PlantDRs: A Database of Dispersed Repeats in Plant Genomes Identified by the Iterative Procedure Method
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Search for DRs in the Plant Genomes
3.2. Periodicity in DRs
3.3. Database of DRs Found in the Plant Genomes
- Chromosome of a specific organism (field: Organism). The chromosome number is selected from the list and is accompanied by information about the chromosome length, which should be taken into account when entering the data on repeat positions in the following fields.
- DR family (field: Position weight matrix). Here, the repeat family matrix associated with the organism in question is selected; therefore, the species and the following family number should be selected from the list. If a chromosome of a specific organism has been previously selected, you need to make sure that the family matrix corresponds to the same biological species.
- Internal identifier in the database (field: Record ID). The identifier is an integer, and a range of identifier values can be specified.
- Left and right coordinates in the chromosome (field: Position in chr.).
- Range of values for the statistical significance of the repeat Z (field: Significance).
- DNA strand (forward “+” or reverse “−“), where the repeat is found (field: DNA string).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DRs | Dispersed repeats |
IP | Iteration procedure |
PWM | Position weight matrix |
References
- Galindo-González, L.; Mhiri, C.; Deyholos, M.K.; Grandbastien, M.-A. LTR-retrotransposons in plants: Engines of evolution. Gene 2017, 626, 14–25. [Google Scholar] [CrossRef]
- Ujino-Ihara, T. Stress-responsive retrotransposable elements in conifers. Genes Genet. Syst. 2022, 97, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Dubin, M.J.; Scheid, O.M.; Becker, C. Transposons: A blessing curse. Curr. Opin. Plant Biol. 2018, 42, 23–29. [Google Scholar] [CrossRef]
- Makarevitch, I.; Waters, A.J.; West, P.T.; Stitzer, M.; Hirsch, C.N.; Ross-Ibarra, J.; Springer, N.M. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 2015, 11, e1004915. [Google Scholar] [CrossRef]
- Hirsch, C.D.; Springer, N.M. Transposable element influences on gene expression in plants. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, M. How transposable elements are recognized and epigenetically silenced in plants? Curr. Opin. Plant Biol. 2023, 75, 102428. [Google Scholar] [CrossRef]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef]
- Kalendar, R.; Sabot, F.; Rodriguez, F.; Karlov, G.I.; Natali, L.; Alix, K. Editorial: Mobile elements and plant genome evolution, comparative analyzes and computational tools. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Hassan, A.H.; Mokhtar, M.M.; El Allali, A. Transposable elements: Multifunctional players in the plant genome. Front. Plant Sci. 2023, 14, 1330127. [Google Scholar] [CrossRef]
- Rymen, B.; Ferrafiat, L.; Blevins, T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020, 11, 172–191. [Google Scholar] [CrossRef]
- Pulido, M.; Casacuberta, J.M. Transposable element evolution in plant genome ecosystems. Curr. Opin. Plant Biol. 2023, 75, 102418. [Google Scholar] [CrossRef]
- Mojica, E.A.; Kültz, D. Physiological mechanisms of stress-induced evolution. J. Exp. Biol. 2022, 225. [Google Scholar] [CrossRef]
- Roquis, D.; Robertson, M.; Yu, L.; Thieme, M.; Julkowska, M.; Bucher, E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res. 2021, 49, 10431–10447. [Google Scholar] [CrossRef]
- Liu, P.; Cuerda-Gil, D.; Shahid, S.; Slotkin, R.K. The epigenetic control of the transposable element life cycle in plant genomes and beyond. Annu. Rev. Genet. 2022, 56, 63–87. [Google Scholar] [CrossRef]
- Vicient, C.M.; Casacuberta, J.M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 2017, 120, 195–207. [Google Scholar] [CrossRef]
- Jangam, D.; Feschotte, C.; Betrán, E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 2017, 33, 817–831. [Google Scholar] [CrossRef]
- Capy, P. Taming, Domestication and Exaptation: Trajectories of transposable elements in genomes. Cells 2021, 10, 3590. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.C.; Fanti, L. Transposable Elements: Major players in shaping genomic and evolutionary patterns. Cells 2022, 11, 1048. [Google Scholar] [CrossRef]
- Benoit, M.; Drost, H.-G.; Catoni, M.; Gouil, Q.; Lopez-Gomollon, S.; Baulcombe, D.; Paszkowski, J.; Scheid, O.M. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet. 2019, 15, e1008370. [Google Scholar] [CrossRef]
- Sun, X.; Xiang, Y.; Dou, N.; Zhang, H.; Pei, S.; Franco, A.V.; Menon, M.; Monier, B.; Ferebee, T.; Liu, T.; et al. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 2023, 41, 120–127. [Google Scholar] [CrossRef]
- Li, X.; Guo, K.; Zhu, X.; Chen, P.; Li, Y.; Xie, G.; Wang, L.; Wang, Y.; Persson, S.; Peng, L. Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genom. 2017, 18, 55. [Google Scholar] [CrossRef]
- Jung, S.; Venkatesh, J.; Kang, M.-Y.; Kwon, J.-K.; Kang, B.-C. A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum. Plant Sci. 2019, 287, 110181. [Google Scholar] [CrossRef] [PubMed]
- Arvas, Y.E.; Marakli, S.; Kaya, Y.; Kalendar, R. The power of retrotransposons in high-throughput genotyping and sequencing. Front. Plant Sci. 2023, 14, 1174339. [Google Scholar] [CrossRef]
- Kumar, A.; Hirochika, H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci. 2001, 6, 127–134. [Google Scholar] [CrossRef]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef]
- Storer, J.; Hubley, R.; Rosen, J.; Wheeler, T.J.; Smit, A.F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 2021, 12, 2. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Alsamman, A.M.; Abd-Elhalim, H.M.; El Allali, A.; Kashkush, K. CicerSpTEdb: A web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS ONE 2021, 16, e0259540. [Google Scholar] [CrossRef]
- Yi, F.; Jia, Z.; Xiao, Y.; Ma, W.; Wang, J. SPTEdb: A database for transposable elements in salicaceous plants. Database 2018, 2018, bay024. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Ni, W.; Peng, Z.; Guo, Y.; Ye, W.; Huang, F.; Zhang, X.; Xu, P.; Guo, Q.; et al. GrTEdb: The first web-based database of transposable elements in cotton (Gossypium raimondii). Database 2017, 2017, bax013. [Google Scholar] [CrossRef]
- Du, J.; Grant, D.; Tian, Z.; Nelson, R.T.; Zhu, L.; Shoemaker, R.C.; Ma, J. SoyTEdb: A comprehensive database of transposable elements in the soybean genome. BMC Genom. 2010, 11, 113. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Q.; Zhang, Y.; Lu, C.; Kuang, H. P-MITE: A database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res. 2014, 42, D1176–D1181. [Google Scholar] [CrossRef] [PubMed]
- Vassetzky, N.S.; Kramerov, D.A. SINEBase: A database and tool for SINE analysis. Nucleic Acids Res. 2013, 41, D83–D89. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Alsamman, A.M.; El Allali, A. PlantLTRdb: An interactive database for 195 plant species LTR-retrotransposons. Front. Plant Sci. 2023, 14, 1134627. [Google Scholar] [CrossRef]
- Nicolas, J.; Tempel, S.; Fiston-Lavier, A.-S.; Cherif, E. Finding and Characterizing Repeats in Plant Genomes. In Plant Bioinformatics. Methods in Molecular Biology; Edwards, D., Ed.; Humana: New York, NY, USA, 2023; Volume 2443, pp. 327–385. [Google Scholar] [CrossRef]
- Storer, J.M.; Hubley, R.; Rosen, J.; Smit, A.F.A. Methodologies for the de novo discovery of transposable element families. Genes 2022, 13, 709. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.; Arkhipova, I.R. An Overview of Best Practices for Transposable Element Identification, Classification, and Annotation in Eukaryotic Genomes. In Methods in Molecular Biology; Branco, M.R., de Mendoza Soler, A., Eds.; Humana: New York, NY, USA, 2023; Volume 2607, pp. 1–23. [Google Scholar] [CrossRef]
- Marsano, R.M.; Dimitri, P. Constitutive heterochromatin in eukaryotic genomes: A mine of transposable elements. Cells 2022, 11, 761. [Google Scholar] [CrossRef]
- Korotkov, E.; Korotkova, M. Detection of dispersed repeats in the genomes of bacteria from different phyla. IPSJ Trans. Bioinform. 2024, 17, 55–63. [Google Scholar] [CrossRef]
- Korotkov, E.; Suvorova, Y.; Kostenko, D.; Korotkova, M. Search for Dispersed repeats in bacterial genomes using an iterative procedure. Int. J. Mol. Sci. 2023, 24, 10964. [Google Scholar] [CrossRef]
- Rudenko, V.; Korotkov, E. Study of dispersed repeats in the Cyanidioschyzon merolae genome. Int. J. Mol. Sci. 2024, 25, 4441. [Google Scholar] [CrossRef]
- Pugacheva, V.; Korotkov, A.; Korotkov, E. Search of latent periodicity in amino acid sequences by means of genetic algorithm and dynamic programming. Stat. Appl. Genet. Mol. Biol. 2016, 15, 381–400. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Serizay, J.; Ahringer, J. periodicDNA: An R/Bioconductor package to investigate k-mer periodicity in DNA. F1000Research 2021, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Suvorova, Y.M.; Korotkova, M.A.; Korotkov, E.V. Comparative analysis of periodicity search methods in DNA sequences. Comput. Biol. Chem. 2014, 53, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Rube, H.T.; Song, J.S. Categorical spectral analysis of periodicity in nucleosomal DNA. Nucleic Acids Res. 2016, 44, 2047–2057. [Google Scholar] [CrossRef]
- Silverman, B.D.; Linsker, R. A measure of DNA periodicity. J. Theor. Biol. 1986, 118, 295–300. [Google Scholar] [CrossRef]
- Yin, C.; Wang, J. Periodic power spectrum with applications in detection of latent periodicities in DNA sequences. J. Math. Biol. 2016, 73, 1053–1079. [Google Scholar] [CrossRef]
- Eskesen, S.T.; Eskesen, F.N.; Kinghorn, B.; Ruvinsky, A. Periodicity of DNA in exons. BMC Mol. Biol. 2004, 5, 12. [Google Scholar] [CrossRef]
Organism, Path to Genome Data | Genome Size, bp | Chromosomes | Genes (Excluding ncRNA) | DR Families |
---|---|---|---|---|
Arabidopsis thaliana (https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index accessed on 15 May 2025) | 119,146,348 | 5 | 27,445 | 35 |
Capsicum annuum (https://plants.ensembl.org/Capsicum_annuum/Info/Index accessed on 15 May 2025) | 2,589,160,526 | 12 | 31,600 | 26 |
Daucus carota | ||||
(https://plants.ensembl.org/Daucus_carota/Info/Index accessed on 15 May 2025) | 361,968,048 | 9 | 30,824 | 35 |
Zea mays (https://plants.ensembl.org/Zea_mays/Info/Index accessed on 15 May 2025) | 2,131,846,805 | 10 | 43,459 | 54 |
A. thaliana | |||||||||
Z | FDR | Number of repeats | Repeat length (bp) | Coverage | |||||
+ | − | total | average | min | max | bp | % | ||
4.0 | 3.0% | 59,316 | 57,734 | 117,050 | 520.13 | 27 | 600 | 55,361,784 | 46.5 |
5.0 | 1.0% | 24,365 | 22,462 | 46,827 | 521.00 | 38 | 600 | 22,636,501 | 19.0 |
6.0 | 0.4% | 9820 | 8819 | 18,639 | 518.99 | 38 | 600 | 9,132,775 | 7.7 |
7.0 | 0.1% | 4140 | 3692 | 7832 | 512.86 | 46 | 600 | 3,850,736 | 3.2 |
C. annuum | |||||||||
Z | FDR | Number of repeats | Repeat length (bp) | Coverage | |||||
+ | − | total | average | min | max | bp | % | ||
4.0 | 2.1% | 1,259,727 | 1,265,244 | 2,524,971 | 530.20 | 47 | 600 | 1,227,076,568 | 47.4 |
5.0 | 0.6% | 778,107 | 781,446 | 1,559,553 | 534.61 | 48 | 600 | 773,308,166 | 29.9 |
6.0 | 0.2% | 596,646 | 599,577 | 1,196,223 | 536.71 | 54 | 600 | 598,836,871 | 23.1 |
7.0 | 0.1% | 515,231 | 517,139 | 1,032,370 | 538.09 | 54 | 600 | 517,957,179 | 20.0 |
D. carota | |||||||||
Z | FDR | Number of repeats | Repeat length (bp) | Coverage | |||||
+ | − | total | average | min | max | bp | % | ||
4.0 | 6.1% | 167,250 | 163,078 | 330,328 | 465.78 | 24 | 600 | 131,926,275 | 36.4 |
5.0 | 3.4% | 90,025 | 87,235 | 177,260 | 440.29 | 24 | 600 | 64,507,019 | 17.8 |
6.0 | 1.9% | 59,320 | 57,588 | 116,908 | 412.01 | 31 | 600 | 38,591,244 | 10.7 |
7.0 | 0.8% | 44,326 | 43,157 | 87,483 | 388.61 | 39 | 600 | 26,760,676 | 7.4 |
Z. mays | |||||||||
Z | FDR | Number of repeats | Repeat length (bp) | Coverage | |||||
+ | − | total | average | min | max | bp | % | ||
4.0 | 1.6% | 1,209,144 | 1,210,723 | 2,419,867 | 511.81 | 28 | 600 | 1,062,814,683 | 49.9 |
5.0 | 0.5% | 869,739 | 870,844 | 1,740,583 | 520.65 | 32 | 600 | 771,959,857 | 36.2 |
6.0 | 0.1% | 722,664 | 723,102 | 1,445,766 | 524.51 | 35 | 600 | 646,688,520 | 30.3 |
7.0 | 0.0% | 641,103 | 641,307 | 1,282,410 | 527.13 | 42 | 600 | 578,910,853 | 27.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudenko, V.; Korotkov, E.; Kostenko, D. PlantDRs: A Database of Dispersed Repeats in Plant Genomes Identified by the Iterative Procedure Method. Data 2025, 10, 111. https://doi.org/10.3390/data10070111
Rudenko V, Korotkov E, Kostenko D. PlantDRs: A Database of Dispersed Repeats in Plant Genomes Identified by the Iterative Procedure Method. Data. 2025; 10(7):111. https://doi.org/10.3390/data10070111
Chicago/Turabian StyleRudenko, Valentina, Eugene Korotkov, and Dmitrii Kostenko. 2025. "PlantDRs: A Database of Dispersed Repeats in Plant Genomes Identified by the Iterative Procedure Method" Data 10, no. 7: 111. https://doi.org/10.3390/data10070111
APA StyleRudenko, V., Korotkov, E., & Kostenko, D. (2025). PlantDRs: A Database of Dispersed Repeats in Plant Genomes Identified by the Iterative Procedure Method. Data, 10(7), 111. https://doi.org/10.3390/data10070111