Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Chemical and Microbiological Analysis of Wines
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characteristics of Wines
3.2. Sensory Analysis of Wines
3.2.1. Rías Baixas DO
3.2.2. Ribeiro DO
3.2.3. Ribeira Sacra DO
3.2.4. Monterrei DO
3.2.5. Valdeorras DO
3.2.6. Regional Differentiation of Wines According to Sensory Attributes
3.3. Chemical and Sensory Analysis Correspondence and Correlation
3.4. The Different Vintages and Farming System: Preferences and Particularities
3.5. Current and Future Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, E.S.; Kievit, R.L.; Curtin, C.; Swiegers, J.H.; Pretorius, I.S.; Bastian, S.E.P.; Leigh Francis, I. The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference. Food Chem. 2010, 122, 618–626. [Google Scholar] [CrossRef]
- van Leeuwen, C. 9—Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 2nd, ed.; Reynolds, A.G.B.T.-M.W.Q., Ed.; Woodhead Publishing: Oxford, UK, 2022; pp. 341–393. ISBN 978-0-08-102067-8. [Google Scholar] [CrossRef]
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From vineyard soil to wine fermentation: Microbiome approximations to explain the “terroir” Concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; Boutegrabet, L.; Gougeon, R.D.; Schmitt-Kopplin, P. A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chem. 2014, 152, 100–107. [Google Scholar] [CrossRef]
- Patrignani, F.; Montanari, C.; Serrazanetti, D.I.; Braschi, G.; Vernocchi, P.; Tabanelli, G.; Parpinello, G.P.; Versari, A.; Gardini, F.; Lanciotti, R. Characterisation of yeast microbiota, chemical and sensory properties of organic and biodynamic Sangiovese red wines. Ann. Microbiol. 2017, 67, 99–109. [Google Scholar] [CrossRef]
- Raineau, Y.; Giraud-Héraud, É.; Lecocq, S.; Pérès, S.; Pons, A.; Tempère, S. When health-related claims impact environmental demand: Results of experimental auctions with Bordeaux wine consumers. Ecol. Econ. 2023, 204, 107663. [Google Scholar] [CrossRef]
- Apaolaza, V.; Hartmann, P.; Echebarria, C.; Barrutia, J.M. Organic label’s halo effect on sensory and hedonic experience of wine: A pilot study. J. Sens. Stud. 2017, 32, e12243. [Google Scholar] [CrossRef]
- Castellini, A.; Mauracher, C.; Troiano, S. An overview of the biodynamic wine sector. Int. J. Wine Res. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- CRAEGA Estadísticas. Memoria anual de actividades do ano 2022 do Consello Regulador da Agricultura Ecolóxica de Galicia 2022.Memoria 2022 (craega.es). Available online: https://www.craega.es/wp-content/uploads/2023/05/Memoria-2022.pdf (accessed on 18 September 2023).
- REU 2018/848 Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Available online: https://eur-lex.europa.eu/eli/reg/2018/848/oj (accessed on 18 September 2023).
- European Commission EU 2021/1165. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists.C/2021/5149. Off. J. Eur. Union 2021, 253, 13–48. [Google Scholar]
- La Comisión Europea Reglamento Delegado (Ue) 2019/934 de la Comisiónde 12 de Marzo de 2019; 2019. Available online: http://data.europa.eu/eli/reg_del/2019/934/oj (accessed on 18 September 2023).
- Blanco, P.; Castrillo, D.; Graña, M.J.; Lorenzo, M.J.; Soto, E. Evaluation of autochthonous non-saccharomyces yeasts by sequential fermentation for wine differentiation in galicia (Nw spain). Fermentation 2021, 7, 183. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Sánchez, C.; Gonzalez-Hernandez, M.; Bueno, M.; Peña, C.; Fernández-Zurbano, P.; Ballester, J.; Parga-Dans, E.; González, P.A. Natural versus conventional production of Spanish white wines: An exploratory study. J. Sci. Food Agric. 2023, 103, 3540–3549. [Google Scholar] [CrossRef]
- Perpetuini, G.; Rossetti, A.P.; Battistelli, N.; Zulli, C.; Cichelli, A.; Arfelli, G.; Tofalo, R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res. Int. 2022, 158, 111577. [Google Scholar] [CrossRef]
- Maioli, F.; Picchi, M.; Millarini, V.; Domizio, P.; Scozzafava, G.; Zanoni, B.; Canuti, V. A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG. Foods 2021, 10, 1894. [Google Scholar] [CrossRef]
- Ugaglia, A.A.; Niklas, B.; Rinke, W.; Moscovici, D.; Gow, J.; Valenzuela, L.; Mihailescu, R. Consumer preferences for certified wines in France: A comparison of sustainable labels. Wine Econ. Policy 2021, 10, 75–86. [Google Scholar]
- OIV Office International de la Vigne et du Vin Compendium of International Methods of Wine and Must Analysis. 2014, Vol. 1 and 2. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 18 September 2023).
- Rodrigues, N.; Gonçalves, G.; Pereira-da-Silva, S.; Malfeito-Ferreira, M.; Loureiro, V. Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J. Appl. Microbiol. 2001, 90, 588–599. [Google Scholar] [CrossRef]
- Odello, L.; Ugolini, A.; Violoni, M. Analisi Sensoriale. I test descrittivi. L’Assaggio 2007, 14, 49–62. [Google Scholar]
- Alonso González, P.; Parga-Dans, E. Natural wine: Do consumers know what it is, and how natural it really is? J. Clean. Prod. 2020, 251, 119635. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Harker, F.R.; Ares, G. Consumer insights about sustainable and ‘beyond organic’ agriculture: A study of biodynamics in the United Kingdom, Australia, Singapore, and Germany. J. Clean. Prod. 2023, 401, 136744. [Google Scholar] [CrossRef]
- Picchi, M.; Canuti, V.; Bertuccioli, M.; Zanoni, B. The Influence of Conventional and Biodynamic Winemaking Processes on the Quality of Sangiovese Wine. Int. J. Wine Res. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Rossetti, A.P.; Perpetuini, G.; Battistelli, N.; Zulli, C.; Arfelli, G.; Suzzi, G.; Cichelli, A.; Tofalo, R. Capturing the fungal community associated with conventional and organic Trebbiano Abruzzese grapes and its influence on wine characteristics. Food Biosci. 2023, 52, 102382. [Google Scholar] [CrossRef]
- Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Mirás-Avalos, J.M. Irrigation effects on the sensory perception of wines from three white grapevine cultivars traditional from Galicia (Albariño, Godello and Treixadura). Cienc. Tec. Vitivinic. 2014, 29, 71–80. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Rombolà, A.D.; Simoni, M.; Versari, A. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chem. 2015, 167, 145–152. [Google Scholar] [CrossRef]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guest editors: Cassandra Collins and R. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Gardoni, E.; Benito, S.; Scansani, S.; Brezina, S.; Fritsch, S.; Rauhut, D. Biological Deacidification Strategies for White Wines. S. Afr. J. Enol. Vitic. 2021, 42, 114–122. [Google Scholar] [CrossRef]
- Diéguez, S.C.; Lois, L.C.; Gómez, E.F.; de la Peña, M.L.G. Aromatic composition of the Vitis vinifera grape Albariño. LWT Food Sci. Technol. 2003, 36, 585–590. [Google Scholar] [CrossRef]
- Magyar, I. Chapter 6–Botrytized Wines. In Speciality Wines; Jackson, R.S., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 63, pp. 147–206. ISBN 1043-4526. [Google Scholar] [CrossRef]
- ORWINE Project. Available online: https://cordis.europa.eu/docs/results/22/22769/123869711-6_en.pdf (accessed on 7 October 2023).
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Moreno-Olivares, J.D.; Giménez-Bañón, M.J.; Paladines-Quezada, D.F.; Gómez-Martínez, J.C.; Cebrián-Pérez, A.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Gil-Muñoz, R. Aromatic Characterization of New White Wine Varieties Made from Monastrell Grapes Grown in South-Eastern Spain. Molecules 2020, 25, 3917. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
- Piras, S.; Brazão, J.; Ricardo-da-Silva, J.M.; Anjos, O.; Caldeira, I. Volatile and sensory characterization of white wines from three minority Portuguese grapevine varieties. Ciência Téc. Vitiv. 2020, 35, 49–62. [Google Scholar] [CrossRef]
- Harutyunyan, M.; Malfeito-Ferreira, M. Historical and Heritage Sustainability for the Revival of Ancient Wine-Making Techniques and Wine Styles. Beverages 2022, 8, 10. [Google Scholar] [CrossRef]
- Vilanova, M.; Rodríguez, I.; Canosa, P.; Otero, I.; Gamero, E.; Moreno, D.; Talaverano, I.; Valdés, E. Variability in chemical composition of Vitis vinifera cv Mencía from different geographic areas and vintages in Ribeira Sacra (NW Spain). Food Chem. 2015, 169, 187–196. [Google Scholar] [CrossRef]
- Castrillo, D.; Blanco, P. Influence of vintage, geographical location and agricultural management on yeast populations in Galician grape musts (NW Spain). OENO One 2022, 56, 65–79. [Google Scholar] [CrossRef]
- Castrillo, D.; Rabuñal, E.; Neira, N.; Blanco, P. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: Impact on aroma and sensory profiles of Treixadura wines. FEMS Yeast Res. 2019, 19, foz065. [Google Scholar] [CrossRef]
- Bubola, M.; Rossi, S.; Váczy, K.Z.; Hegyi, Á.I.; Persic, M.; Zdunić, G.; Bestulić, E.; Orbanić, F.; Zsofi, Z.; Radeka, S. Modification of Cv. Merlot Berry Composition and Wine Sensory Characteristics by Different Leaf Area to Fruit Ratios TI2—Applied Sciences. Appl. Sci. 2023, 13, 5465. [Google Scholar] [CrossRef]
- Souza Gonzaga, L.; Capone, D.L.; Bastian, S.E.P.; Jeffery, D.W. Defining wine typicity: Sensory characterisation and consumer perspectives. Aust. J. Grape Wine Res. 2021, 27, 246–256. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Campo, E.; Culleré, L.; Fernández-Zurbano, P.; Valentin, D.; Ferreira, V. Effects of the Nonvolatile Matrix on the Aroma Perception of Wine. J. Agric. Food Chem. 2010, 58, 5574–5585. [Google Scholar] [CrossRef]
- Sherman, E.; Greenwood, D.R.; Villas-Boâs, S.G.; Heymann, H.; Harbertson, J.F.; Antalick, G.; Šuklje, K.; Blackman, J.W.; Schmidtke, L.M.; Deloire, A. Impact of Grape Maturity and Ethanol Concentration on Sensory Properties of Washington State Merlot Wines. OENO One 2021, 55, 344–356. [Google Scholar] [CrossRef]
- Antalick, G.; Šuklje, K.; Blackman, J.W.; Schmidtke, L.M.; Deloire, A. Performing sequential harvests based on berry sugar accumulation (mg/berry) to obtain specific wine sensory profiles. OENO One 2021, 55, 131–146. [Google Scholar] [CrossRef]
- Allegro, G.; Pastore, C.; Valentini, G.; Filippetti, I. The Evolution of Phenolic Compounds in Vitis vinifera L. Red Berries during Ripening: Analysis and Role on Wine Sensory—A Review. Agronomy 2021, 11, 999. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Cortiñas, J.A.; Fernández-González, M.; Vázquez-Ruiz, R.A.; Aira, M.J.; Rodríguez-Rajo, F.J. The understanding of phytopathogens as a tool in the conservation of heroic viticulture areas. Aerobiologia 2022, 38, 177–193. [Google Scholar] [CrossRef]
- Laureati, M.; Gaeta, D.; Pagliarini, E. Qualitative and sensory evaluation of Sangiovese red wine obtained from organically and conventionally grown grapes. Ital. J. Food Sci. 2014, 26, 355–362. [Google Scholar]
- Pagliarini, E.; Laureati, M.; Gaeta, D. Sensory descriptors, hedonic perception and consumer’s attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes. Front. Psychol. 2013, 4, 896. [Google Scholar] [CrossRef]
- Schäufele, I.; Hamm, U. Wine consumers’ reaction to prices, organic production and origins at the point of sale: An analysis of household panel data. Renew. Agric. Food Syst. 2018, 35, 261–273. [Google Scholar] [CrossRef]
- Castrillo, D.; Neira, N.; Blanco, P. Saccharomyces cerevisiae Strain Diversity Associated with Spontaneous Fermentations in Organic Wineries from Galicia (NW Spain). Fermentation 2020, 6, 89. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Trigo-Córdoba, E.; Orriols, I.; Falqué, E.; Mirás-Avalos, J. Influence of Soil Management on the Red Grapevine (Vitis vinifera L.) Mencía Must Amino Acid Composition and Wine Volatile and Sensory Profiles in a Humid Region. Beverages 2018, 4, 76. [Google Scholar] [CrossRef]
Designation of Origin | Wine Code | Type | Production System | Vintage |
---|---|---|---|---|
2014 Tasting | ||||
Rías Baixas DO | RB1 | W | Org | 2012 |
RB3 | W | Org | 2011 | |
RB4 | W | Con | 2012 | |
RB5 | W | Con | 2013 | |
RB6 | W | Con | 2012 | |
Ribeiro DO | RI1 | R | Org | 2012 |
RI2 | W | Org | 2012 | |
RI2A | W | Con | 2013 | |
RI3 | R | Org | 2013 | |
RI4 | W | Org | 2013 | |
RI5 | W | Con | 2013 | |
RI6 | R | Con | 2013 | |
RI7 | W | Con | 2013 | |
RI8 | R | Con | 2013 | |
RI9 | W | Org-Biod | 2011 | |
Ribeira Sacra DO | RS1 | R | Org | 2012 |
RS2 | R | Con | nd | |
RS3 | W | Org | 2013 | |
RS4 | R | Org | 2011 | |
RS5 | W | Con | 2013 | |
RS6 | R | Con | 2013 | |
RS7 | R | Org | 2012 | |
RS8 | W | Con | 2013 | |
RS9 | R | Con | 2013 | |
Monterrei DO | MO1 | W | Con | 2013 |
MO2 | R | Con | 2013 | |
MO3 | W | Org | 2010 | |
MO4 | R | Org | 2011 | |
Valdeorras DO | VD1 | R | Org | nd |
VD2 | W | nd | nd | |
VD3 | R | Con | 2013 | |
VD4 | R | Org | 2013 | |
2016 Tasting | ||||
Rías Baixas DO | RB1 | W | Org | 2014 |
RB2 | W | Con | 2014 | |
RB3 | W | Org | 2014 | |
RB5 | W | Con | 2014 | |
Ribeiro DO | RI1 | R | Org Ba | 2014 |
RI2 | W | Con | 2014 | |
RI3 | R | Org | 2014 | |
RI4 | W | Org | 2014 | |
RI5 | W | Con | 2014 | |
RI6 | R | Con | 2014 | |
RI7 | W | Con | nd | |
RI9 | W | Org-Biod | 2014 | |
RI10 | W | Org-Biod | 2014 | |
RI11 | W | Con | 2014 | |
Ribeira Sacra DO | RS1 | R | Org | 2014 |
RS2 | R | Org | 2014 | |
RS3 | W | Org | 2014 | |
RS4 | R | Org Ba | 2013 | |
RS5 | R | Con | 2015 | |
RS6 | R | Org | 2015 | |
RS8 | R | Con | 2015 | |
Monterrei DO | MO1 | W | Con | 2014 |
MO2 | R | Con | 2014 | |
MO3 | W | Org | 2014 | |
MO4 | R | Org | 2012 | |
MO5 | W | Org | 2014 | |
MO6 | R | Org | 2014 | |
MO7 | W | Con | 2014 | |
MO8 | R | Con | 2012 | |
Valdeorras DO | VD1 | R | Org | 2014 |
VD2 | R | Con | 2014 | |
VD3 | R | Con | 2015 | |
VD4 | R | Org | 2015 |
Wines (2014) | Total Acidity * (gtart/L) | Volatile Acidity ** (g acetic/L) | Lactic Acid (g/L) | Malic Acid * (g/L) | Tartaric Acid (g/L) | Total SO2 (mg/L) | Free SO2 (mg/L) | Alcohol by Volume (%ABV) | Glycerol (g/L) | pH | Glucose + Fructose (g/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
White | |||||||||||
RB1 | 6.6 | 0.44 | 0.1 | 2.9 | 1.0 | 113 | 15 | 12.1 | 4.5 | 3.26 | 1.6 |
RB3 | 7.1 | 0.37 | 0.1 | 2.4 | 2.0 | 76 | 12 | 13.2 | 6.2 | 3.19 | 1.2 |
RB4 | 6.4 | 0.43 | 0.1 | 2.4 | 1.6 | 115 | 13 | 12.9 | 4.7 | 3.33 | 1.4 |
RB5 | 6.4 | 0.50 | 0.6 | 2.3 | 0.5 | 100 | 26 | 12.7 | 4.9 | 3.40 | 0.8 |
RB6 | 6.8 | 0.65 | 0.8 | 2.8 | 0.1 | 105 | 38 | 12.8 | 5.9 | 3.54 | 1.5 |
RI2 | 5.7 | 0.52 | 0.9 | 0.9 | 2.2 | 133 | 12 | 12.7 | 4.7 | 3.26 | 2.5 |
RI4 | 5.6 | 0.42 | 0.1 | 1.8 | 1.7 | 98 | 31 | 14.3 | 5.4 | 3.52 | 0.6 |
RI5 | 5.8 | 0.45 | 0.1 | 2.1 | 1.4 | 102 | 7 | 12.9 | 4.9 | 3.36 | 3.3 |
RI7 | 5.7 | 0.28 | 0.1 | 2.2 | 1.2 | 137 | 31 | 12.9 | 5.0 | 3.37 | 0.6 |
RI9 | 6.2 | 0.52 | 0.3 | 0.9 | 3.1 | 68 | 5 | 14.4 | 3.3 | 3.17 | 0.8 |
RS3 | 6.1 | 0.30 | 0.1 | 1.8 | 2.0 | 67 | 5 | 13.3 | 5.4 | 3.30 | 0.4 |
RS5 | 5.8 | 0.33 | 0.1 | 2.1 | 1.6 | 139 | 10 | 12.6 | 4.4 | 3.33 | 1.1 |
RS8 | 6.0 | 0.26 | 0.1 | 1.8 | 1.8 | 127 | 28 | 12.4 | 6.3 | 3.22 | 0.5 |
MO1 | 5.8 | 0.33 | 0.1 | 1.8 | 2.0 | 13 | 16.0 | 5.3 | |||
MO3 | 6.6 | 0.32 | 0.1 | 1.6 | 2.4 | 14 | 8.0 | 5.0 | |||
VD2 | 6.0 | 0.29 | 0.1 | 1.7 | 2.2 | 104 | 23 | 13.2 | 5.0 | 3.26 | 1.6 |
Red | |||||||||||
RI1 | 4.6 | 0.46 | 1.4 | 0.1 | 1.3 | 60 | 8 | 12.5 | 7.1 | 3.55 | 0.2 |
RI3 | 5.8 | 0.75 | 2.3 | 0.1 | 2.7 | 16 | 5 | 12.1 | 8.0 | 3.52 | 0.2 |
RI6 | 5.4 | 0.48 | 1.9 | 0.1 | 1.4 | 10 | 5 | 12.9 | 7.8 | 3.58 | 0.5 |
RI8 | 6.0 | 0.52 | 1.9 | 0.1 | 2.8 | 86 | 31 | 10.7 | 5.9 | 3.25 | 0.2 |
RS1 | 5.6 | 0.70 | 1.4 | 0.1 | 1.6 | 72 | 15 | 12.8 | 7.5 | 3.46 | 0.6 |
RS4 | 5.3 | 0.66 | 2.4 | 0.1 | 1.2 | 33 | 5 | 13.3 | 9.3 | 3.74 | 0.5 |
RS6 | 5.4 | 0.64 | 2.5 | 0.1 | 1.2 | 58 | 9 | 12.6 | 8.7 | 3.65 | 0.7 |
RS7 | 5.1 | 0.67 | 2.2 | 0.1 | 1.6 | 41 | 19 | 12.8 | 7.4 | 3.69 | 0.2 |
RS9 | 5.1 | 0.72 | 1.4 | 0.1 | 2.0 | 82 | 28 | 12.4 | 7.9 | 3.56 | 0.2 |
MO 2 | 4.9 | 0.46 | 2.3 | 0.1 | 1.2 | 13 | 14.0 | 7.7 | |||
MO4 | 5.7 | 0.86 | 2.0 | 0.1 | 1.0 | 13 | 6.0 | 7.2 | |||
VD1 | 5.9 | 0.98 | 2.0 | 0.1 | 1.9 | 10 | 5 | 12.3 | 7.4 | 3.51 | 0.2 |
VD3 | 5.1 | 0.77 | 2.1 | 0.1 | 1.5 | 16 | 5 | 12.8 | 8.8 | 3.82 | 0.5 |
VD4 | 5.4 | 1.02 | 3.3 | 0.1 | 0.6 | 10 | 5 | 13.1 | 9.0 | 3.92 | 0.2 |
Wines (2016) | Total Acidity * (gtart/L) | Volatile Acidity (g acetic/L) | Lactic Acid (g/L) | Malic Acid (g/L) | Tartaric Acid ** (g/L) | Total SO2 (mg/L) | Free SO2 ** (mg/L) | Alcohol by Volume * (%ABV) | Glycerol (g/L) | pH ** | Glucose + Fructose * (g/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
White | |||||||||||
MO1 | 4.9 | 0.32 | 0.1 | 2.3 | 1.1 | 121 | 15 | 13.2 | 4.9 | 3.53 | 0.7 |
MO3 | 6.1 | 0.42 | 0.2 | 2.2 | 2.2 | 189 | 10 | 12.8 | 5.3 | 3.21 | 0.3 |
MO5 | 5.3 | 0.43 | 0.1 | 2.0 | 1.2 | 116 | 17 | 13.4 | 5.3 | 3.31 | 1.0 |
MO7 | 5.4 | 0.42 | 0.1 | 2.6 | 1.2 | 110 | 15 | 13.0 | 4.8 | 3.33 | 1.5 |
RS3 | 5.9 | 0.48 | 0.2 | 2.5 | 1.4 | 197 | 10 | 13.1 | 5.4 | 3.35 | 0.6 |
RB1 | 6.2 | 0.58 | 1.9 | 1.6 | 1.4 | 111 | 14 | 11.5 | 5.1 | 3.45 | 2.4 |
RB2 | 6.6 | 0.49 | 0.6 | 3.6 | 0.5 | 131 | 36 | 12.4 | 5.8 | 3.50 | 2.0 |
RB3 | 6.6 | 0.39 | 0.3 | 2.9 | 1.8 | 54 | 10 | 12.6 | 5.4 | 3.45 | 1.1 |
RB5 | 5.9 | 0.48 | 1.3 | 2.8 | 0.8 | 94 | 21 | 11.8 | 4.6 | 3.56 | 1.6 |
RI2 | 5.6 | 0.30 | 0.1 | 2.2 | 1.8 | 83 | 10 | 13.0 | 5.8 | 3.50 | 0.6 |
RI4 | 5.4 | 0.40 | 0.1 | 2.3 | 2.0 | 52 | 10 | 13.8 | 4.9 | 3.52 | 0.6 |
RI5 | 4.9 | 0.45 | 0.1 | 2.4 | 1.0 | 96 | 16 | 12.8 | 5.0 | 3.40 | 1.5 |
RI7 | 6.0 | 0.59 | 0.1 | 2.8 | 2.2 | 218 | 18 | 12.2 | 4.9 | 3.35 | 1.4 |
RI9 | 4.6 | 0.61 | 1.8 | 0.3 | 2.2 | 71 | 10 | 13.2 | 4.5 | 3.50 | 0.5 |
RI10 | 6.4 | 0.47 | 1.2 | 1.4 | 2.8 | 109 | 10 | 12.7 | 5.5 | 3.24 | 0.3 |
RI11 | 5.0 | 0.45 | 0.1 | 2.5 | 0.9 | 108 | 21 | 12.9 | 5.0 | 3.41 | 1.3 |
Red | |||||||||||
MO2 | 4.4 | 0.53 | 2.4 | 0.1 | 1.7 | 38 | 12 | 12.8 | 8.9 | 3.61 | 0.8 |
MO4 | 4.8 | 0.68 | 2.2 | 0.5 | 0.8 | 150 | 11 | 12.7 | 7.2 | 3.52 | 0.2 |
MO6 | 5.1 | 0.60 | 2.2 | 0.1 | 2.0 | 43 | 12 | 12.9 | 8.8 | 3.47 | 0.3 |
MO8 | 5.2 | 0.59 | 1.9 | 0.1 | 2.3 | 20 | 10 | 12.2 | 6.6 | 3.32 | 0.3 |
RI1 | 6.3 | 1.07 | 4.0 | 0.1 | 2.0 | 20 | 10 | 11.6 | 8.0 | 3.63 | 0.2 |
RI3 | 5.6 | 0.86 | 2.8 | 0.1 | 2.3 | 20 | 10 | 13.0 | 11.1 | 3.56 | 0.5 |
RI6 | 4.7 | 0.50 | 2.0 | 0.1 | 2.2 | 20 | 10 | 12.4 | 7.1 | 3.47 | 0.4 |
VD1 | 5.5 | 0.87 | 3.7 | 0.1 | 1.4 | 20 | 10 | 13.2 | 8.7 | 3.60 | 0.4 |
VD2 | 3.9 | 0.48 | 1.6 | 0.1 | 1.2 | 20 | 10 | 12.6 | 8.7 | 3.61 | 0.5 |
VD3 | 3.8 | 0.55 | 2.4 | 0.1 | 1.1 | 20 | 10 | 13.1 | 9.3 | 3.88 | 0.6 |
VD4 | 4.5 | 0.68 | 2.3 | 0.1 | 2.2 | 20 | 10 | 13.6 | 8.7 | 3.83 | 0.4 |
RS1 | 5.4 | 0.79 | 2.0 | 0.1 | 2.5 | 20 | 10 | 12.2 | 7.1 | 3.62 | 0.2 |
RS2 | 4.6 | 0.66 | 2.1 | 0.1 | 2.4 | 20 | 10 | 11.8 | 8.9 | 3.51 | 0.2 |
RS4 | 4.7 | 0.84 | 2.1 | 0.1 | 1.7 | 55 | 10 | 13.3 | 8.1 | 3.69 | 0.4 |
RS5 | 4.4 | 0.49 | 2.0 | 0.1 | 2.1 | 20 | 10 | 13.5 | 9.0 | 3.76 | 0.4 |
RS6 | 4.3 | 0.45 | 1.7 | 0.1 | 2.4 | 30 | 10 | 12.6 | 9.0 | 3.77 | 0.2 |
RS8 | 4.6 | 0.58 | 2.1 | 0.1 | 2.1 | 20 | 10 | 14.0 | 8.4 | 3.75 | 1.1 |
Red Wines | MO2 | MO4 | MO6 | MO8 | RI1 | RI3 | RI6 | VD1 | VD2 | VD3 | VD4 | RS1 | RS2 | RS4 | RS5 | RS6 | RS8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total tannins (g/L) | 2.70 | 2.90 | 2.90 | 2.80 | 2.10 | 2.80 | 2.85 | 2.90 | 2.40 | 2.40 | 3.00 | 2.10 | 2.40 | 2.60 | 2.20 | 1.90 | 3.00 |
Absorbance 420 nm | 2.664 | 2.585 | 3.337 | 4.073 | 3.286 | 4.118 | 3.185 | 4.094 | 3.267 | 3.517 | 3.901 | 3.435 | 3.251 | 2.963 | 3.821 | 2.813 | 3.925 |
Absorbance 520 nm | 3.362 | 2.936 | 4.341 | 4.718 | 4.211 | 4.748 | 4.012 | 5.274 | 4.439 | 5.134 | 5.535 | 4.540 | 4.905 | 3.647 | 5.833 | 4.280 | 6.036 |
Absorbance 620 nm | 0.824 | 0.699 | 1.047 | 1.223 | 1.034 | 1.313 | 0.9395 | 1.489 | 1.131 | 1.226 | 1.443 | 1.125 | 1.047 | 0.872 | 1.334 | 0.920 | 1.313 |
Anthocyanins (mg/L) | 238.00 | 104.12 | 273.88 | 78.75 | 189.00 | 137.81 | 153.56 | 176.75 | 269.50 | 501.38 | 344.75 | 150.50 | 226.19 | 172.38 | 412.12 | 367.50 | 396.38 |
Clarity L | 20.30 | 23.90 | 15.20 | 12.40 | 15.70 | 10.80 | 17.75 | 8.40 | 14.40 | 13.00 | 9.60 | 13.80 | 15.90 | 19.20 | 11.30 | 18.10 | 11.80 |
Chromatic coordinate a | 49.81 | 51.24 | 45.66 | 42.42 | 46.24 | 40.39 | 47.63 | 37.22 | 45.17 | 43.88 | 39.45 | 43.63 | 47.38 | 49.20 | 41.81 | 48.62 | 42.68 |
Chromatic coordinate b | 31.95 | 37.50 | 25.60 | 21.36 | 26.45 | 18.43 | 30.95 | 14.40 | 24.27 | 22.12 | 16.50 | 23.43 | 27.02 | 31.80 | 19.38 | 29.56 | 20.23 |
Total polyphenol content | 40.0 | 42.0 | 48.0 | 38.0 | 39.0 | 51.0 | 43.0 | 44.0 | 44.0 | 51.0 | 52.0 | 43.0 | 44.0 | 44.0 | 44.0 | 36.0 | 55.0 |
Modified color intensity | 6.850 | 6.220 | 8.726 | 10.014 | 8.532 | 10.179 | 8.138 | 10.858 | 8.839 | 9.879 | 10.880 | 9.101 | 9.205 | 7.483 | 10.989 | 8.013 | 11.275 |
Lactic Acid | Free SO2 | Glycerol | Layer—Tone | Yellow Reflection | Cherry Tone | Red Fruits | Black Fruits | Fresh Fruit | Dried Fruit | Compote | Tropical Fruit | Citrus Fruit | Terpenic | Dried Grass | Herbaceous | Spicy | Reduction | Astringent | Lingering | Sweet | Acid | Smoothness | Harmony-Balance | Structure | Overall Quality | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Color intensity | 0.74 | 0.80 | 0.67 | 0.67 | 0.78 | |||||||||||||||||||||
Yellow reflection | 0.68 | |||||||||||||||||||||||||
Fructose + glucose | 0.70 | 0.70 | ||||||||||||||||||||||||
Flower | 0.80 | |||||||||||||||||||||||||
Aromatic intensity | 0.72 | 0.68 | ||||||||||||||||||||||||
Total SO2 | 0.82 | |||||||||||||||||||||||||
Tartaric acid | 0.66 | |||||||||||||||||||||||||
pH | 0.64 | 0.62 | 0.84 | 0.66 | ||||||||||||||||||||||
Floral | 0.75 | |||||||||||||||||||||||||
Fresh fruit | 0.65 | |||||||||||||||||||||||||
Fruity and black fruits | 0.68 | 0.81 | 0.61 | 0.72 | 0.79 | 0.85 | 0.87 | |||||||||||||||||||
Tropical fruit | 0.73 | 0.69 | 0.62 | |||||||||||||||||||||||
Dried fruit | 0.80 | |||||||||||||||||||||||||
Tannins | 0.61 | 0.69 | 0.71 | 0.69 | 0.79 | 0.64 | 0.81 | 0.71 * | ||||||||||||||||||
Dirty | 0.64 | 0.68 | 0.65 | |||||||||||||||||||||||
Wood | 0.67 | |||||||||||||||||||||||||
Aromatic intensity | 0.62 | 0.79 | ||||||||||||||||||||||||
Acidity | 0.77 | 0.61 | 0.68 | |||||||||||||||||||||||
Lingering | 0.77 | 0.74 | 0.64 | 0.77 | 0.92 | |||||||||||||||||||||
Delicacy | 0.68 | |||||||||||||||||||||||||
Alcohol | 0.63 | 0.72 | 0.70 | 0.67 | 0.70 | 0.81 | ||||||||||||||||||||
Structure | 0.81 | 0.66 | 0.71 | 0.92 | 0.64 | 0.79 0.84 | ||||||||||||||||||||
Overall quality | 0.81 | 0.66 | 0.71 | 0.64 | 0.64 0.70 | 0.67 | 0.80 0.91 | 0.76 0.85 |
One-Way PERMANOVA | |||||
---|---|---|---|---|---|
Red | 2011 | 2012 | 2013 | 2014 | 2015 |
2011 | 0.973 | 0.501 | 0.290 | 0.024 | |
2012 | 0.389 | 0.449 | 0.614 | 0.095 | |
2013 | 0.898 | 0.951 | 0.008 | 0.010 | |
2014 | 1.161 | 0.793 | 2.733 | 0.076 | |
2015 | 2.202 | 1.624 | 2.592 | 1.742 | |
White | 2011 | 2012 | 2013 | 2014 | |
2011 | 0.015 | 0.001 | 0.001 | ||
2012 | 2.436 | 0.251 | 0.001 | ||
2013 | 5.225 | 1.236 | 0.001 | ||
2014 | 11.020 | 8.575 | 10.460 | ||
Two-way PERMANOVA | |||||
White 14 + 16 | F | p | Red 14 + 16 | F | p |
Farming | 62.794 | 0.001 | Farming | 2.651 | 0.007 |
Year | 47.612 | 0.001 | Year | 16.004 | 0.009 |
White 14 | F | p | Red 14 | F | p |
Farming | 23.561 | 0.022 | Farming | 19.901 | 0.038 |
Year | 20.957 | 0.003 | Year | 0.886 | 0.595 |
White 16 | F | p | Red 16 | F | p |
Farming | 40 | 0.001 | Farming | 24.182 | 0.011 |
Year | 0.620 | 0.816 | Year | 16.542 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrillo, D.; Blanco, P. Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations. Beverages 2023, 9, 89. https://doi.org/10.3390/beverages9040089
Castrillo D, Blanco P. Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations. Beverages. 2023; 9(4):89. https://doi.org/10.3390/beverages9040089
Chicago/Turabian StyleCastrillo, David, and Pilar Blanco. 2023. "Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations" Beverages 9, no. 4: 89. https://doi.org/10.3390/beverages9040089
APA StyleCastrillo, D., & Blanco, P. (2023). Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations. Beverages, 9(4), 89. https://doi.org/10.3390/beverages9040089