Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton
Abstract
1. Introduction
2. Related Work
2.1. Research on Skeleton
2.2. Machine Learning-Driven Performance Evaluation
3. Method
3.1. Trajectory Extraction from Videos
3.2. Definition of Trajectory Features
3.3. Stability Assessment
3.4. Trajectory Pattern Clustering
4. Experiment
4.1. Dataset
4.2. Procedure and Results
4.2.1. Stability of Sliding Trajectories
4.2.2. Trajectory Pattern of Each Curve
- (1)
- Results of Curve 2
- (2)
- Results of Curve 3
- (3)
- Results of Curve 9
4.3. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, I. Skeleton Bobsleigh Mechanics: Athlete-Sled Interaction. 2013. Available online: http://hdl.handle.net/1842/7600 (accessed on 18 September 2025).
- Bullock, N.; Hopkins, W.G.; Martin, D.T.; Marino, F.E. Characteristics of performance in skeleton World Cup races. J. Sports Sci. 2009, 27, 367–372. [Google Scholar] [CrossRef]
- Hao, L.; Wang, R.J.; Yang, K.; Wu, H. Research on Sport Performance Influence Factors and Training Strategies of Skeleton Athletes. J. Cap. Univ. Phys. Educ. Sports 2020, 32, 355–360. [Google Scholar]
- Van Zandycke, G.; De Vleeschouwer, C. Real-time CNN-based segmentation architecture for ball detection in a single view setup. In Proceedings Proceedings of the 2nd International Workshop on Multimedia Content Analysis in Sports; ACM Publisher: New York, NY, USA, 2019; pp. 51–58. [Google Scholar]
- Gerke, S.; Linnemann, A.; Müller, K. Soccer player recognition using spatial constellation features and jersey number recognition. Comput. Vis. Image Underst. 2017, 159, 105–115. [Google Scholar] [CrossRef]
- Kamble, P.R.; Keskar, A.G.; Bhurchandi, K.M. A deep learning ball tracking system in soccer videos. Opto-Electron. Rev. 2019, 27, 58–69. [Google Scholar]
- Hauri, S.; Djuric, N.; Radosavljevic, V.; Vucetic, S. Multi-modal trajectory prediction of nba players. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, online, 5–9 January 2021; pp. 1640–1649. [Google Scholar]
- Chen, L.; Wang, W. Analysis of technical features in basketball video based on deep learning algorithm. Signal Process. Image Commun. 2020, 83, 115786. [Google Scholar] [CrossRef]
- Garnier, P.; Gregoir, T. Evaluating soccer player: From live camera to deep reinforcement learning. arXiv 2021, arXiv:2101.05388. [Google Scholar] [CrossRef]
- Kusmakar, S.; Shelyag, S.; Zhu, Y.; Dwyer, D.; Gastin, P.; Angelova, M. Machine learning enabled team performance analysis in the dynamical environment of soccer. IEEE Access 2020, 8, 90266–90279. [Google Scholar] [CrossRef]
- Vracas, N.S.; Short, D.; Banks, J.; Taunton, D.J.; Turnock, S.R. A trajectory simulation model to analyse the factors influencing the descent of a Skeleton athlete. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2024, 238, 382–391. [Google Scholar]
- Yin, Y.Q.; Qiu, S.; Meng, Q.J.; Wang, Y.B.; Qiu, Z.Y. Influencing Factors of the Competition Performance in Skeleton. J. Beijing Sport Univ. 2020, 43, 130–141. [Google Scholar]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Mosey, T. Strength and conditioning for skeleton. Strength Cond. J. 2014, 36, 62–70. [Google Scholar] [CrossRef][Green Version]
- Bullock, N.; Martin, D.T.; Ross, A.; Rosemond, D.; Holland, T.; Marino, F.E. Characteristics of the start in women’s World Cup skeleton. Sports Biomech. 2008, 7, 351–360. [Google Scholar] [CrossRef]
- Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.; Cardinale, M.; Salo, A.I. Physical predictors of elite skeleton start performance. Int. J. Sports Physiol. Perform. 2017, 12, 81–89. [Google Scholar] [CrossRef]
- Sands, W.A.; Smith, S.L.; Kivi, D.M.; McNeal, J.R.; Dorman, J.C.; Stone, M.H.; Cormie, P. Skeleton: Anthropometric and physical abilities profiles: US national skeleton team. Sports Biomech. 2005, 4, 197–214. [Google Scholar] [CrossRef]
- Kivi, D.; Smith, S.; Duckham, R.; Holmgren, B. Kinematic analysis of the skeleton start. In Proceedings of the 22 International Symposium on Biomechanics in Sports, Ottawa, ON, Canada, 9–12 August 2004. [Google Scholar]
- Colyer, S.L.; Stokes, K.A.; Bilzon, J.L.; Salo, A.I. Skeleton sled velocity profiles: A novel approach to understand critical aspects of the elite athletes’ start phases. Sports Biomech. 2018, 17, 168–179. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q. The Analysis of Skeleton and Bobsleigh Characteristics. China Sport Sci. 2019, 39, 81–87. [Google Scholar]
- Niu, R.P.; Li, Y.F.; Jia, X.T. Analysis of Aerodynamic Drag Reduction for Skeleton Sports in Winter Olympics. Comput. Simul. 2025, 42, 365–370. [Google Scholar]
- Li, B.; Shen, M.; Xu, J.C.; Hu, Q.; Zhang, Y.Z.; Hong, P. Aerodynamic Drag Reduction in Athletes’Sliding Position of Skeleton Using Wind Tunnel Tests. China Sport Sci. 2023, 43, 67–71. [Google Scholar]
- Irbe, M.; Gross, K.A.; Viba, J.; Cerpinska, M. Unveiling ice friction and aerodynamic drag at the initial stage of sliding on ice: Faster sliding in winter sports. Tribol. Int. 2021, 160, 106967. [Google Scholar] [CrossRef]
- Irbe, M.; Gross, K.A.; Viba, J.; Cerpinska, M. Analysis of the Skeleton Sled Sliding Motion Induced Vibrations with Different Runner Stiffness’s on an Inclined Ice Track. In International Conference on Vibration Problems; Springer Nature: Singapore, 2019; pp. 91–102. [Google Scholar]
- Shen, Y.Y.; Zhang, Y.M.; Shen, Y.F. A Survey of Vision-based Motion Quality Assessment. Acta Autom. Sin. 2025, 51, 404–426. [Google Scholar]
- Bernal-Torres, M.G.; Medellín-Castillo, H.I.; Arellano-González, J.C. Development of a new low-cost computer vision system for human gait analysis: A case study. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2023, 237, 628–641. [Google Scholar] [CrossRef]
- Siddiqui, H.U.R.; Younas, F.; Rustam, F.; Flores, E.S.; Ballester, J.B.; Diez, I.D.L.T.; Dudley, S.; Ashraf, I. Enhancing cricket performance analysis with human pose estimation and machine learning. Sensors 2023, 23, 6839. [Google Scholar] [CrossRef]
- Huo, B.; Li, Y.F.; Gao, T.; Wang, Z.X.; Du, Z.H.; Sun, J.Y. Research Status Quo and Progress on the Key Technologies of Artificial Intelligence in Sports. J. Cap. Univ. Phys. Educ. Sports 2023, 35, 233–256. [Google Scholar]
- Jia, X.; Diao, C. Feature extraction of basketball player’s foul action using machine vision. Int. J. Comput. Syst. Eng. 2025, 9, 20–30. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, D. Actions of basketball players integrating computer vision and sports biomechanics. J. Comput. Methods Sci. Eng. 2025, 25, 395–409. [Google Scholar] [CrossRef]
- Xia, B.X.; Li, L.Z. Fusion of Computer Vision and Inertial Capture for Basketball Player Motion Recognition. J. Netw. Intell. 2025, 2, 586–597. [Google Scholar]
- Du, W. The computer vision simulation of athlete’s wrong actions recognition model based on artificial intelligence. IEEE Access 2024, 12, 6560–6568. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, L.; Yan, W.K. AI-Driven Image Recognition System for Automated Offside and Foul Detection in Football Matches Using Computer Vision. Int. J. Adv. Comput. Sci. Appl. 2025, 16, 1191–1198. [Google Scholar] [CrossRef]
- AbuKhait, J.; Alaqtash, M.; Aljaafreh, A.; Othman, W. Automated Detection and Classification of Soccer Field Objects using YOLOv7 and Computer Vision Techniques. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 894–902. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X. A Method for football shot motion recognition based on stereo vision. Int. J. Ind. Eng. 2023, 30, 688–698. [Google Scholar]
- Zuo, X. Visualization of Football Tactics with Deep Learning Models. Wirel. Commun. Mob. Comput. 2022, 2022, 9259328. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Chai, W.J.; Xia, S.P. Function Mechanism, Application Scenario and Realization Path of Digital Transformation of Competitive Sports. J. Wuhan Sports Univ. 2024, 58, 89–96. [Google Scholar]
- Wei, S. Simulation of body trajectory detection in sports training based on infrared thermal imaging image features. Therm. Sci. Eng. Prog. 2024, 56, 103061. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, H. Motion trajectory tracking of athletes with improved depth information-based KCF tracking method. Multimed. Tools Appl. 2023, 82, 26481–26493. [Google Scholar] [CrossRef]
- Asano, T.; Sato, K.; Hamano, H.; Hara, H. Analysis and evaluation of tennis swings using computer vision. J. Jpn Soc. Precis. Eng. 2007, 73, 281–285. [Google Scholar] [CrossRef]
- He, J.J.; He, J.Q. Research and implementation of dynamic path tracking method for badminton based on multi-feature fusion. Discov. Artif. Intell. 2025, 5, 135. [Google Scholar] [CrossRef]
- Lu, C.; Tang, X. Binocular Vision-Based Recognition Method for Table Tennis Motion Trajectory. Mob. Inf. Syst. 2022, 2022, 2093631. [Google Scholar] [CrossRef]
- Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, 23–25 June 1999; IEEE: New York, NY, USA, 1999; Volume 2, pp. 246–252. [Google Scholar]
- Garcia-Garcia, B.; Bouwmans, T.; Silva, A.J.R. Background subtraction in real applications: Challenges, current models and future directions. Comput. Sci. Rev. 2020, 35, 100204. [Google Scholar] [CrossRef]
- Piccardi, M. Background subtraction techniques: A review. In Proceedings of the 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands, 10–13 October 2004; IEEE: New York, NY, USA, 2004; Volume 4, pp. 3099–3104. [Google Scholar]
- Benezeth, Y.; Jodoin, P.M.; Emile, B.; Laurent, H.; Rosenberger, C. Comparative study of background subtraction algorithms. J. Electron. Imaging 2010, 19, 033003. [Google Scholar] [CrossRef]
- Liang, S.; Baker, D. Real-time background subtraction under varying lighting conditions. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: New York, NY, USA, 2023; pp. 9317–9323. [Google Scholar]
- Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Shahapure, K.R.; Nicholas, C. Cluster quality analysis using silhouette score. In Proceedings of the 2020 IEEE 7th international conference on data science and advanced analytics (DSAA), Sydney, Australia, 6–9 October 2020; IEEE: New York, NY, USA, 2020; pp. 747–748. [Google Scholar]
- Brusco, M.J.; Steinley, D. A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika 2007, 72, 583–600. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Q.; Liu, W.; Li, Z.; Liu, X.; Liu, Z. Design and Construction of China’s National Sliding Center. Struct. Eng. Int. 2023, 33, 389–393. [Google Scholar] [CrossRef]
- International Bobsleigh & Skeleton Federation: IBSF. Available online: www.ibsf.org/en/races-and-results (accessed on 18 September 2025).
Curves | Groups | Numbers of Trajectory N | Consistency | Gaps of Consistency |
---|---|---|---|---|
C2 | Fast | 247 | 1.455 | — |
Medium | 247 | 1.534 | 0.079 | |
Slow | 247 | 1.699 | 0.165 | |
C3 | Fast | 278 | 0.924 | — |
Medium | 278 | 0.987 | 0.063 | |
Slow | 278 | 1.208 | 0.221 | |
C9 | Fast | 242 | 1.190 | — |
Medium | 242 | 1.308 | 0.118 | |
Slow | 242 | 1.540 | 0.350 |
Curves | Clusters | Numbers of Trajectory N | Average | |||
---|---|---|---|---|---|---|
Finish Time t (s) | Starting Position (Pixel) | Ending Position (Pixel) | Apex Orthogonal Offset (Pixel) | |||
C2 | 1 | 39 | 62.18 | 130.69 | 1598.82 | 183.97 |
2 | 38 | 62.38 | 111.32 | 1542.53 | 171.55 | |
3 | 45 | 62.47 | 124.29 | 1583.76 | 172.60 | |
4 | 59 | 62.44 | 109.24 | 1585.81 | 209.68 | |
5 | 66 | 62.35 | 123.27 | 1637.80 | 227.16 | |
Range (90%) | — | — | 107–137 | 1539–1648 | — | |
C3 | 1 | 91 | 62.25 | 167.71 | 385.92 | 137.21 |
2 | 73 | 62.18 | 159.62 | 333.29 | 179.91 | |
3 | 114 | 62.30 | 159.08 | 364.72 | 162.30 | |
Range (90%) | — | — | 152–178 | 331–405 | — | |
C9 | 1 | 105 | 62.28 | 91.30 | 520.43 | 160.71 |
2 | 75 | 62.14 | 90.15 | 464.89 | 195.32 | |
3 | 62 | 62.50 | 105.05 | 470.79 | 171.61 | |
Range (90%) | — | — | 97–115 | 453–526 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Peng, Z.; Wang, Z.; Chen, W.; Huo, B. Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton. Data 2025, 10, 153. https://doi.org/10.3390/data10100153
Yu T, Peng Z, Wang Z, Chen W, Huo B. Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton. Data. 2025; 10(10):153. https://doi.org/10.3390/data10100153
Chicago/Turabian StyleYu, Ting, Zhen Peng, Zining Wang, Weiya Chen, and Bo Huo. 2025. "Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton" Data 10, no. 10: 153. https://doi.org/10.3390/data10100153
APA StyleYu, T., Peng, Z., Wang, Z., Chen, W., & Huo, B. (2025). Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton. Data, 10(10), 153. https://doi.org/10.3390/data10100153