Using Machine Learning to Identify Predictors of Heterogeneous Intervention Effects in Childhood Obesity Prevention
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Intervention
2.3. Outcomes
2.3.1. BMI Z-Score
2.3.2. Fat Mass Percentage
2.3.3. Stress
2.3.4. Sleep
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
Baseline Characteristics as Predictors of Heterogenous Intervention Effects
4. Discussion
4.1. Study Strengths and Limitations
4.2. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LASSO | Least Absolute Shrinkage and Selection Operator |
| SES | Socio-economic status |
| BMI | Body Mass Index |
| SDQ | Strengths and Difficulties Questionnaire |
| SDQ-PSB | Strengths and Difficulties Questionnaire—Prosocial Behaviour |
| PATH | Predictive Approaches to Treatment Heterogeneity |
| HTE | Heterogeneity of Treatment Effect |
References
- World Health Organization. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals, 1st ed.; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-005114-0. [Google Scholar]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef]
- Robertson, A.; Lobstein, T.; Knai, C. Obesity and Socio-Economic Groups in Europe: Evidence Review and Implications for Action; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 October 2025).
- Pont, S.J.; Puhl, R.; Cook, S.R.; Slusser, W.; Section on Obesity; The Obesity Society. Stigma Experienced by Children and Adolescents with Obesity. Pediatrics 2017, 140, e20173034. [Google Scholar] [CrossRef]
- Reiband, H.K.; Klemmensen, R.T.; Rosthøj, S.; Sørensen, T.I.A.; Heitmann, B.L. Body Weight in Childhood, Adolescence, and Young Adulthood in Relation to Later Risk of Disabilities and Early Retirement among Danish Female Nurses. Int. J. Obes. 2024, 48, 859–866. [Google Scholar] [CrossRef]
- Bjerregaard, L.G.; Jensen, B.W.; Ängquist, L.; Osler, M.; Sørensen, T.I.A.; Baker, J.L. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N. Engl. J. Med. 2018, 378, 1302–1312. [Google Scholar] [CrossRef]
- Ward, Z.J.; Long, M.W.; Resch, S.C.; Giles, C.M.; Cradock, A.L.; Gortmaker, S.L. Simulation of Growth Trajectories of Childhood Obesity into Adulthood. N. Engl. J. Med. 2017, 377, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; Wu, W.; Chumlea, W.C.; Roche, A.F. Predicting Overweight and Obesity in Adulthood from Body Mass Index Values in Childhood and Adolescence123. Am. J. Clin. Nutr. 2002, 76, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Spiga, F.; Davies, A.L.; Tomlinson, E.; Moore, T.H.; Dawson, S.; Breheny, K.; Savović, J.; Gao, Y.; Phillips, S.M.; Hillier-Brown, F.; et al. Interventions to Prevent Obesity in Children Aged 5 to 11 Years Old. Cochrane Database Syst. Rev. 2024, 3, CD009729. [Google Scholar]
- Olsen, N.J.; Østergaard, J.N.; Bjerregaard, L.G.; Høy, T.V.; Kierkegaard, L.; Michaelsen, K.F.; Sørensen, T.I.A.; Grønbæk, M.K.; Bruun, J.M.; Heitmann, B.L. A Literature Review of Evidence for Primary Prevention of Overweight and Obesity in Healthy Weight Children and Adolescents: A Report Produced by a Working Group of the Danish Council on Health and Disease Prevention. Obes. Rev. 2024, 25, e13641. [Google Scholar] [CrossRef] [PubMed]
- Rolke, L.; White, M.J. Improving the Effectiveness and Equity of Child Obesity Interventions. Pediatrics 2024, 153, e2023064453. [Google Scholar] [CrossRef]
- Mannion, E.; Bihrmann, K.; Plachta-Danielzik, S.; Müller, M.J.; Bosy-Westphal, A.; Ritz, C. Exploring the Effect of an Obesity-Prevention Intervention on Various Child Subgroups: A Post Hoc Subgroup Analysis of the Kiel Obesity Prevention Study. Nutrients 2024, 16, 3220. [Google Scholar] [CrossRef]
- Inoue, K.; Adomi, M.; Efthimiou, O.; Komura, T.; Omae, K.; Onishi, A.; Tsutsumi, Y.; Fujii, T.; Kondo, N.; Furukawa, T.A. Machine Learning Approaches to Evaluate Heterogeneous Treatment Effects in Randomized Controlled Trials: A Scoping Review. J. Clin. Epidemiol. 2024, 176, 111538. [Google Scholar] [CrossRef] [PubMed]
- Kent, D.M.; Paulus, J.K.; van Klaveren, D.; D’Agostino, R.; Goodman, S.; Hayward, R.; Ioannidis, J.P.A.; Patrick-Lake, B.; Morton, S.; Pencina, M.; et al. The Predictive Approaches to Treatment Effect Heterogeneity (PATH) Statement. Ann. Intern. Med. 2020, 172, 35–45. [Google Scholar] [CrossRef]
- Lambert, J.; Xavier, T.; Berger, K.; Peairs, A. A Strategy for Exploring Subgroup-Specific Effects in Nutrition Science. J. Nutr. Sci. 2022, 11, e106. [Google Scholar] [CrossRef]
- Ferrario, P.G.; Watzl, B.; Møller, G.; Ritz, C. What Is the Promise of Personalised Nutrition? J. Nutr. Sci. 2021, 10, e23. [Google Scholar] [CrossRef]
- Padula, W.V.; Kreif, N.; Vanness, D.J.; Adamson, B.; Rueda, J.-D.; Felizzi, F.; Jonsson, P.; IJzerman, M.J.; Butte, A.; Crown, W. Machine Learning Methods in Health Economics and Outcomes Research-The PALISADE Checklist: A Good Practices Report of an ISPOR Task Force. Value Health 2022, 25, 1063–1080. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Olsen, N.J.; Buch-Andersen, T.; Händel, M.N.; Østergaard, L.M.; Pedersen, J.; Seeger, C.; Stougaard, M.; Trærup, M.; Livemore, K.; Mortensen, E.L.; et al. The Healthy Start Project: A Randomized, Controlled Intervention to Prevent Overweight among Normal Weight, Preschool Children at High Risk of Future Overweight. BMC Public Health 2012, 12, 590. [Google Scholar] [CrossRef]
- Olsen, N.J.; Ängquist, L.; Frederiksen, P.; Lykke Mortensen, E.; Heitmann, B.L. Primary Prevention of Fat and Weight Gain among Obesity Susceptible Healthy Weight Preschool Children. Main Results from the “Healthy Start” Randomized Controlled Intervention. Pediatr. Obes. 2021, 16, e12736. [Google Scholar] [CrossRef]
- Miller, W.R. Motivational Interviewing: Research, Practice, and Puzzles. Addict. Behav. 1996, 21, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; DiClemente, C.C. Stages and Processes of Self-Change of Smoking: Toward an Integrative Model of Change. J. Consult. Clin. Psychol. 1983, 51, 390–395. [Google Scholar] [CrossRef]
- Olsen, N.J.; Larsen, S.C.; Rohde, J.F.; Stougaard, M.; Händel, M.N.; Specht, I.O.; Heitmann, B.L. Effects of the Healthy Start Randomized Intervention on Psychological Stress and Sleep Habits among Obesity-Susceptible Healthy Weight Children and Their Parents. PLoS ONE 2022, 17, e0264514. [Google Scholar] [CrossRef]
- Rohde, J.F.; Larsen, S.C.; Ängquist, L.; Olsen, N.J.; Stougaard, M.; Mortensen, E.L.; Heitmann, B.L. Effects of the Healthy Start Randomized Intervention on Dietary Intake among Obesity-Prone Normal-Weight Children. Public Health Nutr. 2017, 20, 2988–2997. [Google Scholar] [CrossRef]
- Händel, M.N.; Larsen, S.C.; Rohde, J.F.; Stougaard, M.; Olsen, N.J.; Heitmann, B.L. Effects of the Healthy Start Randomized Intervention Trial on Physical Activity among Normal Weight Preschool Children Predisposed to Overweight and Obesity. PLoS ONE 2017, 12, e0185266. [Google Scholar] [CrossRef]
- Sund Start. Available online: https://www.sundstart.nu/ (accessed on 15 March 2025).
- Nysom, K.; Mølgaard, C.; Hutchings, B.; Fleischer Michaelsen, K. Body Mass Index of 0 to 45-y-Old Danes: Reference Values and Comparison with Published European Reference Values. Int. J. Obes. 2001, 25, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.; Driscoll, P.; Johnson, R.; Nagy, T.; Hunter, G. Cross-Calibration of Body-Composition Techniques against Dual-Energy X-Ray Absorptiometry in Young Children. Am. J. Clin. Nutr. 1996, 63, 299–305. [Google Scholar] [CrossRef]
- Danish Single Sided SDQ. Available online: https://www.sdqinfo.org/py/sdqinfo/b3.py?language=Danish (accessed on 1 April 2025).
- Goodman, R. The Strengths and Difficulties Questionnaire: A Research Note. J. Child Psychol. Psychiatry 1997, 38, 581–586. [Google Scholar] [CrossRef]
- Goodman, A.; Lamping, D.L.; Ploubidis, G.B. When to Use Broader Internalising and Externalising Subscales Instead of the Hypothesised Five Subscales on the Strengths and Difficulties Questionnaire (SDQ): Data from British Parents, Teachers and Children. J. Abnorm. Child. Psychol. 2010, 38, 1179–1191. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.11.0. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 2 December 2024).
- Alosh, M.; Huque, M.F.; Bretz, F.; D’Agostino, R.B. Tutorial on Statistical Considerations on Subgroup Analysis in Confirmatory Clinical Trials. Stat. Med. 2017, 36, 1334–1360. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 2 December 2024).
- Sénéchal, M.; Hebert, J.J.; Fairchild, T.J.; Møller, N.C.; Klakk, H.; Wedderkopp, N. Vigorous Physical Activity Is Important in Maintaining a Favourable Health Trajectory in Active Children: The CHAMPS Study-DK. Sci. Rep. 2021, 11, 19211. [Google Scholar] [CrossRef] [PubMed]
- Wyszyńska, J.; Ring-Dimitriou, S.; Thivel, D.; Weghuber, D.; Hadjipanayis, A.; Grossman, Z.; Ross-Russell, R.; Dereń, K.; Mazur, A. Physical Activity in the Prevention of Childhood Obesity: The Position of the European Childhood Obesity Group and the European Academy of Pediatrics. Front. Pediatr. 2020, 8, 535705. [Google Scholar] [CrossRef] [PubMed]
- Heerman, W.J.; Yin, H.S.; Schildcrout, J.S.; Bian, A.; Rothman, R.L.; Flower, K.B.; Delamater, A.M.; Sanders, L.; Wood, C.; Perrin, E.M. The Effect of an Obesity Prevention Intervention Among Specific Subpopulations: A Heterogeneity of Treatment Effect Analysis of the Greenlight Trial. Child. Obes. 2024, 20, 572–580. [Google Scholar] [CrossRef]
- Lissner, L.; De Bourdeaudhuij, I.; Konstabel, K.; Mårild, S.; Mehlig, K.; Molnár, D.; Moreno, L.A.; Pigeot, I.; Siani, A.; Tornaritis, M.; et al. Differential Outcome of the IDEFICS Intervention in Overweight versus Non-Overweight Children: Did We Achieve ‘Primary’ or ‘Secondary’ Prevention? Obes. Rev. 2015, 16, 119–126. [Google Scholar] [CrossRef]
- Derwig, M.; Tiberg, I.; Björk, J.; Welander Tärneberg, A.; Hallström, I.K. A Child-centered Health Dialogue for the Prevention of Obesity in Child Health Services in Sweden—A Randomized Controlled Trial Including an Economic Evaluation. Obes. Sci. Pract. 2021, 8, 77–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Kreif, N.; Gc, V.S.; Manca, A. Machine Learning Methods to Estimate Individualized Treatment Effects for Use in Health Technology Assessment. Med. Decis. Mak. 2024, 44, 756–769. [Google Scholar] [CrossRef]
- Riley, R.D.; Snell, K.I.E.; Martin, G.P.; Whittle, R.; Archer, L.; Sperrin, M.; Collins, G.S. Penalization and Shrinkage Methods Produced Unreliable Clinical Prediction Models Especially When Sample Size Was Small. J. Clin. Epidemiol. 2021, 132, 88–96. [Google Scholar] [CrossRef]
- Rodriguez, A.; Korzeniowska, K.; Szarejko, K.; Borowski, H.; Brzeziński, M.; Myśliwiec, M.; Czupryniak, L.; Berggren, P.-O.; Radziwiłł, M.; Soszyński, P. Getting Them through the Door: Social and Behavioral Determinants of Uptake and Engagement in an Obesity Intervention. Obes. Res. Clin. Pract. 2023, 17, 86–90. [Google Scholar] [CrossRef]
- Stratton, S.J. Population Research: Convenience Sampling Strategies. Prehospital Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between Screen Time and Lower Psychological Well-Being among Children and Adolescents: Evidence from a Population-Based Study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report of the Commission on Ending Childhood Obesity; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-151006-6. [Google Scholar]


| Baseline Characteristic | Control Group | Intervention Group | ||
|---|---|---|---|---|
| n | 1 | n | ||
| Age (years) | 272 | 4.01 ± 1.07 | 271 | 4.01 ± 1.08 |
| Sex | ||||
| Male | 106 | 39 | 121 | 44 |
| Female | 166 | 61 | 150 | 55 |
| Follow up time (years) | 203 | 1.29 ± 0.21 | 161 | 1.31 ± 0.28 |
| BMI Z-Score | 272 | 0.15 ± 0.74 | 271 | 0.06 ± 0.80 |
| Fat Mass (%) | 176 | 21.31 ± 8.90 | 199 | 22.26 ± 10.12 |
| Fat Mass (kg) | 176 | 3.74 ± 1.59 | 199 | 3.78 ± 1.72 |
| Fat-Free Mass (kg) | 176 | 14.05 ± 3.17 | 199 | 13.62 ± 3.38 |
| Waist circumference (cm) | 257 | 52.10 ± 3.01 | 253 | 51.76 ± 3.22 |
| Waist/Hip ratio | 255 | 0.93 ± 0.05 | 252 | 0.93 ± 0.05 |
| Sum of four skin folds (mm) | 242 | 24.82 ± 5.23 | 236 | 24.61 ± 5.44 |
| Average Daily energy intake (MJ) | 272 | 4.83 ± 1.02 | 271 | 4.70 ± 1.00 |
| Chores a weekly activity | ||||
| Yes | 85 | 39 | 89 | 37 |
| No | 131 | 60 | 146 | 62 |
| Hide and Seek a weekly activity | ||||
| Yes | 188 | 77 | 185 | 77 |
| No | 55 | 23 | 55 | 23 |
| Parents divorced | ||||
| Yes | 19 | 7 | 17 | 6 |
| No | 238 | 92 | 238 | 93 |
| Baseline Covariate | LASSO Coefficient 1 (λmin = 0.02) | Yes N | Yes Subgroup * (Intervention—Control) | No N | No Subgroup * (Intervention—Control) | Difference of Mean Differences |
|---|---|---|---|---|---|---|
| Chores a weekly activity | 0.25 | 117 | 0.15 (−0.03, 0.33) | 152 | 0.02 (−0.14, 0.17) | 0.13 (−0.10, 0.38) |
| Parents Divorced | −0.21 | 13 | −0.19 (−0.69, 0.31) | 221 | 0.09 (−0.08, 0.25) | −0.28 (−0.79, 0.24) |
| Hide and Seek a weekly activity | −0.19 | 250 | 0.01 (−0.12, 0.14) | 74 | 0.33 (0.09, 0.57) | −0.32 (−0.59, −0.05) |
| Trampoline a weekly activity | 0.08 | 99 | 0.20 (−0.01, 0.40) | 205 | 0.03 (−0.11, 0.17) | 0.17 (−0.08, 0.41) |
| Walking a weekly activity | 0.06 | 202 | 0.15 (0.01, 0.30) | 117 | −0.02 (−0.20, 0.16) | 0.17 (−0.06, 0.40) |
| Boardgames a weekly activity | 0.06 | 121 | 0.20 (0.02, 0.40) | 188 | −0.02 (−0.17, 0.13) | 0.22 (−0.01, 0.45) |
| Football a weekly activity | 0.05 | 64 | 0.28 (0.03, 0.52) | 233 | 0.04 (−0.09, 0.18) | 0.24 (−0.04, 0.51) |
| Computer Games a weekly activity | −0.01 | 148 | 0.00 (−0.16, 0.16) | 165 | 0.13 (−0.03, 0.29) | −0.13 (−0.36, 0.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannion, E.; Bihrmann, K.; Olsen, N.J.; Heitmann, B.L.; Ritz, C. Using Machine Learning to Identify Predictors of Heterogeneous Intervention Effects in Childhood Obesity Prevention. Data 2025, 10, 196. https://doi.org/10.3390/data10120196
Mannion E, Bihrmann K, Olsen NJ, Heitmann BL, Ritz C. Using Machine Learning to Identify Predictors of Heterogeneous Intervention Effects in Childhood Obesity Prevention. Data. 2025; 10(12):196. https://doi.org/10.3390/data10120196
Chicago/Turabian StyleMannion, Elizabeth, Kristine Bihrmann, Nanna Julie Olsen, Berit Lilienthal Heitmann, and Christian Ritz. 2025. "Using Machine Learning to Identify Predictors of Heterogeneous Intervention Effects in Childhood Obesity Prevention" Data 10, no. 12: 196. https://doi.org/10.3390/data10120196
APA StyleMannion, E., Bihrmann, K., Olsen, N. J., Heitmann, B. L., & Ritz, C. (2025). Using Machine Learning to Identify Predictors of Heterogeneous Intervention Effects in Childhood Obesity Prevention. Data, 10(12), 196. https://doi.org/10.3390/data10120196

