Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
Abstract
1. Summary
2. Data Description
3. Methods
3.1. Study Area
3.2. Data Collection
3.3. Data Analytics
3.4. Discussion
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
O3 | Ozone |
CO | Carbon monoxide |
T | Temperature |
RH | Relative humidity |
BP | Barometric pressure |
IoT | Internet of Things |
Ppb | Parts per billion |
ppm | Parts per million |
hPa | Hectopascal |
SD | Standard deviation |
IQR | Interquartile range |
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H. Chapter three—Traffic, air pollution, and health. In Advances in Transportation and Health; Nieuwenhuijsen, M.J., Khreis, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–104. [Google Scholar] [CrossRef]
- Harrison, R.M.; Vu, T.V.; Jafar, H.; Shi, Z. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021, 149, 106329. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, M.; Liu, X.; Zhang, Y.; Hui, L.; Kong, L.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environ. Pollut. 2020, 257, 113599. [Google Scholar] [CrossRef]
- Huang, Y.S.; Hsieh, C.C. VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan. Atmos. Environ. 2020, 240, 117741. [Google Scholar] [CrossRef]
- Keawboonchu, J.; Thepanondh, S.; Kultan, V.; Pinthong, N.; Malakan, W.; Robson, M.G. Integrated Sustainable Management of Petrochemical Industrial Air Pollution. Int. J. Environ. Res. Public Health 2023, 20, 2280. [Google Scholar] [CrossRef]
- Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [Google Scholar] [CrossRef]
- Xiang, J.; Xu, R.; Du, D.; Tang, B.; Yi, M.; Cai, F.; Yan, X.; Zheng, J.; Li, G.; An, T. The pollution characteristics, source identification and health risks of multiple classes atmospheric SVOCs with complex emission sources of the petrochemical plant and other industries. Atmos. Environ. 2023, 296, 119590. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Tello-Leal, E.; Macías-Hernández, B.A. Association of environmental and meteorological factors on the spread of COVID-19 in Victoria, Mexico, and air quality during the lockdown. Environ. Res. 2021, 196, 110442. [Google Scholar] [CrossRef]
- Yirdaw, A.A.; Ejeso, A.; Bezie, A.E.; Beyene, E.M. Concentration and variation of traffic-related air pollution as measured by carbon monoxide in Hawassa City, Ethiopia. Discov. Environ. 2024, 2, 57. [Google Scholar] [CrossRef]
- Yu, H.R.; Lin, C.H.R.; Tsai, J.H.; Hsieh, Y.T.; Tsai, T.A.; Tsai, C.K.; Lee, Y.C.; Liu, T.Y.; Tsai, C.M.; Chen, C.C.; et al. A Multifactorial Evaluation of the Effects of Air Pollution and Meteorological Factors on Asthma Exacerbation. Int. J. Environ. Res. Public Health 2020, 17, 4010. [Google Scholar] [CrossRef]
- Boogaard, H.; Patton, A.; Atkinson, R.; Brook, J.; Chang, H.; Crouse, D.; Fussell, J.; Hoek, G.; Hoffmann, B.; Kappeler, R.; et al. Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 2022, 164, 107262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, N.; Tang, H.; Gao, X.; Zhang, Y.; Kan, H.; Deng, F.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air 2022, 32, e13170. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Salih, M.A.; Alkhalifah, J.M.; Alsomali, A.H.; Almushawah, A.A. Environmental pollutants particulate matter (PM2.5, PM10), Carbon Monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Ozone (O3) impact on lung functions. J. King Saud Univ.-Sci. 2024, 36, 103280. [Google Scholar] [CrossRef]
- Can, G.; Sayılı, U.; Aksu Sayman, O.; Kuyumcu, O.F.; Yılmaz, D.; Esen, E.; Yurtseven, E.; Erginoz, E. Mapping of carbon monoxide related death risk in Turkey: A ten-year analysis based on news agency records. BMC Public Health 2019, 19, 9. [Google Scholar] [CrossRef]
- Ruan, H.L.; Deng, W.S.; Wang, Y.; Chen, J.B.; Hong, W.L.; Ye, S.S.; Hu, Z.J. Carbon monoxide poisoning: A prediction model using meteorological factors and air pollutants. BMC Proc. 2021, 15, 1. [Google Scholar] [CrossRef]
- Donzelli, G.; Suarez-Varela, M.M. Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Atmosphere 2024, 15, 779. [Google Scholar] [CrossRef]
- Dewan, S.; Lakhani, A. Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. Front. Environ. Sci. 2022, 10, 1007942. [Google Scholar] [CrossRef]
- Holm, S.M.; Balmes, J.R. Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020. CHEST 2022, 161, 190–201. [Google Scholar] [CrossRef]
- Sun, H.Z.; Yu, P.; Lan, C.; Wan, M.W.; Hickman, S.; Murulitharan, J.; Shen, H.; Yuan, L.; Guo, Y.; Archibald, A.T. Cohort-based long-term ozone exposure-associated mortality risks with adjusted metrics: A systematic review and meta-analysis. Innovation 2022, 3, 100246. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Li, G.; Wang, W.; Wang, K.; Wang, J.; Wei, C.; Li, Y.; Deng, F.; Baccarelli, A.A.; et al. Ozone pollution and hospital admissions for cardiovascular events. Eur. Heart J. 2023, 44, 1622–1632. [Google Scholar] [CrossRef]
- Bernardini, F.; Attademo, L.; Trezzi, R.; Gobbicchi, C.; Balducci, P.; Del Bello, V.; Menculini, G.; Pauselli, L.; Piselli, M.; Sciarma, T.; et al. Air pollutants and daily number of admissions to psychiatric emergency services: Evidence for detrimental mental health effects of ozone. Epidemiol. Psychiatr. Sci. 2020, 29, e66. [Google Scholar] [CrossRef] [PubMed]
- Byrwa-Hill, B.M.; Venkat, A.; Presto, A.A.; Rager, J.R.; Gentile, D.; Talbott, E. Lagged Association of Ambient Outdoor Air Pollutants with Asthma-Related Emergency Department Visits within the Pittsburgh Region. Int. J. Environ. Res. Public Health 2020, 17, 8619. [Google Scholar] [CrossRef]
- INEGI. Population and Housing Census 2020. National Institute of Statistics and Geography. 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/#datos_abiertos (accessed on 17 March 2025).
- Ministry of Economy. Nuevo León: Economy, Employment, Equity, Quality of Life, Education, Health and Public Safety. Ministry of Economy. 2020. Available online: https://www.economia.gob.mx/datamexico/es/profile/geo/nuevo-leon-nl (accessed on 21 May 2025).
- INEGI. Registered Motor Vehicles in Circulation (VMRC). National Institute of Statistics and Geography. 2023. Available online: https://www.inegi.org.mx/programas/vehiculosmotor/#datos_abiertos (accessed on 21 May 2025).
- Duvall, R.M.; Clements, A.L.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.K.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Ozone Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC 20460 EPA/600/R-20/279. 2021. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350784&Lab=CEMM (accessed on 24 October 2023).
- Macías-Hernández, B.A.; Tello-Leal, E.; Barrios, S.O.; Leiva-Guzmán, M.A.; Toro, A.R. Effect of environmental conditions on the performance of a low-cost atmospheric particulate matter sensor. Urban Clim. 2023, 52, 101753. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, D.; Yu, K.; Cao, L.; Jiang, Y. Meteorological Variables and Synoptic Patterns Associated with Air Pollutions in Eastern China during 2013–2018. Int. J. Environ. Res. Public Health 2020, 17, 2528. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.T.; Trinh, T.T.; Le, T.T.; Nguyen, T.D.H.; Tu, B.M. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environ. Geochem. Health 2019, 41, 929–937. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Liu, J.; Gao, W.; Song, T.; Sun, Y.; Li, L.; Li, X.; Wang, Y.; Liu, L.; et al. Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environ. Int. 2020, 134, 105283. [Google Scholar] [CrossRef]
- Mao, F.; Zang, L.; Wang, Z.; Pan, Z.; Zhu, B.; Gong, W. Dominant synoptic patterns during wintertime and their impacts on aerosol pollution in Central China. Atmos. Res. 2020, 232, 104701. [Google Scholar] [CrossRef]
- Zeren, Y.; Guo, H.; Lyu, X.; Jiang, F.; Wang, Y.; Liu, X.; Zeng, L.; Li, M.; Li, L. An Ozone “Pool” in South China: Investigations on Atmospheric Dynamics and Photochemical Processes Over the Pearl River Estuary. J. Geophys. Res. Atmos. 2019, 124, 12340–12355. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef]
Column Name | Description | Unit |
---|---|---|
ID_sample | Unique ID for each observation | Integer |
Date | Day of recording of the instance value | dd/mm/aaaa |
Hour | Time of recording of the instance value | hh:mm |
O3 | Mean ozone concentration | ppb |
CO | Mean carbon monoxide concentration | ppm |
Temperature | Mean air temperature | °C |
RH | Mean relative humidity | % |
BP | Mean barometric pressure | hPa |
O3_linear | Ozone concentration imputed using the linear method | ppb |
O3_stine | Ozone concentration imputed using the Stineman method | ppb |
O3_spline | Ozone concentration imputed using the spline method | ppb |
CO_linear | Carbon monoxide concentration imputed using the linear method | ppm |
CO_stine | Carbon monoxide concentration imputed using the Stineman method | ppm |
CO_spline | Carbon monoxide concentration imputed using the spline method | ppm |
Period | Variable | Mean | SD | Median | IQR | Min | 25% | 75% | Max |
---|---|---|---|---|---|---|---|---|---|
March | CO | 1.51 | 0.32 | 1.47 | 0.4 | 0.63 | 1.3 | 1.7 | 2.78 |
O3 | 13.80 | 7.88 | 12.09 | 7.94 | 2.06 | 8.69 | 16.63 | 80.42 | |
T | 24.15 | 6.10 | 23.1 | 8.66 | 10.73 | 19.65 | 28.3 | 41.32 | |
RH | 74.72 | 21.53 | 77 | 36.96 | 21.03 | 58.82 | 95.78 | 100 | |
PB | 973.33 | 10.86 | 973.09 | 8.86 | 808.61 | 969.52 | 978.38 | 1012 | |
April | CO | 1.32 | 0.38 | 1.33 | 0.46 | 0.08 | 1.08 | 1.54 | 3.56 |
O3 | 19.00 | 12.34 | 16.03 | 13.04 | 2.13 | 11 | 24.04 | 94.32 | |
T | 28.39 | 6.64 | 27.35 | 10.08 | 15.15 | 23.89 | 33.96 | 43.83 | |
RH | 77.93 | 26.4 | 92.88 | 42.71 | 5.16 | 57.29 | 100 | 100 | |
PB | 973.59 | 5.59 | 973.17 | 7.52 | 959.14 | 969.62 | 977.14 | 1031 | |
May | CO | 1.62 | 0.34 | 1.58 | 0.37 | 0.23 | 1.42 | 1.79 | 3.16 |
O3 | 17.87 | 18.03 | 11.39 | 15.23 | 1.44 | 6.42 | 21.65 | 96.01 | |
T | 33.59 | 6.31 | 32.05 | 10.11 | 21 | 28.5 | 38.61 | 49.88 | |
RH | 84.24 | 18.97 | 92.93 | 28.67 | 27.45 | 71.33 | 100 | 100 | |
PB | 972.58 | 13.76 | 968.81 | 4.54 | 878.29 | 966.6 | 971.14 | 1021 | |
June | CO | 1.12 | 0.32 | 1.14 | 0.51 | 0.28 | 0.85 | 1.36 | 2.35 |
O3 | 18.62 | 15.43 | 16 | 18.6 | 0.71 | 6.80 | 25.41 | 91.85 | |
T | 32.77 | 6.09 | 30.81 | 10.20 | 23.23 | 27.78 | 37.98 | 47.52 | |
RH | 78.06 | 24.39 | 87.58 | 41.39 | 22.65 | 58.61 | 100 | 100 | |
PB | 971.75 | 7.47 | 971.74 | 3.97 | 795.05 | 969.83 | 973.8 | 982.29 | |
Average | CO | 1.4 | 0.39 | 1.41 | 0.43 | 0.08 | 1.18 | 1.61 | 3.56 |
O3 | 17.3 | 14.09 | 13.88 | 13.34 | 0.71 | 8.00 | 21.34 | 98.01 | |
T | 29.71 | 7.34 | 28.88 | 9.87 | 10.73 | 24.80 | 34.67 | 49.88 | |
RH | 78.75 | 23.21 | 86.56 | 38.77 | 5.16 | 61.23 | 100 | 100 | |
PB | 972.81 | 9.99 | 971.5 | 6.52 | 795.05 | 968.58 | 975.1 | 1031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Perez, J.M.; Macías-Hernández, B.A.; Tello-Leal, E.; Ventura-Houle, R. Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level. Data 2025, 10, 125. https://doi.org/10.3390/data10080125
Jaramillo-Perez JM, Macías-Hernández BA, Tello-Leal E, Ventura-Houle R. Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level. Data. 2025; 10(8):125. https://doi.org/10.3390/data10080125
Chicago/Turabian StyleJaramillo-Perez, Jailene Marlen, Bárbara A. Macías-Hernández, Edgar Tello-Leal, and René Ventura-Houle. 2025. "Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level" Data 10, no. 8: 125. https://doi.org/10.3390/data10080125
APA StyleJaramillo-Perez, J. M., Macías-Hernández, B. A., Tello-Leal, E., & Ventura-Houle, R. (2025). Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level. Data, 10(8), 125. https://doi.org/10.3390/data10080125