N.L.; Etherton, M.R.; Vasan, R.S. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J. Clin. Lipidol. 2018, 12, 718–724. [Google Scholar] [CrossRef]
- Ammann, E.M.; Pottala, J.V.; Robinson, J.G.; Espeland, M.A.; Harris, W.S. Erythrocyte omega-3 fatty acids are inversely associated with incident dementia: Secondary analyses of longitudinal data from the Women’s Health Initiative Memory Study (WHIMS). Prostaglandins Leukot. Essent. Fat. Acids 2017, 121, 68–75. [Google Scholar] [CrossRef]
- Harris, W.S.; Tintle, N.L.; Imamura, F.; Qian, F.; Korat, A.V.A.; Marklund, M.; Djoussé, L.; Bassett, J.K.; Carmichael, P.H.; Chen, Y.Y.; et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat. Commun. 2021, 12, 2329. [Google Scholar] [CrossRef]
- Harris, W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Polreis, J. Measurement of the Omega-3 Index in Dried Blood Spots. Ann. Clin. Lab. Res. 2016, 4, 137–144. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Sandhu, S.K.; Harris, W.S.; Chan, H.M. Conversion ratios of n-3 fatty acids between plasma and erythrocytes: A systematic review and meta-regression. Br. J. Nutr. 2017, 117, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D.; Aristizabal Henao, J.J.; Metherel, A.H.; Pilote, L. Translating plasma and whole blood fatty acid compositional data into the sum of eicosapentaenoic and docosahexaenoic acid in erythrocytes. Prostaglandins Leukot. Essent. Fat. Acids 2016, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Burri, L.; Wyse, C.; Gray, S.R.; Harris, W.S.; Lazzerini, K. Effects of dietary supplementation with krill meal on serum pro-inflammatory markers after the Iditarod sled dog race. Res. Vet. Sci. 2018, 121, 18–22. [Google Scholar] [CrossRef]
- Roush, J.K.; Cross, A.R.; Renberg, W.C.; Dodd, C.E.; Sixby, K.A.; Fritsch, D.A.; Allen, T.A.; Jewell, D.E.; Richardson, D.C.; Leventhal, P.S.; et al. Evaluation of the effects of dietary supplementation with fish oil omega-3 fatty acids on weight bearing in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 236, 67–73. [Google Scholar] [CrossRef]
- Hadley, K.B.; Bauer, J.; Milgram, N.W. The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins Leukot. Essent. Fat. Acids 2017, 118, 10–18. [Google Scholar] [CrossRef]
- Bauer, J.E.; Heinemann, K.M.; Lees, G.E.; Waldron, M.K. Retinal functions of young dogs are improved and maternal plasma phospholipids are altered with diets containing long-chain n-3 polyunsaturated fatty acids during gestation, lactation, and after weaning. J. Nutr. 2006, 136, 1991s–1994s. [Google Scholar] [CrossRef]
- Lechowski, R.; Sawosz, E.; Kluciński, W. The effect of the addition of oil preparation with increased content of n-3 fatty acids on serum lipid profile and clinical condition of cats with miliary dermatitis. Zent. Vet. A 1998, 45, 417–424. [Google Scholar] [CrossRef]
- Wilkins, C.; Long, R.C., Jr.; Waldron, M.; Ferguson, D.C.; Hoenig, M. Assessment of the influence of fatty acids on indices of insulin sensitivity and myocellular lipid content by use of magnetic resonance spectroscopy in cats. Am. J. Vet. Res. 2004, 65, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Park, J.S.; Hayek, M.G.; Reinhart, G.A.; Chew, B.P. Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats. Vet. Immunol. Immunopathol. 2011, 141, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Pottala, J.V.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans. J. Nutr. 2012, 142, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Koba, S.; Takao, T.; Shimizu, F.; Ogawa, M.; Ishii, Y.; Yokota, Y.; Furuyama, F.; Tsunoda, F.; Shoji, M.; Harris, W.S.; et al. Comparison of plasma levels of different species of trans fatty acids in Japanese male patients with acute coronary syndrome versus healthy men. Atherosclerosis 2019, 284, 173–180. [Google Scholar] [CrossRef]
- Windberger, U.; Bartholovitsch, A.; Plasenzotti, R.; Korak, K.J.; Heinze, G. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: Reference values and comparison of data. Exp. Physiol. 2003, 88, 431–440. [Google Scholar] [CrossRef]
- Rivers, J.P.W.; Sinclair, A.J.; Crawford, M.A. Inability of the cat to desaturate essential fatty acids. Nature 1975, 258, 171–173. [Google Scholar] [CrossRef]
- Pawlosky, R.; Barnes, A.; Salem, N., Jr. Essential fatty acid metabolism in the feline: Relationship between liver and brain production of long-chain polyunsaturated fatty acids. J. Lipid Res. 1994, 35, 2032–2040. [Google Scholar] [CrossRef]
Species | Equation | R2 | O3I Equivalent of a DBS EPA + DHA of 4% | Approximate Range of O3I Values |
---|---|---|---|---|
Dog (n = 33) | y = 0.709x + 0.0002 | 0.98 | 2.9% | 0.3 to 7% |
Cat (n = 10) | y = 0.690x + 0.0014 | 0.96 | 2.9% | 0.5 to 4% |
Human (n = 100) | y = 1.114x + 0.014 | 0.88 | 5.9% | 2 to 12% |
RBC % | DBS % | Plasma % | Plasma (ug/mL) | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
C14:0 | 0.11% | 0.04% | 0.25% | 0.11% | 0.31% | 0.12% | 17.1 | 8.0 |
C16:0 | 14.85% | 1.63% | 13.60% | 1.71% | 13.05% | 1.95% | 718.9 | 207.1 |
C16:1n7t | 0.10% | 0.04% | 0.14% | 0.05% | 0.13% | 0.05% | 6.9 | 2.9 |
C16:1n7 | 0.35% | 0.17% | 0.92% | 0.47% | 1.14% | 0.51% | 64.2 | 38.3 |
C18:0 | 29.23% | 1.56% | 20.34% | 1.71% | 16.85% | 1.84% | 946.0 | 330.6 |
C18:1t | 0.64% | 0.30% | 0.59% | 0.31% | 0.55% | 0.31% | 30.0 | 18.7 |
C18:1n9 | 11.36% | 1.23% | 14.65% | 2.90% | 15.78% | 3.65% | 873.9 | 315.8 |
C18:2n6t | 0.19% | 0.05% | 0.28% | 0.08% | 0.20% | 0.07% | 10.7 | 3.2 |
C18:2n6 | 10.83% | 1.49% | 21.04% | 2.82% | 27.16% | 2.78% | 1511.7 | 467.9 |
C20:0 | 0.07% | 0.02% | 0.11% | 0.04% | 0.09% | 0.04% | 5.1 | 2.5 |
C18:3n6 | 0.05% | 0.02% | 0.21% | 0.06% | 0.31% | 0.09% | 17.0 | 6.5 |
C20:1n9 | 0.45% | 0.10% | 0.33% | 0.11% | 0.17% | 0.09% | 8.9 | 4.4 |
C18:3n3 | 0.19% | 0.16% | 0.57% | 0.46% | 0.81% | 0.68% | 47.8 | 48.8 |
C20:2n6 | 0.29% | 0.07% | 0.20% | 0.05% | 0.23% | 0.08% | 12.5 | 5.1 |
C22:0 | 0.07% | 0.02% | 0.21% | 0.05% | 0.08% | 0.03% | 4.1 | 1.7 |
C20:3n6 | 1.29% | 0.24% | 1.03% | 0.24% | 0.87% | 0.29% | 48.6 | 23.7 |
C20:4n6 | 24.74% | 2.34% | 19.46% | 3.36% | 16.27% | 3.82% | 914.5 | 355.9 |
C24:0 | 0.09% | 0.03% | 0.18% | 0.05% | 0.07% | 0.03% | 3.9 | 1.5 |
C20:5n3 | 1.14% | 1.16% | 1.51% | 1.51% | 1.77% | 1.75% | 98.6 | 101.2 |
C24:1n9 | 0.37% | 0.07% | 0.43% | 0.11% | 0.12% | 0.05% | 6.2 | 2.6 |
C22:4n6 | 1.37% | 0.68% | 0.85% | 0.47% | 0.48% | 0.34% | 25.7 | 17.2 |
C22:5n6 | 0.22% | 0.08% | 0.19% | 0.07% | 0.12% | 0.06% | 6.3 | 3.1 |
C22:5n3 | 0.99% | 0.29% | 1.38% | 0.44% | 1.63% | 0.57% | 91.4 | 49.4 |
C22:6n3 | 1.03% | 0.74% | 1.52% | 1.15% | 1.83% | 1.41% | 100.8 | 77.7 |
O3I/[FA] | 2.17% | 1.83% | - | - | - | - | 5570.6 | 419.3 |
RBC | DBS | Plasma % | Plasma (ug/mL) | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
C14:0 | 0.14% | 0.05% | 0.18% | 0.11% | 0.24% | 0.10% | 8.3 | 4.6 |
C16:0 | 17.85% | 1.26% | 15.02% | 1.26% | 13.10% | 1.86% | 454.7 | 243.2 |
C16:1n7t | 0.07% | 0.04% | 0.10% | 0.05% | 0.09% | 0.04% | 3.3 | 2.5 |
C16:1n7 | 0.32% | 0.12% | 0.73% | 0.26% | 1.01% | 0.36% | 30.5 | 8.3 |
C18:0 | 25.85% | 1.04% | 19.84% | 1.18% | 17.59% | 1.74% | 586.4 | 250.2 |
C18:1t | 0.86% | 0.58% | 0.62% | 0.34% | 0.58% | 0.35% | 22.3 | 20.3 |
C18:1n9 | 10.34% | 1.09% | 15.34% | 1.94% | 18.51% | 2.86% | 646.7 | 373.2 |
C18:2n6t | 0.17% | 0.03% | 0.19% | 0.05% | 0.26% | 0.07% | 8.1 | 2.9 |
C18:2n6 | 18.37% | 2.95% | 25.62% | 3.59% | 31.45% | 4.86% | 1066.6 | 503.0 |
C20:0 | 0.10% | 0.03% | 0.17% | 0.06% | 0.12% | 0.05% | 3.6 | 1.1 |
C18:3n6 | 0.05% | 0.02% | 0.10% | 0.05% | 0.15% | 0.07% | 4.4 | 1.2 |
C20:1n9 | 0.45% | 0.09% | 0.33% | 0.10% | 0.17% | 0.07% | 5.3 | 1.9 |
C18:3n3 | 0.33% | 0.32% | 0.55% | 0.45% | 0.76% | 0.60% | 21.8 | 18.0 |
C20:2n6 | 0.75% | 0.28% | 0.48% | 0.23% | 0.29% | 0.16% | 8.9 | 5.1 |
C22:0 | 0.08% | 0.02% | 0.28% | 0.05% | 0.09% | 0.03% | 2.7 | 0.8 |
C20:3n6 | 1.04% | 0.14% | 0.88% | 0.17% | 0.80% | 0.29% | 23.5 | 2.0 |
C20:4n6 | 18.94% | 3.03% | 14.88% | 3.26% | 10.88% | 4.08% | 359.3 | 188.4 |
C24:0 | 0.13% | 0.03% | 0.24% | 0.04% | 0.08% | 0.02% | 2.4 | 0.8 |
C20:5n3 | 0.67% | 0.52% | 0.70% | 0.69% | 0.69% | 0.85% | 18.2 | 18.5 |
C24:1n9 | 0.74% | 0.14% | 0.73% | 0.13% | 0.09% | 0.02% | 3.0 | 1.0 |
C22:4n6 | 1.18% | 0.29% | 0.76% | 0.12% | 0.32% | 0.12% | 10.1 | 4.3 |
C22:5n6 | 0.22% | 0.07% | 0.22% | 0.11% | 0.13% | 0.06% | 4.7 | 2.8 |
C22:5n3 | 0.32% | 0.06% | 0.45% | 0.12% | 0.53% | 0.13% | 18.7 | 12.2 |
C22:6n3 | 1.04% | 0.44% | 1.56% | 0.77% | 2.04% | 1.04% | 75.0 | 65.6 |
O3I / [FA] | 1.71% | 0.89% | - | - | - | - | 3388.8 | 277.1 |
RBC (%) | DBS (%) | Plasma (%) | Plasma (ug/mL) | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
C14:0 | 0.24% | 0.11% | 0.47% | 0.19% | 0.69% | 0.28% | 22.1 | 13 |
C16:0 | 23.18% | 1.23% | 22.43% | 1.40% | 21.05% | 1.86% | 655.3 | 181.7 |
C16:1n7t | 0.10% | 0.03% | 0.12% | 0.04% | 0.13% | 0.04% | 4.1 | 1.4 |
C16:1n7 | 0.17% | 0.10% | 0.82% | 0.40% | 1.38% | 0.60% | 43.8 | 24.6 |
C18:0 | 18.16% | 0.75% | 12.17% | 1.03% | 6.57% | 0.74% | 201.5 | 45.3 |
C18:1t | 0.49% | 0.08% | 0.41% | 0.11% | 0.32% | 0.13% | 10 | 5.1 |
C18:1n9 | 14.44% | 1.03% | 18.22% | 2.18% | 21.50% | 3.07% | 670.7 | 209.8 |
C18:2n6t | 0.14% | 0.04% | 0.18% | 0.07% | 0.22% | 0.07% | 6.9 | 3 |
C18:2n6 | 11.01% | 1.44% | 22.70% | 3.15% | 32.19% | 4.61% | 991.5 | 259.5 |
C20:0 | 0.12% | 0.02% | 0.17% | 0.04% | 0.09% | 0.03% | 2.7 | 0.8 |
C18:3n6 | 0.06% | 0.02% | 0.31% | 0.13% | 0.48% | 0.18% | 14.8 | 7.1 |
C20:1n9 | 0.22% | 0.05% | 0.26% | 0.06% | 0.15% | 0.05% | 4.7 | 1.6 |
C18:3n3 | 0.11% | 0.04% | 0.39% | 0.14% | 0.62% | 0.22% | 19.6 | 10.9 |
C20:2n6 | 0.25% | 0.04% | 0.23% | 0.06% | 0.22% | 0.04% | 6.9 | 2 |
C22:0 | 0.22% | 0.06% | 0.46% | 0.09% | 0.16% | 0.04% | 4.9 | 1.4 |
C20:3n6 | 1.57% | 0.37% | 1.48% | 0.33% | 1.40% | 0.36% | 43.3 | 15 |
C20:4n6 | 15.72% | 1.60% | 10.97% | 1.60% | 8.24% | 1.93% | 252.1 | 71.6 |
C24:0 | 0.42% | 0.13% | 0.50% | 0.12% | 0.15% | 0.04% | 4.5 | 1.1 |
C20:5n3 | 0.96% | 0.67% | 1.01% | 0.72% | 1.08% | 0.87% | 32.3 | 24.9 |
C24:1n9 | 0.35% | 0.14% | 0.45% | 0.14% | 0.19% | 0.06% | 5.7 | 1.9 |
C22:4n6 | 3.36% | 0.84% | 1.33% | 0.34% | 0.20% | 0.07% | 6.2 | 2.7 |
C22:5n6 | 0.57% | 0.17% | 0.36% | 0.10% | 0.16% | 0.06% | 5.1 | 2.4 |
C22:5n3 | 2.97% | 0.56% | 1.34% | 0.30% | 0.55% | 0.13% | 16.9 | 5.1 |
C22:6n3 | 5.19% | 1.29% | 3.23% | 0.92% | 2.25% | 0.76% | 68.4 | 25 |
O3I / [FA] | 6.15% | 1.83% | 3094.1 | 262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, W.S.; Jackson, K.H.; Carlson, H.; Hoem, N.; Dominguez, T.E.; Burri, L. Derivation of the Omega-3 Index from EPA and DHA Analysis of Dried Blood Spots from Dogs and Cats. Vet. Sci. 2023, 10, 13. https://doi.org/10.3390/vetsci10010013
Harris WS, Jackson KH, Carlson H, Hoem N, Dominguez TE, Burri L. Derivation of the Omega-3 Index from EPA and DHA Analysis of Dried Blood Spots from Dogs and Cats. Veterinary Sciences. 2023; 10(1):13. https://doi.org/10.3390/vetsci10010013
Chicago/Turabian StyleHarris, William S., Kristina H. Jackson, Heather Carlson, Nils Hoem, Tonje E. Dominguez, and Lena Burri. 2023. "Derivation of the Omega-3 Index from EPA and DHA Analysis of Dried Blood Spots from Dogs and Cats" Veterinary Sciences 10, no. 1: 13. https://doi.org/10.3390/vetsci10010013
APA StyleHarris, W. S., Jackson, K. H., Carlson, H., Hoem, N., Dominguez, T. E., & Burri, L. (2023). Derivation of the Omega-3 Index from EPA and DHA Analysis of Dried Blood Spots from Dogs and Cats. Veterinary Sciences, 10(1), 13. https://doi.org/10.3390/vetsci10010013