Identification of Sensory and Voltammetric Markers of Regional Typicality: Tempranillo Rioja Wines as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Sensory Analysis
2.2.1. Free Sorting Task
2.2.2. Free Description Task
2.3. Chemical Analysis
2.3.1. Conventional Oenological Analysis
2.3.2. Spectrophotometric Analysis
2.3.3. Voltammetric Analysis
3. Results and Discussion
3.1. Sensory Differences among Rioja Subregions
3.1.1. Free Sorting Task
3.1.2. Free Description Task
3.1.3. Linkage between Sorting Task and Free Description Task
3.1.4. Core and Specific Sensory Profiles of Rioja Wines
3.2. Effect of Region on Conventional Oenological Parameters and Colour Coordinates
3.3. Effect of Region on Voltammetric Signals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parr, W.V.; Grose, C.; Hedderley, D.; Maraboli, M.M.; Masters, O.; Araujo, L.D.; Valentin, D. Perception of quality and complexity in wine and their links to varietal typicality: An investigation involving Pinot noir wine and professional tasters. Food Res. Int. 2020, 137, 109423. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, L.S.; Capone, D.; Bastian, S.; Jeffery, D. Defining wine typicity: Sensory characterisation and consumer perspectives. Aust. J. Grape Wine Res. 2020, 27, 246–256. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Bastian, S.E.; Capone, D.L.; Danner, L.; Jeffery, D.W. Consumer perspectives of wine typicity and impact of region information on the sensory perception of Cabernet Sauvignon wines. Food Res. Int. 2022, 152, 110719. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Lourenço-Gomes, L.; Pinto, L.M.C. Region of origin and perceived quality of wine: An assimilation-contrast approach. Wine Econ. Policy 2021, 10, 57–71. [Google Scholar] [CrossRef]
- Ballester, J.; Dacremont, C.; Le Fur, Y.; Etiévant, P. The role of olfaction in the elaboration and use of the Chardonnay wine concept. Food Qual. Prefer. 2005, 16, 351–359. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Jeffery, D.W. Perspectives on Wines of Provenance: Sensory Typicality, Quality, and Authenticity. ACS Food Sci. Technol. 2021, 1, 986–992. [Google Scholar] [CrossRef]
- Honoré-Chedozeau, C.; Desmas, M.; Ballester, J.; Honore, C.; Parr, W.V.; Chollet, S. Representation of wine and beer: Influence of expertise. Curr. Opin. Food Sci. 2019, 27, 104–114. [Google Scholar] [CrossRef]
- Philipp, C.; Eder, P.; Sari, S.; Hussain, N.; Patzl-Fischerleitner, E.; Eder, R. Aroma typicity of Austrian Pinot Blanc Wines. Molecules 2020, 25, 5705. [Google Scholar] [CrossRef]
- Lelièvre-Desmas, M.; Chollet, S.; Abdi, H.; Valentin, D. Becoming a beer expert: Is simple exposure with feedback sufficient to learn beer categories? Acta Psychol. 2015, 161, 95–103. [Google Scholar] [CrossRef]
- Kellogg, R.T. Feature frequency in concept learning: What is counted? Mem. Cogn. 1981, 9, 157–163. [Google Scholar] [CrossRef]
- Pinker, S. Rules of language. Science 1991, 253, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, R.L. Perceptual learning. Annu. Rev. Psychol. 1998, 49, 585–612. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.J. Principles of perceptual learning and development. In Principles of Perceptual Learning and Development; Appleton-Century-Crofts: East Norwalk, CT, USA, 1969. [Google Scholar]
- Rosch, E.H. Natural categories. Cogn. Psychol. 1973, 4, 328–350. [Google Scholar] [CrossRef]
- Johnson, T.E.; Hasted, A.; Ristic, R.; Bastian, S.E. Multidimensional scaling (MDS), cluster and descriptive analyses provide preliminary insights into Australian Shiraz wine regional characteristics. Food Qual. Prefer. 2013, 29, 174–185. [Google Scholar] [CrossRef]
- Torri, L.; Dinnella, C.; Recchia, A.; Naes, T.; Tuorila, H.; Monteleone, E. Projective Mapping for interpreting wine aroma differences as perceived by naïve and experienced assessors. Food Qual. Prefer. 2013, 29, 6–15. [Google Scholar] [CrossRef]
- King, E.S.; Stoumen, M.; Buscema, F.; Hjelmeland, A.K.; Ebeler, S.E.; Heymann, H.; Boulton, R.B. Regional sensory and chemical characteristics of Malbec wines from Mendoza and California. Food Chem. 2014, 143, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Cadot, Y.; Caillé, S.; Thiollet-Scholtus, M.; Samson, A.; Barbeau, G.; Cheynier, V. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Qual. Prefer. 2012, 24, 48–58. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Capone, D.L.; Bastian, S.E.; Danner, L.; Jeffery, D.W. Using Content Analysis to Characterise the Sensory Typicity and Quality Judgements of Australian Cabernet Sauvignon Wines. Foods 2019, 8, 691. [Google Scholar] [CrossRef]
- Ugliano, M. Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry. Food Chem. 2016, 212, 837–843. [Google Scholar] [CrossRef]
- Ferreira, C.; Sáenz-Navajas, M.-P.; Carrascón, V.; Næs, T.; Fernández-Zurbano, P.; Ferreira, V. An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chem. 2021, 365, 130405. [Google Scholar] [CrossRef]
- Lebart, L.; Morineau, A.; Piron, M. Statistique Exploratoire Multidimensionelle; Dunod: Paris, France, 1995. [Google Scholar]
- Ribéreau-Gayon, P. Le dosage des composes phénoliques totaux dans les vins rouges. Chem.-Anal. 1970, 52, 627–631. [Google Scholar]
- Valentin, D.; Chollet, S.; Lelièvre, M.; Abdi, H. Quick and dirty but still pretty good: A review of new descriptive methods in food science. Int. J. Food Sci. Technol. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Campo, E.; Do, B.; Ferreira, V.; Valentin, D. Aroma properties of young Spanish monovarietal white wines: A study using sorting task, list of terms and frequency of citation. Aust. J. Grape Wine Res. 2008, 14, 104–115. [Google Scholar] [CrossRef]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. Acta Hortic. 1987, 206, 23–35. [Google Scholar] [CrossRef]
- Arrizabalaga, M.; Morales, F.; Oyarzun, M.; Delrot, S.; Gomès, E.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Sci. 2018, 267, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Manso-Martínez, C.; Sáenz-Navajas, M.P.; Menéndez, C.M.; Hernández, M.M. Wine quality and berry size: A case study with Tempranillo Tinto progenies. J. Sci. Food Agric. 2020, 101, 3952–3960. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Salgueiro, V.; Costa, M.J.; Barroso, J.M.; Rato, A.E. Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera. Beverages 2023, 9, 8. [Google Scholar] [CrossRef]
- Zheng, W.; del Galdo, V.; García, J.; Balda, P.; de Toda, F.M. Use of Minimal Pruning to Delay Fruit Maturity and Improve Berry Composition under Climate Change. Am. J. Enol. Vitic. 2016, 68, 136–140. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Ugliano, M. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine. Front. Chem. 2018, 6, 6. [Google Scholar] [CrossRef]
- Capone, D.L.; Van Leeuwen, K.; Taylor, D.K.; Jeffery, D.W.; Pardon, K.H.; Elsey, G.M.; Sefton, M.A. Evolution and occurrence of 1,8-cineole (Eucalyptol) in Australian wine. J. Agric. Food Chem. 2011, 59, 953–959. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; González-Hernández, M.; Campo, E.; Fernández-Zurbano, P.; Ferreira, V. Orthonasal aroma characteristics of Spanish red wines from different price categories and their relationship to expert quality judgements. Aust. J. Grape Wine Res. 2012, 18, 268–279. [Google Scholar] [CrossRef]
- Etaio, I.; Pérez Elortondo, F.J.; Albisu, M.; Gaston, E.; Ojeda, M.; Schlich, P. Development of a quantitative sensory method for the description of young red wines from rioja alavesa. J. Sens. Stud. 2008, 23, 631–655. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. Correlation of Wine Phenolic Composition versus Cyclic Voltammetry Response. Am. J. Enol. Vitic. 2002, 53, 294–302. [Google Scholar] [CrossRef]
Code | Origin | Vintage | Varieties |
---|---|---|---|
RAVS1 | Rioja Alavesa | 2021 | Tempranillo; Garnacha; Viura |
RAVS2 | 2021 | Tempranillo; Viura | |
RAVS3 | 2021 | Tempranillo; Graciano; Mazuelo; Viura | |
RAVS4 | 2021 | Tempranillo; Viura | |
RAVS5 | 2021 | Tempranillo; Viura | |
RAVS6 | 2021 | Tempranillo | |
RAVS7 | 2021 | Tempranillo; Viura | |
RAVS8 | 2021 | Tempranillo | |
RAVS9 | 2020 | Tempranillo | |
RAVS10 | 2020 | Tempranillo; Viura | |
RALT1 | Rioja Alta | 2021 | Tempranillo |
RALT2 | 2021 | Tempranillo; Garnacha; Viura | |
RALT3 | 2021 | Tempranillo | |
RALT4 | 2021 | Tempranillo | |
RALT5 | 2021 | Tempranillo; Garnacha; Viura | |
RALT6 | 2021 | Tempranillo | |
RALT7 | 2020 | Tempranillo | |
RALT8 | 2021 | Tempranillo | |
RALT9 | 2021 | Tempranillo | |
RALT10 | 2021 | Tempranillo | |
RO1 | Rioja Oriental | 2021 | Tempranillo |
RO2 | 2021 | Tempranillo | |
RO3 | 2020 | Tempranillo | |
RO4 | 2020 | Tempranillo | |
RO5 | 2020 | Tempranillo; Garnacha | |
RO6 | 2021 | Tempranillo | |
RO7 | 2020 | Tempranillo | |
RO8 | 2020 | Tempranillo | |
RO9 | 2021 | Tempranillo; Viura | |
RO10 | 2021 | Tempranillo |
Cluster | Description | Significant Subregions (Test-Value; Significance) |
---|---|---|
1 | high colour intensity; purple-violet fresh fruit; lactic high aromatic intensity high acidity | RALT (test-value = 18.73; p < 0.001) RAVS (test-value = 6.80; p < 0.001) |
2 | high colour intensity ripe fruit; spicy; balsamic/mint powerful tannin | RALT (test-value = 5.86; p < 0.001) |
3 | low colour intensity medium aromatic intensity grassy; fresh powerful tannin; low acidity | RO (test-value = 17.54; p < 0.001) RAVS (test-value = 3.04; p < 0.01) |
4 | medium colour intensity gummy candy; fresh fruit; lactic; floral silky; balance; sweet/soft; mellow | RAVS (test-value = 7.09; p < 0.01) |
5 | low colour intensity; ruby-garnet dried fruit/jammy fruit; spicy light in mouth | RO (test-value = 21.26; p < 0.001) |
Parameter | RALT | RAVS | RO | Significance |
---|---|---|---|---|
pH | 3.77 ± 0.08 a | 3.74 ± 0.07 a | 3.64 ± 0.08 b | <0.01 |
volatile acidity (g L−1) a | 0.34 ± 0.08 | 0.3 ± 0.07 | 0.32 ± 0.09 | ns |
total acidity (g L−1) b | 2.89 ± 0.35 | 2.91 ± 0.30 | 2.98 ± 0.31 | ns |
reducing sugars (g L−1) | 1.6 ± 0.52 | 1.62 ± 0.48 | 2.01 ± 0.47 | ns |
malic acid (g L−1) | 0.03 ± 0.22 | 0.06 ± 0.09 | 0.10 ± 0.17 | ns |
lactic acid (g L−1) | 1.29 ± 0.53 a | 1.13 ± 0.25 ab | 0.83 ± 0.26 b | <0.05 |
alcohol content (%, v/v) | 13.61 ± 0.39 | 13.61 ± 0.48 | 13.55 ± 0.38 | ns |
TPI (a.u.) | 55.06 ± 7.56 | 53.85 ± 5.94 | 49.03 ± 8.76 | ns |
colour intensity (a.u.) | 11.16 ± 2.12 | 11.36 ± 2.26 | 9.32 ± 1.75 | ns |
a10* | 52.64 ± 7.72 | 53.13 ± 6.84 | 46.67 ± 4.15 | ns |
b10* | 6.94 ± 2.62 | 6.20 ± 3.56 | 5.81 ± 3.74 | ns |
L10* | 50.02 ± 6.90 b | 48.74 ± 6.04 b | 55.81 ± 5.73 a | <0.05 |
C* | 53.17 ± 7.59 | 53.63 ± 6.56 | 47.18 ± 3.99 | ns |
H* | 7.65 ± 3.38 | 6.92 ± 4.43 | 7.24 ± 4.75 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáenz-Navajas, M.-P.; Iosifidis, A.; Gonzalez-Hernandez, M.; Fernández-Zurbano, P.; Valentin, D. Identification of Sensory and Voltammetric Markers of Regional Typicality: Tempranillo Rioja Wines as a Case Study. Beverages 2023, 9, 85. https://doi.org/10.3390/beverages9040085
Sáenz-Navajas M-P, Iosifidis A, Gonzalez-Hernandez M, Fernández-Zurbano P, Valentin D. Identification of Sensory and Voltammetric Markers of Regional Typicality: Tempranillo Rioja Wines as a Case Study. Beverages. 2023; 9(4):85. https://doi.org/10.3390/beverages9040085
Chicago/Turabian StyleSáenz-Navajas, María-Pilar, Achilleas Iosifidis, Marivel Gonzalez-Hernandez, Purificación Fernández-Zurbano, and Dominique Valentin. 2023. "Identification of Sensory and Voltammetric Markers of Regional Typicality: Tempranillo Rioja Wines as a Case Study" Beverages 9, no. 4: 85. https://doi.org/10.3390/beverages9040085
APA StyleSáenz-Navajas, M. -P., Iosifidis, A., Gonzalez-Hernandez, M., Fernández-Zurbano, P., & Valentin, D. (2023). Identification of Sensory and Voltammetric Markers of Regional Typicality: Tempranillo Rioja Wines as a Case Study. Beverages, 9(4), 85. https://doi.org/10.3390/beverages9040085