Digital Accessibility of Solar Energy Variability Through Short-Term Measurements: Data Descriptor
Abstract
1. Summary
2. Data Description
2.1. Data Collection and Processing
2.2. Study Area
2.3. Specifications of Each Sample File
2.4. Sample Size
2.5. Data Values Fluctuations
3. Methods
3.1. Clear-Sky Index
3.2. Process for Clustering
3.3. Regression and Correlation
3.4. Validation and Data Curation
3.5. Noise in the Solar Energy and Quality Dataset
4. Usefulness and Applicability of the Solar Energy Dataset
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Clear-sky index | |
Clear-sky radiation | |
First quartile | |
Second quartile | |
Third quartile | |
Lower whisker | |
Upper whisker | |
Apr | April |
Aug | August |
Be_1 | Barue–1 |
Be_2 | Barue–2 |
Cha | Chipera |
CR23X | Campbell data logger |
CS–OGET | Center of Excellence of Studies in Oil, Gas Engineering and Technology |
CSV | Comma-Separated Values |
Dec | December |
DNI | Direct Normal Irradiance |
ePPI | Electronic Patient-Reported Performance Indicators |
Eq. | Equation |
Feb | February |
FUNAE | National Energy Fund |
GHI | Global horizontal irradiance |
Id. or ID | Identification |
INAM | Mozambique National Institute of Meteorology |
IQR | Interquartile |
kt*_C_A | Clear-sky index on clear sky acceptable days |
kt*_C_NA | Clear-sky index on clear sky unacceptable days |
kt*_Cy_A | Clear-sky index on cloudy sky acceptable days |
kt*_Cy_NA | Clear-sky index on cloudy sky acceptable days |
kt*_I_A | Clear-sky index on intermediate sky acceptable days |
kt*_I_NA | Clear-sky index on intermediate sky acceptable days |
VOS | Visualization of Similarities |
Δkt*_C_A | Clear-sky index increments on clear sky acceptable days |
Δkt*_C_NA | Clear-sky index increments on clear sky unacceptable days |
Δkt*_Cy_A | Clear-sky index increments on cloudy sky acceptable days |
Δkt*_Cy_NA | Clear-sky index increments on cloudy sky acceptable days |
Δkt*_I_A | Clear-sky index increments on intermediate sky acceptable days |
Δkt*_I_NA | Clear-sky index increments on intermediate sky acceptable days |
References
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: New York, NY, USA; Toronto, ON, Canada, 1983. [Google Scholar]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique. Energies 2024, 17, 2613. [Google Scholar] [CrossRef]
- Wenham, S.R.; Green, M.A.; Watt, M.E.; Corkish, R.; Sproul, A. (Eds.) Applied Photovoltaics, 3rd ed.; Routledge: London, UK, 2011. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Modeling Parametric Forecasts of Solar Energy over Time in the Mid-North Area of Mozambique. Energies 2025, 18, 1469. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor. Data 2025, 10, 37. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Ibrahim, A.; Jamil, B.; Kuriqi, A.; Nwokolo, S.C.; El-Kenawy, E.-S.M. Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theor. Appl. Climatol. 2022, 150, 715–729. [Google Scholar] [CrossRef]
- Neggers, R.A.; Jonker, H.J.J.; Siebesma, A.P. Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations. J. Atmos. Sci. 2003, 60, 1060–1074. [Google Scholar] [CrossRef]
- Perez, M.J.; Fthenakis, V.M. On the spatial decorrelation of stochastic solar resource variability at long timescales. Sol. Energy 2015, 117, 46–58. [Google Scholar] [CrossRef]
- Hoff, T.E.; Perez, R. Quantifying PV power Output Variability. Sol. Energy 2010, 84, 1782–1793. [Google Scholar] [CrossRef]
- Lohmann, G.M. Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review. Atmosphere 2018, 9, 264. [Google Scholar] [CrossRef]
- Aryaputera, A.W.; Yang, D.; Zhao, L.; Walsh, W.M. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Sol. Energy 2015, 122, 1266–1278. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Wu, J.; Lin, W.-M. Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: A case study of downtown Houston. Int. J. Remote Sens. 2009, 30, 4359–4385. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review. Energies 2025, 18, 1460. [Google Scholar] [CrossRef]
- Trindade, A.; Cordeiro, L.C. Synthesis of Solar Photovoltaic Systems: Optimal Sizing Comparison. In Software Verification; Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P., Eds.; in Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12549, pp. 87–105. [Google Scholar] [CrossRef]
- Takilalte, A.; Harrouni, S.; Yaiche, M.R.; Mora-López, L. New approach to estimate 5-min global solar irradiation data on tilted planes from horizontal measurement. Renew. Energy 2020, 145, 2477–2488. [Google Scholar] [CrossRef]
- Obiwulu, A.U.; Erusiafe, N.; Olopade, M.A.; Nwokolo, S.C. Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon 2022, 8, e09598. [Google Scholar] [CrossRef]
- van Haaren, R.; Morjaria, M.; Fthenakis, V. Empirical assessment of short-term variability from utility-scale solar PV plants: Assessment of variability from utility-scale solar PV plants. Prog. Photovolt. Res. Appl. 2012, 22, 548–559. [Google Scholar] [CrossRef]
- Koudouris, G.; Dimitriadis, P.; Iliopoulou, T.; Mamassis, N.; Koutsoyiannis, D. A stochastic model for the hourly solar radiation process for application in renewable resources management. Adv. Geosci. 2018, 45, 139–145. [Google Scholar] [CrossRef]
- FUNAE—National Energy Fund of Mozambique, Data on the Solar Radiation Component Extracted from the Energy Atlas. Available online: https://funae.co.mz/ (accessed on 30 April 2023).
- INAM—Mozambique’s National Institute of Meteorology, Weather and Solar Data. Available online: https://www.inam.gov.mz/index.php/pt/ (accessed on 9 December 2024).
- JRC Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#MR (accessed on 4 April 2025).
- AERONET—Aerosol Robotic Network, Site Information Page. 2019. Available online: https://aeronet.gsfc.nasa.gov/new_web/webtool_aod_v3.html (accessed on 29 August 2024).
- Hauser, A.; Oesch, D.; Foppa, N.; Wunderle, S. NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res. Atmos. 2005, 110, D08204. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004JD005439 (accessed on 4 September 2024). [CrossRef]
- Meteonorm Version 8—Meteonorm (de). Available online: https://meteonorm.com/meteonorm-version-8 (accessed on 4 April 2025).
- Kumar, D. Hyper-temporal variability analysis of solar insolation with respect to local seasons. Remote Sens. Appl. Soc. Environ. 2019, 15, 100241. [Google Scholar] [CrossRef]
- Perez, R.; David, M.; Hoff, T.E.; Jamaly, M.; Kivalov, S.; Kleissl, J.; Lauret, P.; Perez, M. Spatial and Temporal Variability of Solar Energy. Found. Trends® Renew. Energy 2016, 1, 1–44. [Google Scholar] [CrossRef]
- Verbois, H.; Saint-Drenan, Y.-M.; Libois, Q.; Michel, Y.; Cassas, M.; Dubus, L.; Blanc, P. Improvement of satellite-derived surface solar irradiance estimations using spatio-temporal extrapolation with statistical learning. Sol. Energy 2023, 258, 175–193. [Google Scholar] [CrossRef]
- Amjad, D.; Mirza, S.; Raza, D.; Sarwar, F.; Kausar, S. A Statistical Modeling for spatial-temporal variability analysis of solar energy with respect to the climate in the Punjab Region. Bahria Univ. Res. J. Earth Sci. 2023, 7, 10. [Google Scholar]
- Wilson, P.; Tanaka, O.K. Statistics, Basic Concepts. 2018. Available online: https://www.estantevirtual.com.br/livros/wilson-pereira-oswaldo-k-tanaka/estatistica-conceitos-basicos/189548989 (accessed on 6 February 2024).
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Temporal Variability of Solar Energy Availability in the Conditions of the Southern Region of Mozambique. Am. J. Energy Nat. Resour. 2023, 2, 27–50. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.S.A.; Magaia, L.L. Quantifying the Variability of Solar Energy Fluctuations at High–Frequencies through Short-Scale Measurements in the East–Channel of Mozambique Conditions. Am. J. Energy Nat. Resour. 2024, 3, 21–40. [Google Scholar] [CrossRef]
- Marcos, J.; Marroyo, L.; Lorenzo, E.; Alvira, D.; Izco, E. Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model: Power Output Fluctuations in Large Scale PV plants. Prog. Photovolt. Res. Appl. 2011, 19, 218–227. [Google Scholar] [CrossRef]
- Eduardo Mondlane University—Undergraduate, Postgraduate, Extension and Innovation (Department of Physics). Available online: https://uem.mz/index.php/en/home-english/ (accessed on 9 December 2024).
Files | Content | Interval | Sample |
---|---|---|---|
“daily_GHI_Chomba (2005–2024)”, “daily_GHI_Nanhupo-1 (2005–2024)”, “daily_GHI_Nanhupo-2 (2005–2024)”, “daily_GHI_Nipepe-1 (2005–2024)”, “daily_GHI_Nipepe-2 (2005–2024)”, “daily_GHI_Chipera (2005–2024)”, “daily_GHI_Nhamadzi (2005–2024)”, “daily_GHI_Barue-1 (2005–2024)”, “daily_GHI_Barue-2 (2005–2024)”, “daily_GHI_Lugela-1 (2005–2024)”, “daily_GHI_Lugela-2 (2005–2024)”, “daily_GHI_Pembe (2005–2024)”, “daily_GHI_Ndindiza (2005–2024)”, “daily_GHI_Massangena (2005–2024)”, and “daily_GHI_Maputo–1 (2005–2024)” | GHI measurements at the stations | 1, 10 min, and 1 h | Input |
“Chipera_A (2005–2024)”, “Nhamadzi_A (2005–2024)”, “Barue–1_A (2005–2024)”, and “Barue–2_A (2005–2024)” | data for acceptable days measured | 1, 10 min, and 1 h | Output and input |
“_accepted_unaccepted_unapplicable” starting with “Barue_1_2005_2011”, “Barue_1_2012_2018”, and “Barue_1_2014” refer to the classification at the Barue_1 station in the years 2005 to 2024; “Barue_2_2005_2011, “Barue_2_2012_2018”, and “Barue_2_2019_2024” | acceptable, unacceptable, and not applicable | 1 min, and 1 h | Output |
Month | Acceptable Days | Unacceptable Days | Unapplicable Days | |||
---|---|---|---|---|---|---|
Nr. | Id. | Nr. | Id. | Nr. | Id. | |
January | 11 | 1, 17, 18, 19, 23, 24, 25, 26, 28, 30, 31 | 20 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 27, 29 | 0 | None |
February | 17 | 1, 3, 4, 10, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, | 11 | 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 22 | 0 | None |
March | 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30 | 7 | 10, 11, 16, 26, 27, 28, 31 | 0 | None |
April | 25 | 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30 | 4 | 11, 12, 5, 24, 25 | 0 | None |
May | 28 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | 3 | 18, 19, 20 | 0 | None |
June | 22 | 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 19, 20, 22, 25, 26, 27, 28, 29, 30 | 8 | 10, 11, 12, 16, 18, 21, 23, 24 | 0 | None |
July | 25 | 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31 | 5 | 6, 11, 18, 19, 30 | 0 | None |
August | 15 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | 16 | 1, 2, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, m29, 30, 31 | 0 | None |
September | 14 | 4, 5, 6,7, 8, 9, 11, 17, 23, 24, 25, 26, 27, 28 | 15 | 1, 2, 3, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 29, 30 | 0 | None |
October | 21 | 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 20, 21, 22, 25, 26, 27, 29, 30, 31 | 8 | 1, 7, 14, 15, 17, 19, 23, 24 | 2 | 18, 28 |
November | 19 | 1, 2, 5, 6, 7, 13, 14, 15, 16, 17, 18, 20, 21, 25, 26, 27, 28, 29, 30 | 11 | 3, 4, 8, 9, 10, 11, 12, 19, 22, 23, 24 | 0 | None |
December | 15 | 1, 2, 3, 4, 5, 9, 10, 11, 13, 23, 24, 25, 26, 27, 28 | 16 | 6, 7, 8, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 29, 30, 31 | 0 | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Digital Accessibility of Solar Energy Variability Through Short-Term Measurements: Data Descriptor. Data 2025, 10, 154. https://doi.org/10.3390/data10100154
Mucomole FV, Silva CAS, Magaia LL. Digital Accessibility of Solar Energy Variability Through Short-Term Measurements: Data Descriptor. Data. 2025; 10(10):154. https://doi.org/10.3390/data10100154
Chicago/Turabian StyleMucomole, Fernando Venâncio, Carlos Augusto Santos Silva, and Lourenço Lázaro Magaia. 2025. "Digital Accessibility of Solar Energy Variability Through Short-Term Measurements: Data Descriptor" Data 10, no. 10: 154. https://doi.org/10.3390/data10100154
APA StyleMucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2025). Digital Accessibility of Solar Energy Variability Through Short-Term Measurements: Data Descriptor. Data, 10(10), 154. https://doi.org/10.3390/data10100154