Early-Season Field Reference Dataset of Croplands in a Consolidated Agricultural Frontier in the Brazilian Cerrado
Abstract
1. Summary
2. Data Description
3. Methods
4. User Notes
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FAIR | Findable, Accessible, Interoperable, and Reusable |
| GPS | Global Positioning System |
| LULC | Land use and land cover |
| MSI | Multispectral Instrument |
| NDVI | Normalized Difference Vegetation Index |
| SAR | Synthetic Aperture Radar |
References
- Food and Agriculture Organization. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018; 224p. [Google Scholar]
- Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994. [Google Scholar] [CrossRef]
- Rußwurm, M.; Wang, S.; Korner, M.; Lobell, D. Meta-learning for few-shot land cover classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–16 June 2020; pp. 788–796. [Google Scholar]
- Rosa, L.E.C.; Feitosa, R.Q.; Happ, P.N.; Sanches, I.D.; Costa, G.A.O.P. Combining deep learning and prior knowledge for crop mapping in tropical regions from multitemporal SAR image sequences. Remote Sens. 2019, 11, 2029. [Google Scholar] [CrossRef]
- Sanches, I.D.; Feitosa, R.Q.; Achanccaray, P.; Montibeller, B.; Luiz, A.J.B.; Soares, M.D.; Prudente, V.H.R.; Vieira, D.C.; Maurano, L.E.P. LEM benchmark database for tropical agricultural remote sensing application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 387–392. [Google Scholar] [CrossRef]
- Sanches, I.D.; Feitosa, R.Q.; Diaz, M.A.; Soares, M.D.; Luiz, A.J.B.; Schultz, B.; Maurano, L.E.P. Campo Verde database: Seeking to improve agricultural remote sensing of tropical areas. IEEE Geosci. Remote Sens. Lett. 2018, 15, 369–373. [Google Scholar] [CrossRef]
- Oldoni, L.V.; Sanches, I.D.; Picoli, M.C.A.; Covre, R.M.; Fronza, J.G. LEM+ dataset: For agricultural remote sensing applications. Data Brief 2020, 33, 106553. [Google Scholar] [CrossRef] [PubMed]
- Rußwurm, M.; Courty, N.; Emonet, R.; Lefèvre, S.; Tuia, D.; Tavenard, R. End-to-end learned early classification of time series for in-season crop type mapping. ISPRS J. Photogramm. Remote Sens. 2023, 196, 445–456. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Santos, C.D.O.; Bolfe, É.L.; Sano, E.E.; Leandro, V.B.S.; Bayma, G.; da Silva, L.A.P.; Furuya, D.E.G.; Romani, L.A.S.; Morton, D. Dense time series of harmonized Landsat Sentinel-2 and ensemble machine learning to map coffee production stages. Remote Sens. 2025, 17, 3168. [Google Scholar] [CrossRef]
- Santana, B.S.F.; Amaral, F.G.; Cruz, C.B.M. Spatial analysis of soybean and sugarcane monocultures in the Goiás landscape. Anu. Inst. Geocienc. 2022, 45, 44825. [Google Scholar] [CrossRef]
- Sano, E.E.; Bolfe, E.L.; Parreiras, T.C.; Bettiol, G.M.; Vicente, L.E.; Sanches, I.D.; Victoria, D.C. Estimating double cropping plantations in the Brazilian Cerrado through PlanetScope Monthly mosaics. Land 2023, 12, 581. [Google Scholar] [CrossRef]
- Souza, V.S.; Santos, D.C.; Ferreira, J.G.; Souza, S.O.; Gonçalo, T.P.; de Sousa, J.V.A.; Cruvinel, A.G.; Vilela, L.; Paim, T.D.P.; de Almeida, R.E.M.; et al. Cover crop diversity for sustainable agriculture: Insights from the Cerrado biome. Soil Use Manag. 2024, 40, e13014. [Google Scholar] [CrossRef]
- Hao, P.; Di, L.; Zhang, C.; Guo, L. Transfer learning for crop classification with Cropland Data Layer data (CDL) as training samples. Sci. Total Environ. 2020, 733, 138869. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zeng, H.; Tian, F.; Zhang, M.; Wu, B.; Gilliams, S.; Li, S.; Li, Y.; Lu, Y.; Yang, H. An interannual transfer learning approach for crop classification in the Hetao irrigation district, China. Remote Sens. 2022, 14, 1208. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Sanches, I.D. Improving crop mapping in Brazil’s Cerrado from a data cubes-derived Sentinel-2 temporal analysis. Remote Sens. Appl. Soc. Environ. 2023, 32, 101014. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Ali, B.; Dahlhaus, P. The role of FAIR data towards sustainable agricultural performance: A systematic literature review. Agriculture 2022, 12, 309. [Google Scholar] [CrossRef]
- Top, J.; Janssen, S.; Boogaard, H.; Knapen, R.; Şimşek-Şenel, G. Cultivating FAIR principles for agri-food data. Comput. Electron. Agric. 2022, 196, 106909. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. OGC® GeoPackage Encoding Standard—With Corrigendum, Version 1.2.1; Open Geospatial Consortium: Wayland, MA, USA, 2018. [Google Scholar]
- Costa, R.A.; Santos, F.O. Expansão agrícola e vulnerabilidade natural do meio físico no sul goiano. Geogr. Atos 2010, 10, 23–35. Available online: https://revista.fct.unesp.br/index.php/geografiaematos/article/view/270/pdf (accessed on 6 December 2025).
- Gao, P.; Gao, Y.; Ou, Y.; McJeon, H.; Iyer, G.; Ye, S.; Yang, X.; Song, C. Heterogeneous pressure on croplands from land-based strategies to meet the 1.5 °C target. Nat. Clim. Change 2025, 15, 420–427. [Google Scholar] [CrossRef]
- Hofmann, G.; Weber, E.J.; Bastazini, V.A.G.; Rossatto, D.R.; Franco, A.C.; Granada, C.E.; Kaminski, L.A.; Ubaid, F.K.; Leandro-Silva, V.; Borges-Martins, M.; et al. Climate change in the Brazilian Cerrado: A looming threat to terrestrial biodiversity. Wiley Interdiscip. Rev. Clim. Change 2025, 16, e700022. [Google Scholar] [CrossRef]
- Cattelan, L.G.; Mattos, C.R.C.; Pamplona, M.B.; Hirota, M. Mapping climatic regions of the Cerrado: General patterns and future change. Int. J. Climatol. 2024, 44, 5857–5872. [Google Scholar] [CrossRef]
- Garmin International, Inc. GPSMAP 78S Owner’s Manual; Garmin International, Inc.: Olathe, KS, USA, 2010. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Bigolin, T.; Talamini, E. Impacts of climate change scenarios on the corn and soybean double-cropping system in Brazil. Climate 2024, 12, 42. [Google Scholar] [CrossRef]





| Feature | Description |
|---|---|
| fid | Unique identifier of each plot |
| in_situ | Crop type or land use and land cover observed in situ |
| date | Date of the plot observation |
| area_ha | Polygon area in hectares |
| reference | Identifies if the polygon had GPS coordinates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, A.L.R.; Gama, F.F.; Magalhães, I.A.L.; Sano, E.E. Early-Season Field Reference Dataset of Croplands in a Consolidated Agricultural Frontier in the Brazilian Cerrado. Data 2025, 10, 204. https://doi.org/10.3390/data10120204
de Freitas ALR, Gama FF, Magalhães IAL, Sano EE. Early-Season Field Reference Dataset of Croplands in a Consolidated Agricultural Frontier in the Brazilian Cerrado. Data. 2025; 10(12):204. https://doi.org/10.3390/data10120204
Chicago/Turabian Stylede Freitas, Ana Larissa Ribeiro, Fábio Furlan Gama, Ivo Augusto Lopes Magalhães, and Edson Eyji Sano. 2025. "Early-Season Field Reference Dataset of Croplands in a Consolidated Agricultural Frontier in the Brazilian Cerrado" Data 10, no. 12: 204. https://doi.org/10.3390/data10120204
APA Stylede Freitas, A. L. R., Gama, F. F., Magalhães, I. A. L., & Sano, E. E. (2025). Early-Season Field Reference Dataset of Croplands in a Consolidated Agricultural Frontier in the Brazilian Cerrado. Data, 10(12), 204. https://doi.org/10.3390/data10120204

