Animal Models of Allergic Diseases
Abstract
:1. Introduction
2. Atopic Dermatitis: Comparative Observations
2.1. Dog Models of Atopic Dermatitis
2.2. Mouse Models of Atopic Dermatitis
3. Food Allergy
3.1. Rodent Models of Food Allergy
3.2. Dog Models of Food Allergy
3.3. Other Large Animal Models for Food Allergy
4. Asthma
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Olivry, T.; DeBoer, D.J.; Griffin, C.E.; Halliwell, R.E.; Hill, P.B.; Hillier, A.; Marsella, R.; Sousa, C.A. The ACVD task force on canine atopic dermatitis: Forewords and lexicon. Vet. Immunol. Immunopathol. 2001, 81, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Thestrup-Pedersen, K. Atopic eczema. What has caused the epidemic in industrialised countries and can early intervention modify the natural history of atopic eczema? J. Cosmet. Dermatol. 2003, 2, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, A.; Girolomoni, G. Skin diseases with high public health impact. Atopic dermatitis. Eur. J. Dermatol. 2007, 17, 566. [Google Scholar] [PubMed]
- Wüthrich, B.; Schmid-Grendelmeier, P. The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and immunology of the IgE-associated (“extrinsic”) and the nonallergic (“intrinsic”) AEDS. J. Investig. Allergol. Clin. Immunol. 2003, 13, 1–5. [Google Scholar] [PubMed]
- Roguedas-Contios, A.M.; Misery, L. What is intrinsic atopic dermatitis? Clin. Rev. Allergy Immunol. 2011, 41, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, M. The study of canine atopic dermatitis involving the isolation of dogs. Pol. J. Vet. Sci. 2011, 14, 273–277. [Google Scholar] [PubMed]
- Kulthanan, K.; Boochangkool, K.; Tuchinda, P.; Chularojanamontri, L. Clinical features of the extrinsic and intrinsic types of adult-onset atopic dermatitis. Asia Pac. Allergy. 2011, 1, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y. Extrinsic and intrinsic types of atopic dermatitis. J. Dermatol. Sci. 2010, 58, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Ishida, K.; Mukumoto, S.; Yamada, Y.; Imokawa, G.; Kabashima, K.; Kobayashi, M.; Bito, T.; Nakamura, M.; Ogasawara, K.; et al. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis. Br. J. Dermatol. 2010, 162, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Stelmaszczyk-Emmel, A.; Zawadzka-Krajewska, A.; Szypowska, A.; Kulus, M.; Demkow, U. Frequency and activation of CD4+CD25 FoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int. Arch. Allergy Immunol. 2013, 162, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Rouse, B.T. Regulatory T cells in health and disease. J. Intern. Med. 2007, 262, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Bilate, A.M.; Lafaille, J.J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 2012, 30, 733–758. [Google Scholar] [CrossRef] [PubMed]
- Daniel, C.; von Boehmer, H. Extrathymic generation of regulatory T cells—Chances and challenges for prevention of autoimmune disease. Adv. Immunol. 2011, 112, 177–213. [Google Scholar] [PubMed]
- Samochocki, Z.; Alifier, M.; Bodera, P.; Jeziorkowska, R.; Rosiak, E.; Jurkiewicz, B.; Glińska, O.; Gliński, W.; Stankiewicz, W. T-regulatory cells in severe atopic dermatitis: Alterations related to cytokines and other lymphocyte subpopulations. Arch. Dermatol. Res. 2012, 304, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Falcone, F.H.; Knol, E.F.; Gibbs, B.F. The role of basophils in the pathogenesis of allergic disease. Clin. Exp. Allergy 2011, 41, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, Y.; Hirasawa, N. The role of histamine H1 and H4 receptors in atopic dermatitis: From Basic Research to Clinical Study. Allergol. Int. 2014. [Google Scholar] [CrossRef]
- Wahlgren, C.F.; Hägermark, O.; Bergström, R. Patients’ perception of itch induced by histamine, compound 48/80 and wool fibres in atopic dermatitis. Acta. Derm. Venereol. 1991, 71, 488–494. [Google Scholar] [PubMed]
- Amon, U.; Menz, U.; Wolff, H.H. Investigations on plasma levels of mast cell mediators in acute atopic dermatitis. J. Dermatol. Sci. 1994, 7, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Sher, L.G.; Chang, J.; Patel, I.B.; Balkrishnan, R.; Fleischer, A.B., Jr. Relieving the pruritus of atopic dermatitis: A meta-analysis. Acta. Derm. Venereol. 2012, 92, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Darsow, U.; Pfab, F.; Valet, M.; Tölle, T.R.; Ring, J. Itch and eczema. Chem. Immunol. Allergy 2012, 96, 81–88. [Google Scholar] [PubMed]
- Cowden, J.M.; Zhang, M.; Dunford, P.J.; Thurmond, R.L. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J. Invest. Dermatol. 2010, 130, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Mommert, S.; Gschwandtner, M.; Zwingmann, K.; Stark, H.; Werfel, T. The histamine H4 receptor is functionally expressed on TH2 cells. J. Allergy Clin. Immunol. 2009, 123, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Kollmeier, A.; Francke, K.; Chen, B.; Dunford, P.J.; Greenspan, A.J.; Xia, Y.; Xu, X.L.; Zhou, B.; Thurmond, R.L. The histamine H4 receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J. Pharmacol. Exp. Ther. 2014, 350, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Dunford, P.J.; Williams, K.N.; Desai, P.J.; Karlsson, L.; McQueen, D.; Thurmond, R.L. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J. Allergy Clin. Immunol. 2007, 119, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Welle, M.M.; Olivry, T.; Grimm, S.; Suter, M. Mast cell density and subtypes in the skin of dogs with atopic dermatitis. J. Comp. Pathol. 1999, 120, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Nimmo-Wilkie, J.S.; Yager, J.A.; Eyre, P.; Parker, W.M. Morphometric analyses of the skin of dogs with atopic dermatitis and correlations with cutaneous and plasma histamine and total serum IgE. Vet. Pathol. 1990, 27, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Helton-Rhodes, K.; Kerdel, F.; Soter, N.A.; Chinnici, R. Investigation into the immunopathogenesis of canine atopy. Semin. Vet. Med. Surg. (Small Anim.) 1987, 2, 199–201. [Google Scholar]
- Bäumer, W.; Stahl, J.; Sander, K.; Petersen, L.J.; Paps, J.; Stark, H.; Kietzmann, M.; Olivry, T. Lack of preventing effect of systemically and topically administered histamine H1 or H4 receptor antagonists in a dog model of acute atopic dermatitis. Exp. Dermatol. 2011, 20, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Olivry, T.; Mueller, R.S. International Task Force on Canine Atopic Dermatitis. Evidence-based veterinary dermatology: A systematic review of the pharmacotherapy of canine atopic dermatitis. Vet. Dermatol. 2003, 14, 121–146. [Google Scholar] [CrossRef]
- Agrawal, R.; Woodfolk, J.A. Skin barrier defects in atopic dermatitis. Curr. Allergy Asthma Rep. 2014, 14. [Google Scholar] [CrossRef]
- Kawasaki, H.; Kubo, A.; Sasaki, T.; Amagai, M. Loss-of-function mutations within the filaggrin gene and atopic dermatitis. Curr. Probl. Dermatol. 2011, 41, 35–46. [Google Scholar] [PubMed]
- O’Regan, G.M.; Sandilands, A.; McLean, W.H.; Irvine, A.D. Filaggrin in atopic dermatitis. J. Allergy Clin. Immunol. 2008, 122, 689–693. [Google Scholar] [PubMed]
- Olivry, T.; Wofford, J.; Paps, J.S.; Dunston, S.M. Stratum corneum removal facilitates experimental sensitization to mite allergens in atopic dogs. Vet. Dermatol. 2011, 22, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Olivry, T.; Carlotti, D.N.; International Task Force on Canine Atopic Dermatitis. Current evidence of skin barrier dysfunction in human and canine atopic dermatitis. Vet. Dermatol. 2011, 22, 239–248. [Google Scholar] [CrossRef]
- Yoon, J.S.; Nishifuji, K.; Sasaki, A.; Ide, K.; Ishikawa, J.; Yoshihara, T.; Iwasaki, T. Alteration of stratum corneum ceramide profiles in spontaneous canine model of atopic dermatitis. Exp. Dermatol. 2011, 20, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Hightower, K.; Marsella, R.; Flynn-Lurie, A. Effects of age and allergen exposure on transepidermal water loss in a house dust mite-sensitized beagle model of atopic dermatitis. Vet. Dermatol. 2010, 21, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M. New insights into the allergic march. Curr. Opin. Pediatr. 2014, 26, 516–520. [Google Scholar] [CrossRef]
- Williams, H.; Flohr, C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J. Allergy Clin. Immunol. 2006, 118, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, F.R. Atopic march to a dead end or does the theory really have legs? J. Manag. Care Pharm. 2007, 13, 810–811. [Google Scholar] [PubMed]
- Ker, J.; Hartert, T.V. The atopic march: What’s the evidence? Ann. Allergy Asthma Immunol. 2009, 103, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M. From atopic dermatitis to asthma: The atopic march. Ann. Allergy Asthma Immunol. 2010, 105, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Saunes, M.; Øien, T.; Dotterud, C.K.; Romundstad, P.R.; Storrø, O.; Holmen, T.L.; Johnsen, R. Early eczema and the risk of childhood asthma: A prospective, population-based study. BMC Pediatr. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.H.; Ollier, W.E.; Nuttall, T.; McEwan, N.A.; Carter, S.D. Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis. Vet. Immunol. Immunopathol. 2010, 138, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Girolomoni, G. Canine models of atopic dermatitis: A useful tool with untapped potential. J. Invest. Dermatol. 2009, 129, 2351–2357. [Google Scholar] [CrossRef] [PubMed]
- Olivry, T.; Deangelo, K.B.; Dunston, S.M.; Clarke, K.B.; McCall, C.A. Patch testing of experimentally sensitized beagle dogs: Development of a model for skin lesions of atopic dermatitis. Vet. Dermatol. 2006, 17, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Amagai, Y.; Matsuda, H.; Tanaka, A. Abnormalities in itch sensation and skin barrier function in atopic NC/Tnd mice. Biol. Pharm. Bull. 2013, 36, 1248–1252. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Gelfand, E.W. Mouse models of allergic diseases. Curr. Opin. Immunol. 2009, 21, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.T.; Nadeau, K.C. Lessons learned from mice and man: Mimicking human allergy through mouse models. Clin. Immunol. 2014, 155, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Olivry, T.; Nicklin, C.; Lopez, J. Pilot investigation of a model for canine atopic dermatitis: Environmental house dust mite challenge of high-IgE-producing beagles, mite hypersensitive dogs with atopic dermatitis and normal dogs. Vet. Dermatol. 2006, 17, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Samuelson, D.; Doerr, K. Transmission electron microscopy studies in an experimental model of canine atopic dermatitis. Vet. Dermatol. 2010, 21, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Fartasch, M.; Bassukas, I.D.; Diepgen, T.L. Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br. J. Dermatol. 1992, 127, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Fartasch, M.; Diepgen, T.L. The barrier function in atopic dry skin. Disturbance of membrane-coating granule exocytosis and formation of epidermal lipids? Acta. Derm. Venereol. Suppl. (Stockh.) 1992, 176, 26–31. [Google Scholar]
- Marsella, R.; Samuelson, D.; Harrington, L. Immunohistochemical evaluation of filaggrin polyclonal antibody in atopic and normal beagles. Vet. Dermatol. 2009, 20, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Marsella, R.; Ahrens, K.; Graves, T.K.; Bunick, D. Altered mRNA and protein expression of filaggrin in the skin of a canine animal model for atopic dermatitis. Vet. Dermatol. 2013, 24, 329–336. [Google Scholar] [CrossRef]
- Eckhart, L.; Tschachler, E. Cuts by caspase-14 control the proteolysis of filaggrin. J. Invest. Dermatol. 2011, 131, 2173–2175. [Google Scholar] [CrossRef] [PubMed]
- Hvid, M.; Johansen, C.; Deleuran, B.; Kemp, K.; Deleuran, M.; Vestergaard, C. Regulation of caspase 14 expression in keratinocytes by inflammatory cytokines—A possible link between reduced skin barrier function and inflammation? Exp. Dermatol. 2011, 20, 633–636. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kamata, Y.; Iida, T.; Fukushima, H.; Nomura, J.; Saito, M.; Tajima, M.; Okubo, Y.; Momoi, T.; Tsuboi, R.; et al. Quantification of activated and total caspase-14 with newly developed ELISA systems in normal and atopic skin. J. Dermatol. Sci. 2011, 61, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Papastavros, V.; Marsella, R.; Cronin, M.; Ahrens, K.; Kim, H.J.; Santoro, D. Investigation of caspase-14 expression in canine atopic dermatitis. Vet. Dermatol. 2014, 25, 155. [Google Scholar]
- Addor, F.A.; Takaoka, R.; Rivitti, E.A.; Aoki, V. Atopic dermatitis: Correlation between non-damaged skin barrier function and disease activity. Int. J. Dermatol. 2012, 51, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Berry, T.M.; Brown, P.A.; Hanifin, J.M. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J. Am. Acad. Dermatol. 2010, 63, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.C.; Chalmers, J.R.; Simpson, E.L. Prevention of atopic dermatitis. F1000 Med. Rep. 2012, 4. [Google Scholar] [CrossRef]
- Haahtela, T.; Holgate, S.; Pawankar, R.; Akdis, C.A.; Benjaponpitak, S.; Caraballo, L.; Demain, J.; Portnoy, J.; von Hertzen, L.; WAO Special Committee on Climate Change and Biodiversity. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 2013, 6. [Google Scholar] [CrossRef]
- Hanski, I.; von Hertzen, L.; Fyhrquist, N.; Koskinen, K.; Torppa, K.; Laatikainen, T.; Karisola, P.; Auvinen, P.; Paulin, L.; Mäkelä, M.J.; et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 2012, 109, 8334–8339. [Google Scholar] [CrossRef] [PubMed]
- Legatzki, A.; Rösler, B.; von Mutius, E. Microbiome diversity and asthma and allergy risk. Curr. Allergy Asthma Rep. 2014, 14. [Google Scholar] [CrossRef]
- Sjögren, Y.M.; Jenmalm, M.C.; Böttcher, M.F.; Björkstén, B.; Sverremark-Ekström, E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy 2009, 39, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Sjögren, Y.M.; Tomicic, S.; Lundberg, A.; Böttcher, M.F.; Björkstén, B.; Sverremark-Ekström, E.; Jenmalm, M.C. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin. Exp. Allergy 2009, 39, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Kwok, L.Y.; Wang, L.; Zhang, J.; Guo, Z.; Zhang, H. A pilot study on the effect of Lactobacillus casei Zhang on intestinal microbiota parameters in Chinese subjects of different age. Benef. Microbes. 2014, 5, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Geuking, M.B.; Köller, Y.; Rupp, S.; McCoy, K.D. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014, 5, 411–418. [Google Scholar] [CrossRef]
- Nermes, M.; Kantele, J.M.; Atosuo, T.J.; Salminen, S.; Isolauri, E. Interaction of orally administered Lactobacillus rhamnosus GG with skin and gut microbiota and humoral immunity in infants with atopic dermatitis. Clin. Exp. Allergy. 2011, 41, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.H.; Licciardi, P.V.; Tang, M.L. Probiotic effects in allergic disease. J. Paediatr. Child. Health. 2013, 49, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R. Evaluation of Lactobacillus rhamnosus strain GG for the prevention of atopic dermatitis in dogs. Am. J. Vet. Res. 2009, 70, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Santoro, D.; Ahrens, K. Early exposure to probiotics in a canine model of atopic dermatitis has long-term clinical and immunological effects. Vet. Immunol. Immunopathol. 2012, 146, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Hoffmann, A.; Patterson, A.P.; Diesel, A.; Lawhon, S.D.; Ly, H.J.; Elkins Stephenson, C.; Mansell, J.; Steiner, J.M.; Dowd, S.E.; Olivry, T.; et al. The skin microbiome in healthy and allergic dogs. PLOS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Panduru, M.; Panduru, N.M.; Sălăvăstru, C.M.; Tiplica, G.S. Probiotics and primary prevention of atopic dermatitis: A meta-analysis of randomized controlled studies. J. Eur. Acad. Dermatol. Venereol. 2014. [Google Scholar] [CrossRef]
- Pucheu-Haston, C.M.; Jackson, H.A.; Olivry, T.; Dunston, S.M.; Hammerberg, B. Epicutaneous sensitization with Dermatophagoides farinae induces generalized allergic dermatitis and elevated mite-specific immunoglobulin E levels in a canine model of atopic dermatitis. Clin. Exp. Allergy 2008, 38, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Olivry, T.; Dean, G.A.; Tompkins, M.B.; Dow, J.L.; Moore, P.F. Toward a canine model of atopic dermatitis: Amplification of cytokine-gene transcripts in the skin of atopic dogs. Exp. Dermatol. 1999, 8, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Pucheu-Haston, C.M.; Shuster, D.; Olivry, T.; Brianceau, P.; Lockwood, P.; McClanahan, T.; de Waal Malefyt, R.; Mattson, J.D.; Hammerberg, B. A canine model of cutaneous late-phase reactions: Prednisolone inhibition of cellular and cytokine responses. Immunology 2006, 117, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.; Paps, J.; Bäumer, W.; Olivry, T. Dermatophagoides farinae house dust mite allergen challenges reduce stratum corneum ceramides in an experimental dog model of acute atopic dermatitis. Vet. Dermatol. 2012, 23. [Google Scholar] [CrossRef]
- Butler, J.M.; Peters, J.E.; Hirshman, C.A.; White, C.R., Jr.; Margolin, L.B.; Hanifin, J.M. Pruritic dermatitis in asthmatic basenji-greyhound dogs: A model for human atopic dermatitis. J. Am. Acad. Dermatol. 1983, 8, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.E.; Hirshman, C.A.; Malley, A. The Basenji-Greyhound dog model of asthma: Leukocyte histamine release, serum IgE, and airway response to inhaled antigen. J. Immunol. 1982, 129, 1245–1249. [Google Scholar] [PubMed]
- Hirshman, C.A.; Downes, H.; Leon, D.A.; Peters, J.E. Basenji-greyhound dog model of asthma: Pulmonary responses after beta-adrenergic blockade. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 1423–1427. [Google Scholar] [PubMed]
- Shiohara, T.; Hayakawa, J.; Mizukawa, Y. Animal models for atopic dermatitis: Are they relevant to human disease? J. Dermatol. Sci. 2004, 36, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Suto, H.; Matsuda, H.; Mitsuishi, K.; Hira, K.; Uchida, T.; Unno, T.; Ogawa, H.; Ra, C. NC/Nga mice: A mouse model for atopic dermatitis. Int. Arch. Allergy Immunol. 1999, 120, S70–S75. [Google Scholar] [CrossRef]
- Matsuda, H.; Watanabe, N.; Geba, G.P.; Sperl, J.; Tsudzuki, M.; Hiroi, J.; Matsumoto, M.; Ushio, H.; Saito, S.; Askenase, P.W.; et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 1997, 9, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tanaka, M.; Wataya-Kaneda, M.; Yang, L.; Nakamura, A.; Matsumoto, S.; Attia, M.; Murota, H.; Katayama, I. Topical application of rapamycin ointment ameliorates Dermatophagoides farina body extract-induced atopic dermatitis in NC/Nga mice. Exp. Dermatol. 2014. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jeong, M.S.; Park, M.K.; Lee, M.K.; Seo, S.J. Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice. Exp. Dermatol. 2014, 23, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.J.; Kang, M.J.; Seo, J.H.; Kim, H.Y.; Jeong, S.K.; Lee, S.H.; Kim, J.M.; Hong, S.J. A novel mouse model of atopic dermatitis with epicutaneous allergen sensitization and the effect of Lactobacillus rhamnosus. Exp. Dermatol. 2012, 21, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, D. Of flaky tails and itchy skin. Nat. Genet. 2009, 41, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Presland, R.B.; Boggess, D.; Lewis, S.P.; Hull, C.; Fleckman, P.; Sundberg, J.P. Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: An animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J. Invest. Dermatol. 2000, 115, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- NIAID-Sponsored Expert Panel; Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; et al. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [Google Scholar]
- Prescott, S.; Allen, K.J. Food allergy: Riding the second wave of the allergy epidemic. Pediatr. Allergy Immunol. 2011, 22, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.J.; Davis, C.M. Changes in prevalence and characteristics of IgE-mediated food allergies in children referred to a tertiary care center in 2003 and 2008. Allergy Asthma Proc. 2012, 33, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Springston, E.E.; Warrier, M.R.; Smith, B.; Kumar, R.; Pongracic, J.; Holl, J.L. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 2011, 128, e9–e17. [Google Scholar] [CrossRef] [PubMed]
- Pałgan, K.; Bartuzi, Z. Gene and environmental interactions of food allergy. Postepy. Hig. Med. Dosw. (Online) 2012, 66, 385–391. [Google Scholar] [CrossRef]
- Chiang, W.C.; Pons, L.; Kidon, M.I.; Liew, W.K.; Goh, A.; Wesley Burks, A. Serological and clinical characteristics of children with peanut sensitization in an Asian community. Pediatr. Allergy Immunol. 2010, 21, e429–e438. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.B.; Goldberg, M.R.; Nachshon, L.; Tabachnik, E.; Katz, Y. Lessons from cases of mortality due to food allergy in Israel: Cow’s milk protein should be considered a potentially fatal allergen. Isr. Med. Assoc. J. 2012, 14, 29–33. [Google Scholar] [PubMed]
- Vetander, M.; Helander, D.; Flodström, C.; Ostblom, E.; Alfvén, T.; Ly, D.H.; Hedlin, G.; Lilja, G.; Nilsson, C.; Wickman, M. Anaphylaxis and reactions to foods in children—A population-based case study of emergency department visits. Clin. Exp. Allergy 2012, 42, 568–577. [Google Scholar] [CrossRef] [PubMed]
- De Leon, M.P.; Rolland, J.M.; O’Hehir, R.E. The peanut allergy epidemic: Allergen molecular characterisation and prospects for specific therapy. Expert Rev. Mol. Med. 2007, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hefle, S.; Nordlee, J.A.; Taylor, S.L. Allergenic foods. Crit. Rev. Food Sci. Nutr. 1996, 36, S69–S89. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food allergy. J. Allergy Clin. Immunol. 2010, 125, S116–S125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sampson, H.A. Food allergy. J. Clin. Invest. 2011, 121, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Helm, R.M.; Ermel, R.W.; Frick, O.L. Nonmurine animal models of food allergy. Environ. Health Perspect. 2003, 111, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Maloney, J.M.; Rudengren, M.; Ahlstedt, S.; Bock, S.A.; Sampson, H.A. The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. J. Allergy Clin. Immunol. 2008, 122, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Helm, R.M.; Burks, Q.W. Animal models of food allergy. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Helm, R.M. Food allergy animal models: An overview. Ann. N. Y. Acad. Sci. 2002, 964, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.D.; Kattan, J.D.; Zou, Z.M.; Li, J.H.; Zhang, L.; Wallenstein, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy. J. Allergy Clin. Immunol. 2005, 115, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Schofield, B.H.; Huang, C.K.; Kleiner, G.I.; Sampson, H.A. A murine model of IgE-mediated cow’s milk hypersensitivity. J. Allergy Clin. Immunol. 1999, 103, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Dearman, R.J.; Stone, S.; Caddick, H.T.; Basketter, D.A.; Kimber, I. Evaluation of protein allergenic potential in mice: Dose-response analyses. Clin. Exp. Allergy. 2003, 33, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Gonipeta, B.; Kim, E.; Gangur, V. Mouse models of food allergy: How well do they simulate the human disorder? Crit. Rev. Food Sci. Nutr. 2013. [Google Scholar] [CrossRef]
- Van Gramberg, J.L.; de Veer, M.J.; O’Hehir, R.E.; Meeusen, E.N.T.; Bischof, R.J. Induction of allergic responses to peanut allergen in sheep. PLOS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Ladics, G.S.; Knippels, L.M.; Penninks, A.H.; Bannon, G.A.; Goodman, R.E.; Herouet-Guicheney, C. Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regul. Toxicol. Pharmacol. 2010, 56, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Knippels, L.M.; Penninks, A.H.; van Meeteren, M; Houben, G.F. Humoral and cellular immune responses in different rat strains on oral exposure to ovalbumin. Food Chem. Toxicol. 1999, 37, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Van Gramberg, J.L.; de Veer, M.J.; O’Hehir, R.E.; Meeusen, E.N.; Bischof, R.J. Use of animal models to investigate major allergens associated with food allergy. J. Allergy (Cairo) 2013. [Google Scholar] [CrossRef]
- Favrot, C.; Steffan, J.; Seewald, W.; Picco, F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet. Dermatol. 2010, 21, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Carlotti, D.N.; Remy, I.; Prost, C. Food allergy in dogs and cats: A review and report of 43 cases. Vet. Dermatol. 1990, 1, 55–62. [Google Scholar] [CrossRef]
- Verlinden, A.; Hesta, M.; Millet, S.; Janssens, G.P. Food allergy in dogs and cats: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Jackson, H.A.; Jackson, M.W.; Coblentz, L.; Hammerberg, B. Evaluation of the clinical and allergen specific serum immunoglobulin E responses to oral challenge with cornstarch, corn, soy and a soy hydrolysate diet in dogs with spontaneous food allergy. Vet. Dermatol. 2003, 14, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Teuber, S.S.; del Val, G.; Morigasaki, S.; Jung, H.R.; Eisele, P.H.; Frick, O.L.; Buchanan, B.B. The atopic dog as a model of peanut and tree nut food allergy. J. Allergy Clin. Immunol. 2002, 110, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, B.B.; Frick, O.L. The dog as a model for food allergy. Ann. N. Y. Acad. Sci. 2002, 964, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Kennis, R.A. Use of atopic dogs to investigate adverse reactions to food. J. Am. Vet. Med. Assoc. 2002, 221, 638–640. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Ahrens, K. Experimental model of peanut allergy in dogs after epicutaneous sensitization. Br. J. Dermatol. 2014, 170, E4. [Google Scholar] [CrossRef]
- Matsumoto, K.; Saito, H. Epicutaneous immunity and onset of allergic diseases—Per-“eczema”tous sensitization drives the allergy march. Allergol. Int. 2013, 62, 291–296. [Google Scholar] [CrossRef] [PubMed]
- McClain, S.; Bannon, G.A. Animal models of food allergy: Opportunities and barriers. Curr. Allergy Asthma Rep. 2006, 6, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Global Strategy for Asthma Management and Prevention. Available online: http://erj.ersjournals.com/content/31/1/143.full.pdf+html (accessed on 10 October 2014).
- Chapman, R.W. Canine models for asthma and COPD. Pulm. Pharmacol. Ther. 2008, 21, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Cabana, M.D.; Kunselman, S.J.; Nyenhuis, S.M.; Wechsler, M.E. Researching asthma across the ages: Insights from the National Heart, Lung, and Blood Institute’s Asthma Network. J. Allergy Clin. Immunol. 2014, 133, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. The global burden of asthma: Executive summary of the GINA Dissemination Committee Report. Allergy 2004, 59, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, P.; Mandhane, P.J.; Sears, M.R. Asthma: Epidemiology, etiology and risk factors. CMAJ 2009, 181, E181–E190. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.; Guan, J.; Victor, J.C.; Wang, C.; To, T. The course of asthma activity: A population study. J. Allergy Clin. Immunol. 2012, 129, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Zosky, G.R.; Sly, P.D. Animal models of asthma. Clin. Exp. Allergy 2007, 37, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.T. Stochastic-model of the pulmonary airway tree and its implications for bronchial responsiveness. J. Appl. Physiol. 1993, 75, 2493–2499. [Google Scholar] [PubMed]
- Barnes, P.J. Corticosteroid effects on cell signalling. Eur. Respir. J. 2006, 27, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, U.; Egermann, U.; Bihl, M.P.; Gambazzi, F.; Tamm, M.; Holt, P.G.; Bingisser, R.M. Human bronchial epithelium controls TH2 responses by TH1-induced, nitric oxide-mediated STAT5 dephosphorylation: Implications for the pathogenesis of asthma. J. Immunol. 2005, 175, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Howat, W.J.; Holgate, S.T.; Lackie, P.M. TGF-β isoform release and activation during in vitro bronchial epithelial wound repair. Am. J. Physiol. 2002, 282, L115–L123. [Google Scholar]
- Szelenyi, I. Animal models of bronchial asthma. Inflamm. Res. 2000, 49, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Taube, C.; Dakhama, A.; Gelfand, E.W. Insights into the pathogenesis of asthma utilizing murine models. Int. Arch. Allergy Immunol. 2004, 135, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.J.; Myron, P.; Powell, W.S.; Martin, J.G. The role of endogenous corticosterone in the late-phase response to allergen challenge in the brown Norway rat. Am. J. Respir. Crit. Care Med. 1996, 153, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Reinero, C.; DeClue, A.; Rabinowitz, P. Asthma in humans and cats: Is there a common sensitivity to aeroallergens in shared environments? Environ. Res. 2009, 109, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Kirschvink, N.; Leemans, J.; Delvaux, F.; Snaps, F.; Clercx, C.; Gustin, P. Non-invasive assessment of airway responsiveness in healthy and allergen sensitized cats by use of barometric whole body plethysmography. Vet. J. 2007, 173, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Norris Reinero, C.; Decile, K.; Berghaus, R.; Williams, K.; Leutenegger, C.; Walby, W.; Schelegle, E.; Hyde, D.; Gershwin, L. An experimental model of allergic asthma in cats sensitized to house dust mite or Bermuda grass allergen. Int. Arch. Allergy Immunol. 2004, 135, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Padrid, P.; Snook, S.; Finucane, T. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am. J. Resp. Crit. Care Med. 1995, 151, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. Available online: http://www.nhlbi.nih.gov/health-pro/guidelines/current/asthma-guidelines/full-report (accessed on 20 October 2014).
- Haliwell, R.E.W.; Schwartzmann, R.M. Atopic diseases in the dog. Vet. Rec. 1971, 89, 209–214. [Google Scholar] [CrossRef] [PubMed]
- De Weck, A.L.; Mayer, P.; Stumper, B.; Schiessel, B.; Pickat, L. Dog allergy, a model for allergy genetics. Int. Arch. Allergy Immunol. 1997, 113, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Collie, D.D.; DeBoer, D.J.; Muggenburg, B.A.; Bice, D.E. Evaluation of association of blood and bronchoalveolar eosinophil number and serum total immunoglobulin. Am. J. Vet. Res. 1997, 58, 34–39. [Google Scholar] [PubMed]
- Redman, T.K.; Rudolph, K.; Barr, E.B.; Bowan, L.E.; Muggenburg, B.A.; Bice, D.E. Pulmonary immunity to ragweed in a beagle dog model of allergic asthma. Exp. Lung Res. 2001, 27, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, E.N.; Snibson, K.J.; .Hirst, S.J.; Bischof, R.J. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discov. Today 2009, 6, 101–106. [Google Scholar]
- Bischof, R.J.; Snibson, K.; Shaw, R.; Meeusen, E.N. Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin. Exp. Allergy 2003, 33, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.M. Pharmacology of allergen-induced early and late airway responses and antigen-induced airway hyperresponsiveness in allergic sheep. Pulm. Pharmacol. 1989, 2, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Scheerlinck, J.P.; Snibson, K.J.; Bowles, V.M.; Sutton, P. Biomedical applications of sheep models: From asthma to vaccines. Trends Biotechnol. 2008, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.P.; Rodriguez-Roisin, R. Platelet-activating factor antagonists—Current status in asthma. BioDrugs 2000, 14, 21–30. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, D.; Marsella, R. Animal Models of Allergic Diseases. Vet. Sci. 2014, 1, 192-212. https://doi.org/10.3390/vetsci1030192
Santoro D, Marsella R. Animal Models of Allergic Diseases. Veterinary Sciences. 2014; 1(3):192-212. https://doi.org/10.3390/vetsci1030192
Chicago/Turabian StyleSantoro, Domenico, and Rosanna Marsella. 2014. "Animal Models of Allergic Diseases" Veterinary Sciences 1, no. 3: 192-212. https://doi.org/10.3390/vetsci1030192
APA StyleSantoro, D., & Marsella, R. (2014). Animal Models of Allergic Diseases. Veterinary Sciences, 1(3), 192-212. https://doi.org/10.3390/vetsci1030192