Current Techniques for Fruit Juice and Wine Adulterant Detection and Authentication
Abstract
:1. Introduction
2. Destructive Techniques
2.1. Physicochemical Methods
2.2. Isotope Analysis
2.3. Elemental Analysis
2.4. Chromatographic Techniques
2.4.1. Gas Chromatography (GC)
2.4.2. Liquid Chromatography (LC)
2.5. DNA-Based Techniques
Sample | Aim | Accuracy | Reference |
---|---|---|---|
Grapefruit and orange juice | Detection of grapefruit juice in orange juice | Detection limit: 2.5–10% | [50] |
Orange mandarin juice | Detection of orange adulteration with mandarin juice | Detection limit: 5% | [51] |
Orange and mandarin juice | Determining addition of mandarin in orange juice | Detection limit: 1% | [52] |
Musts and wines | Authentication of musts and wines | Detection limit: 10–20% for wine and 1% for must | [54] |
3. Non-Destructive Techniques
3.1. Spectroscopic Techniques
3.1.1. Infrared (IR) Spectroscopic Technique
3.1.2. Raman Spectroscopic Technique
3.2. Nuclear Magnetic Resonance (NMR) Spectroscopic Technique
3.3. Electronic Techniques
3.3.1. E-Tongue
3.3.2. E-Nose
3.4. Imaging-Based Techniques
3.4.1. Digital Image Analysis
3.4.2. Light Backscattering Imaging
4. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius. Codex General Standard for Fruit Juices and Nectars. Available online: http://www.codexalimentarius.org (accessed on 10 September 2023).
- Statista, Worldwide Juice Market. Available online: https://www.statista.com/outlook/20030000/100/juices/worldwide (accessed on 10 September 2023).
- Szymczycha-Madeja, A.; Welna, M.; Jedryczko, D.; Pohl, P. Developments and strategies in the spectrochemical elemental analysis of fruit juices. TrAC Trends Anal. Chem. 2014, 55, 68–80. [Google Scholar] [CrossRef]
- Marcotte, B.V.; Verheyde, M.; Pomerleau, S.; Doyen, A.; Couillard, C. Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients 2022, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- European Fruit Juice Association (AIJN). The AIJN Code of Practices. Available online: https://aijn.eu/en/the-aijn-code-of-practice (accessed on 10 September 2023).
- International Organization of Vine and Wine (OIV). International Code of Oenological Practices. Available online: http://www.oiv.int/en/technical-standards-and-documents/oenological-practices/international-code-of-oenological-practices (accessed on 10 September 2023).
- International Organization of Vine and Wine (OIV). OIV Statistical Report on World Vitiviniculture. Available online: https://www.oiv.int/sites/default/files/documents/OIV_Annual_Assessment_of_the_World_Vine_and_Wine_Sector_in_2021.pdf (accessed on 10 September 2023).
- Xi, B.; Veeranki, S.P.; Zhao, M.; Ma, C.; Yan, Y.; Mi, J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in US adults. J. Am. Coll. Cardiol. 2017, 70, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Pasvanka, K.; Tzachristas, A.; Proestos, C. Proestos, Quality Tools in Wine Traceability and Authenticity, in Quality Control in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 289–334. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Council Regulation (EC) No 510/2006 of 20 March 2006 on the Protection of Geographical Indications and Designations of Origin for Agricultural Products and Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R0510-20080529 (accessed on 10 September 2023).
- International Organization of Vine and Wine (OIV). International Standard for the Labelling of Wines. Available online: https://www.oiv.int/sites/default/files/publication/2023-04/Norme%20%C3%A9tiquetage%20Vin%20complet%202023%20EN.pdf (accessed on 10 September 2023).
- Preti, R. Progress in Beverages Authentication by the Application of Analytical Techniques and Chemometrics. Qual. Control. Beverage Ind. 2019, 17, 85–121. [Google Scholar] [CrossRef]
- Bansal, S. Food adulteration: Sources, health risks, and detection methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. [Google Scholar] [CrossRef]
- Johnson, R. Food Fraud and Economically Motivated Adulteration of Food and Food Ingredients; Congressional Research Service: Washington, DC, USA, 2014. [Google Scholar]
- Kimball, D.A. Citrus Processing: Quality Control and Technology; Springer Science & Business Media: Berlin, Germany, 2012; pp. 279–300. [Google Scholar]
- Arvanitoyannis, I. Wine Authenticity, Traceability and Safety Monitoring, in Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 218–270. [Google Scholar] [CrossRef]
- Wang, Z.; Jablonski, J.E. Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemo-metrics. Food Addit. Contam. Part A 2016, 33, 560–573. [Google Scholar] [CrossRef]
- Vitalis, F.; Zaukuu, J.-L.Z.; Bodor, Z.; Aouadi, B.; Hitka, G.; Kaszab, T.; Zsom-Muha, V.; Gillay, Z.; Kovacs, Z. Detection and Quantification of Tomato Paste Adulteration Using Conventional and Rapid Analytical Methods. Sensors 2020, 20, 6059. [Google Scholar] [CrossRef]
- Guyon, F.; Auberger, P.; Gaillard, L.; Loublanches, C.; Viateau, M.; Sabathié, N.; Salagoïty, M.-H.; Médina, B. 13C/12C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity. Food Chem. 2014, 146, 36–40. [Google Scholar] [CrossRef]
- Bononi, M.; Quaglia, G.; Tateo, F. Preliminary LC-IRMS Characterization of Italian Pure Lemon Juices and Evaluation of Commercial Juices Distributed in the Italian Market. Food Anal. Methods 2016, 9, 2824–2831. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, X.; Chen, H.; Jin, B.; Yan, Z.; Xie, L.; Zhou, H.; Rogers, K.M.; Lin, G. A comparative authentication study of fresh fruit and vegetable juices using whole juice and sugar-specific stable isotopes. Food Chem. 2022, 373, 131535. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Stefanescu, I.; Ionete, R.E.; Bala, C. Verifying the red wines adulteration through isotopic and chromatographic investigations coupled with multivariate statistic interpretation of the data. Food Control 2016, 62, 1–9. [Google Scholar] [CrossRef]
- Wu, H.; Tian, L.; Chen, B.; Jin, B.; Tian, B.; Xie, L.; Rogers, K.M.; Lin, G. Verification of imported red wine origin into China using multi isotope and elemental analyses. Food Chem. 2019, 301, 125137. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lin, G.; Tian, L.; Yan, Z.; Yi, B.; Bian, X.; Jin, B.; Xie, L.; Zhou, H.; Rogers, K.M. Origin verification of French red wines using isotope and elemental analyses coupled with chemometrics. Food Chem. 2021, 339, 127760. [Google Scholar] [CrossRef] [PubMed]
- Cristea, G.; Dehelean, A.; Voica, C.; Feher, I.; Puscas, R.; Magdas, D.A. Isotopic and Elemental Analysis of Apple and Orange Juice by Isotope Ratio Mass Spectrometry (IRMS) and Inductively Coupled Plasma—Mass Spectrometry (ICP-MS). Anal. Lett. 2020, 54, 212–226. [Google Scholar] [CrossRef]
- Schmutzer, G.R.; Dehelean, A.; Magdas, D.A.; Cristea, G.; Voica, C. Determination of Stable Isotopes, Minerals, and Volatile Organic Compounds in Romanian Orange Juice. Anal. Lett. 2016, 49, 2644–2658. [Google Scholar] [CrossRef]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Martinez, L.D.; Savio, M.; Camiña, J.M.; Gil, R.A. Classification of monovarietal Argentinean white wines by their elemental profile. Food Control 2015, 57, 268–274. [Google Scholar] [CrossRef]
- Rodrigues, N.P.; Rodrigues, E.; Celso, P.G.; Kahmann, A.; Yamashita, G.H.; Anzanello, M.J.; Manfroi, V.; Hertz, P.F. Discrimination of sparkling wines samples according to the country of origin by ICP-OES coupled with multivariate analysis. LWT 2020, 131, 109760. [Google Scholar] [CrossRef]
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Thomaidis, N.S. Quality and Authenticity Control of Fruit Juices—A Review. Molecules 2019, 24, 1014. [Google Scholar] [CrossRef]
- Popîrdă, A.; Luchian, C.E.; Cotea, V.V.; Colibaba, L.C.; Scutarașu, E.C.; Toader, A.M. A Review of Representative Methods Used in Wine Authentication. Agriculture 2021, 11, 225. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. Food Rev. Int. 2020, 36, 384–427. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yahada, A.; Sasaki, K.; Funakoshi-Yoshida, A.; Ohta, C.; Koga, N.; Ohta, H. Detection of Adulterated Shiikuwasha Juice by Sensory Evaluation, Colorimetric Value and Volatile Components. Food Sci. Technol. Res. 2013, 19, 843–848. [Google Scholar] [CrossRef]
- Willems, J.L.; Low, N.H. Authenticity Analysis of Pear Juice Employing Chromatographic Fingerprinting. J. Agric. Food Chem. 2014, 62, 11737–11747. [Google Scholar] [CrossRef] [PubMed]
- Nuncio-Jáuregui, N.; Hernández, F.; Carbonell-Barrachina, A. Pomegranate juice adulteration by addition of grape or peach juices. J. Sci. Food Agric. 2014, 94, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, F.J.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J. Assessment of premium organic orange juices authenticity using HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics. Food Control 2017, 82, 203–211. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef]
- Langen, J.; Wegmann-Herr, P.; Schmarr, H.-G. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2016, 408, 6483–6496. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Alimzhanova, M.B.; Nurzhanova, Y.T.; Kenessov, B. Determination of semi-volatile additives in wines using SPME and GC–MS. Food Chem. 2017, 220, 162–167. [Google Scholar] [CrossRef]
- Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M.B.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Alonso-Salces, R.M. Polyphenolic contents in Citrus fruit juices: Authenticity assessment. Eur. Food Res. Technol. 2014, 238, 803–818. [Google Scholar] [CrossRef]
- Spinelli, F.; Dutra, S.; Carnieli, G.; Leonardelli, S.; Drehmer, A.; Vanderlinde, R. Detection of addition of apple juice in purple grape juice. Food Control 2016, 69, 1–4. [Google Scholar] [CrossRef]
- de Andrade, R.H.S. Anthocyanic composition of Brazilian red wines and use of HPLC-UV–Vis associated to chemometrics to distinguish wines from different regions. Microchem. J. 2013, 110, 256–262. [Google Scholar] [CrossRef]
- Pavloušek, P.; Kumšta, M. Authentication of Riesling wines from the Czech Republic on the basis of the non-flavonoid phenolic compounds. Czech J. Food Sci. 2013, 31, 474–482. [Google Scholar] [CrossRef]
- Liu, Z. Direct and interference-free determination of thirteen phenolic compounds in red wines using a chemo-metrics-assisted HPLC-DAD strategy for authentication of vintage year. Anal. Methods 2017, 9, 3361–3374. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Samanidou, V.F. Liquid chromatographic methods coupled to chemometrics: A short review to present the key workflow for the investigation of wine phenolic composition as it is affected by environmental factors. Environ. Sci. Pollut. Res. 2020, 28, 59150–59164. [Google Scholar] [CrossRef]
- Galimberti, A.; De Mattia, F.; Losa, A.; Bruni, I.; Federici, S.; Casiraghi, M.; Martellos, S.; Labra, M. DNA barcoding as a new tool for food traceability. Food Res. Int. 2013, 50, 55–63. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Madesis, P.; Ganopoulos, I.; Sakaridis, I.; Argiriou, A.; Tsaftaris, A. Advances of DNA-based methods for tracing the botanical origin of food products. Food Res. Int. 2014, 60, 163–172. [Google Scholar] [CrossRef]
- Scott, M.; Knight, A. Quantitative PCR Analysis for Fruit Juice Authentication Using PCR and Laboratory-on-a-Chip Capillary Electrophoresis According to the Hardy-Weinberg Law. J. Agric. Food Chem. 2009, 57, 4545–4551. [Google Scholar] [CrossRef]
- Aldeguer, M.; López-Andreo, M.; Gabaldón, J.A.; Puyet, A. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay. Food Chem. 2014, 145, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Pardo, M.A. Evaluation of a dual-probe real time PCR system for detection of mandarin in commercial orange juice. Food Chem. 2015, 172, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Gomes, S.; Castro, C.; Eiras-Dias, J.E.; Brazão, J.; Graça, A.; Fernandes, J.R.; Martins-Lopes, P. High Resolution Melting (HRM) applied to wine authenticity. Food Chem. 2017, 216, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Boccacci, P. Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of ‘Nebbi-olo’musts and wines. Food Chem. 2020, 312, 126100. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wu, Y.; Huang, W.; Wang, B.; Sun, C.; Ge, Y.; Chen, Y. PCR and DHPLC methods used to detect juice ingredient from 7 fruits. Food Control 2012, 25, 696–703. [Google Scholar] [CrossRef]
- Zaukuu, J.-L.Z.; Benes, E.; Bázár, G.; Kovács, Z.; Fodor, M. Agricultural Potentials of Molecular Spectroscopy and Advances for Food Authentication: An Overview. Processes 2022, 10, 214. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Barea-Sepúlveda, M.; Ruiz-Rodríguez, A.; Álvarez, J.; Ferreiro-González, M.; Palma, M. Rapid Detection and Quantification of Adulterants in Fruit Juices Using Machine Learning Tools and Spectroscopy Data. Sensors 2022, 22, 3852. [Google Scholar] [CrossRef]
- Shafiee, S.; Minaei, S. Combined data mining/NIR spectroscopy for purity assessment of lime juice. Infrared Phys. Technol. 2018, 91, 193–199. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z. Authentication of Tokaj wine (Hungaricum) with the electronic tongue and near infrared spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef]
- Hencz, A.; Nguyen, L.L.P.; Baranyai, L.; Albanese, D. Assessment of Wine Adulteration Using Near Infrared Spectroscopy and Laser Backscattering Imaging. Processes 2022, 10, 95. [Google Scholar] [CrossRef]
- Jahani, R.; Yazdanpanah, H.; van Ruth, S.M.; Kobarfard, F.; Alewijn, M.; Mahboubi, A.; Faizi, M.; AliAbadi, M.H.S.; Salamzadeh, J. Novel Application of Near-infrared Spectroscopy and Chemometrics Approach for Detection of Lime Juice Adulteration. Iran. J. Pharm. Res. IJPR 2020, 19, 34–44. [Google Scholar] [CrossRef]
- Snyder, A.B.; Sweeney, C.F.; Rodriguez-Saona, L.E.; Giusti, M.M. Rapid authentication of concord juice concentration in a grape juice blend using Fourier-Transform infrared spectroscopy and chemometric analysis. Food Chem. 2014, 147, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I. Rapid, high-throughput, and quantitative determination of orange juice adulteration by Fourier-transform infrared spectroscopy. Anal. Methods 2016, 8, 5581–5586. [Google Scholar] [CrossRef]
- Mabood, F.; Hussain, J.; Jabeen, F.; Abbas, G.; Allaham, B.; Albroumi, M.; Alghawi, S.; Alameri, S.; Gilani, S.A.; Al-Harrasi, A.; et al. Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration in commercial fruit juices. Food Addit. Contam. Part A 2018, 35, 1052–1060. [Google Scholar] [CrossRef]
- Geană, E.-I. Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Z.; Liu, S.-Q.; Li, X.-H.; Wang, C.-X.; Ni, X.-L.; Liu, X.; Wang, Y.; Liu, Y.; Xu, C.-H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep. 2019, 9, 8256. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Ferreiro-González, M.; Ruiz-Rodríguez, A.; Fernández, D.; Palma, M. Detection of Adulterations in Fruit Juices Using Machine Learning Methods over FT-IR Spectroscopic Data. Agronomy 2022, 12, 683. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Feher, I.; Pinzaru, S.C. Wine discrimination based on chemometric analysis of untargeted markers using FT-Raman spectroscopy. Food Control 2018, 85, 385–391. [Google Scholar] [CrossRef]
- Magdas, D.A.; Cozar, B.I.; Feher, I.; Guyon, F.; Dehelean, A.; Pinzaru, S.C. Testing the limits of FT-Raman spectroscopy for wine authentication: Cultivar, geographical origin, vintage and terroir effect influence. Sci. Rep. 2019, 9, 19954. [Google Scholar] [CrossRef]
- Vigneau, E. and F. Thomas, Model calibration and feature selection for orange juice authentication by 1H NMR spectroscopy. Chemom. Intell. Lab. Syst. 2012, 117, 22–30. [Google Scholar] [CrossRef]
- Marchetti, L.; Pellati, F.; Benvenuti, S.; Bertelli, D. Use of 1H NMR to Detect the Percentage of Pure Fruit Juices in Blends. Molecules 2019, 24, 2592. [Google Scholar] [CrossRef]
- Godelmann, R. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: Grape variety, geographical origin, year of vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhong, Q.; Fauhl-Hassek, C.; Pfister, M.K.-H.; Horn, B.; Huang, Z. Classification of Chinese wine varieties using 1H NMR spectroscopy combined with multivariate statistical analysis. Food Control 2018, 88, 113–122. [Google Scholar] [CrossRef]
- Mascellani, A.; Hoca, G.; Babisz, M.; Krska, P.; Kloucek, P.; Havlik, J. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chem. 2021, 339, 127852. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, S.; Yazdanpanah, H.; Parastar, H. An innovative screening approach for orange juice authentication using dual portable/handheld NIR spectrometers and chemometrics. Microchem. J. 2023, 194, 109304. [Google Scholar] [CrossRef]
- Pu, Y.; Pérez-Marín, D.; O’shea, N.; Garrido-Varo, A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods 2021, 10, 2377. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Arendse, E.; Nieuwoudt, H.; Magwaza, L.S.; Nturambirwe, J.F.I.; Fawole, O.A.; Opara, U.L. Recent Advancements on Vibrational Spectroscopic Techniques for the Detection of Authenticity and Adulteration in Horticultural Products with a Specific Focus on Oils, Juices and Powders. Food Bioprocess Technol. 2021, 14, 1–22. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Ma, Z.; Si, G. Quantitative Analysis of Multiple Components in Wine Fermentation using Raman Spectroscopy. Adv. J. Food Sci. Technol. 2015, 9, 13–18. [Google Scholar] [CrossRef]
- Martin, C.; Bruneel, J.-L.; Castet, F.; Fritsch, A.; Teissedre, P.-L.; Jourdes, M.; Guillaume, F. Spectroscopic and theoretical investigations of phenolic acids in white wines. Food Chem. 2017, 221, 568–575. [Google Scholar] [CrossRef]
- Martin, C.; Bruneel, J.-L.; Guyon, F.; Médina, B.; Jourdes, M.; Teissedre, P.-L.; Guillaume, F. Raman spectroscopy of white wines. Food Chem. 2015, 181, 235–240. [Google Scholar] [CrossRef]
- Zaffino, C.; Russo, B.; Bruni, S. Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Mandrile, L.; Zeppa, G.; Giovannozzi, A.M.; Rossi, A.M. Controlling protected designation of origin of wine by Raman spectroscopy. Food Chem. 2016, 211, 260–267. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Spraul, M.; Schütz, B.; Rinke, P.; Koswig, S.; Humpfer, E.; Schäfer, H.; Mörtter, M.; Fang, F.; Marx, U.C.; Minoja, A. NMR-Based Multi Parametric Quality Control of Fruit Juices: SGF Profiling. Nutrients 2009, 1, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wang, J. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J. Food Eng. 2014, 126, 89–97. [Google Scholar] [CrossRef]
- Bahrami, G.; Aghkhani, M.H.; Golzarian, M.R.; Deiminiat, B. The comparison of cyclic voltammetry and electronic tongue methods in the diagnosis of lime juice adulteration. J. Agric. Mach. 2023. [Google Scholar] [CrossRef]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef]
- Hong, X.; Wang, J.; Qi, G. Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: Application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemom. Intell. Lab. Syst. 2014, 133, 17–24. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Fruit juice–alcohol mixture analysis using machine learning and electronic nose. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S171–S176. [Google Scholar] [CrossRef]
- Shen, F.; Wu, Q.; Su, A.; Tang, P.; Shao, X.; Liu, B. Detection of adulteration in freshly squeezed orange juice by electronic nose and infrared spectroscopy. Czech J. Food Sci. 2016, 34, 224–232. [Google Scholar] [CrossRef]
- Hong, X.; Wang, J.; Qiu, S. Authenticating cherry tomato juices—Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Res. Int. 2014, 60, 173–179. [Google Scholar] [CrossRef]
- Lerma, M.d.L.N.L.d.; Bellincontro, A.; García-Martínez, T.; Mencarelli, F.; Moreno, J.J. Feasibility of an electronic nose to differentiate commercial Spanish wines elaborated from the same grape variety. Food Res. Int. 2013, 51, 790–796. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.-L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques. Food Chem. X 2019, 3, 100046. [Google Scholar] [CrossRef] [PubMed]
- Licodiedoff, S.; Ribani, R.H.; Camlofski, A.M.d.O.; Lenzi, M.K. Use of image analysis for monitoring the dilution of Physalis peruviana pulp. Braz. Arch. Biol. Technol. 2013, 56, 467–474. [Google Scholar] [CrossRef]
- Stinco Scanarotti, C.M. Spectroradiometry vs. digital image analysis in colour measurement in juices from different orange and mandarin varieties. Óptica Pura Y Apl. 2014, 47, 139–144. [Google Scholar] [CrossRef]
- Foca, G. Prediction of compositional and sensory characteristics using RGB digital images and multivariate calibration techniques. Anal. Chim. Acta 2011, 706, 238–245. [Google Scholar] [CrossRef]
- Fernández-Vázquez, R.; Stinco, C.M.; Hernanz, D.; Heredia, F.J.; Vicario, I.M. Digital Image Analysis and Visual Evaluation of Orange Juice: Influence of Different Measurements’ Conditions. Food Anal. Methods 2014, 7, 157–164. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Mohtasebi, S.S. Principles and Applications of Light Backscattering Imaging in Quality Evaluation of Agro-food Products: A Review. Food Bioprocess Technol. 2012, 5, 1465–1485. [Google Scholar] [CrossRef]
- Lu, R.; Cen, H. Measurement of Food Optical Properties. In Hyperspectral Imaging Technology in Food and Agriculture; Springer: Berlin/Heidelberg, Germany, 2015; pp. 203–226. [Google Scholar]
Sample | Technique | Aim | Accuracy | Reference |
---|---|---|---|---|
Lemon juices | Isotope analysis | Authenticity of juices | - | [19] |
Lemon juice | Isotope analysis | Adulteration detection | Detection limit: 10% natural citric acid was replaced with exogenous citric acid | [20] |
Fruit and vegetable juice | Isotope analysis | Detection of sugar and water addition | Detection limit: 20% for water and 7% for sugar | [21] |
Wine | Isotope analysis | Detection of sugar and water addition | Classification correction: 100% | [22] |
Wine | Isotope analysis | Authenticity of wines | Classification correction: 93.1% (ANN) and 83.9% (DA) | [23] |
Wine | Isotope analysis | Authenticity of wines | Classification correction: 98.2% | [24] |
Apple and orange juice | Elemental and isotope analysis | Discrimination of juices | Classification correction: 93.3% for apple juice and 90% for orange juice | [25] |
Orange juice | Elemental analysis | Authenticity of juices | - | [26] |
Wine | Elemental analysis | Authenticity of wines | PCA classification: 83% using first three principal components (PCs) | [27] |
Wine | Elemental analysis | Authenticity of wines | Classification correction: 96% | [28] |
Wine | Elemental analysis | Wine authentication | Classification correction: 94% | [29] |
Sample | Technique | Aim | Accuracy | Reference |
---|---|---|---|---|
Shiikuwasha juice | GC | Detection of juice-to-juice adulteration | Detection limit: 10% | [34] |
Apple juice | GC | Detection of pear juice addition to apple juice. | Detection limit: 0.5–3% | [35] |
Pomegranate juice | GC | Detection of juice-to-juice adulteration | Detection limit: 10% for added peach juice and 50% added grape juice | [36] |
Orange juices | GC | Juice authentication | Classification correction: 100% | [37] |
Wine | GC | Discrimination of wines | Discrimination rate: 100% | [38] |
Wine | GC | Wine authentication | Detection limit: 0.03–10.03 g/L | [39] |
Wine | GC | Detection of adulteration | Detection limit: 0.1–2 mg/L | [40] |
Citrus fruit | LC | Differentiation of juices | Classification correction: 100% | [41] |
Purple grape juice | LC | Detection of added apple juice in purple grape juice | - | [42] |
Wine | LC | Discrimination of wines | Classification correction: 88% of the total variance using two first PCs in PCA. | [43] |
Wine | LC | Authentication of wines | Classification correction: 100% | [22] |
Wine | LC | Wine authentication | Classification correction: 95.4% | [44] |
Wine | LC | Authentication of wine | Classification correction: >90% | [45] |
Sample | Technique | Aim | Accuracy | Reference |
---|---|---|---|---|
Pineapple, apple, and orange juices | NIRS | Detection of grape juice as adulterant in pineapple, apple, and orange juices | Detection limit: 5% | [57] |
Lime juice | NIRS | Discrimination of natural and synthetic lime juice | Classification correction: 97% | [58] |
Tokaj wines | NIRS | Differentiation of wines | Classification correction: 100% | [59] |
Portugieser and Sauvignon Blanc wines | NIRS | Detection of wine adulteration with water and sugar | Detection limit of water: 28.57% Detection limit of sugar: 3.62% | [60] |
Lime juice | NIRS | Differentiation of adulterated lime juices with citric acid | Classification correction: 88% | [61] |
Grape juice | FT-IR | Detection of juice adulteration | Detection limit: 50–100% | [62] |
Orange juice | FT-IR | Detection of water addition | Detection limit: 0.5–20.0% | [63] |
Commercial juices | FT-IR | Detection of juice adulterated with saccharin | Detection limit: 0.1–2% | [64] |
Red wine | FT-IR | Differentiation of wine | Classification correction: 62.96% | [65] |
Cabernet Sauvignon wines | NIRS and MIRS | Differentiation of wine | Classification correction: 77–97% | [66] |
Pineapple, orange, and apple juices | FT-IR | Detection of grapefruit as adulterant in pineapple, apple, and orange juices | Detection limit: 5% | [67] |
White wine | FT-Raman | Differentiation of wine | Classification correction: 94.1–100% | [68] |
Wine | FT-Raman | Wine authentication | Classification correction: 84–100% | [69] |
Orange juice | NMRS | Detection of juice adulteration | Detection limit: 10% | [70] |
Apple, orange, pineapple, and pomegranate juices | NMRS | Detection of juice-to-juice adulteration | Detection limit: 6.25% | [71] |
Wine | NMRS | Differentiation of wines | Classification correction: 89% | [72] |
Chinese red and white wines | NMRS | Identification of grape varieties | Classification correction: 82–94% | [73] |
Wine | NMRS | Classification of wine | Classification correction: 96% | [74] |
Sample | Technique | Aim | Accuracy | Reference |
---|---|---|---|---|
Tomato concentrate | E-tongue | Detection of tomato concentrate adulteration | Detection limit: 0.5% | [18] |
Tokaj wine | E-tongue | Differentiation of wine | Classification correction: 100% | [59] |
Lime juice | E-tongue | Detection of adulteration | Detection limit: 5% | [87] |
Apulian red wines | E-tongue | Differentiation of wine | Classification correction: 70% | [88] |
Cherry tomato juice | E-nose | Differentiation of juice | Classification correction: 79.53% | [89] |
Apple, lemon, and sour cherry juices | E-nose | Differentiation of juices adulterated with alcohol | Classification correction: 95% (LDA) Classification correction: 98.33% (SVM) | [90] |
Orange juice | E-nose | Detection of freshly squeezed orange juices adulterated with concentrated orange juices | Detection limit: 0–30% | [91] |
Cherry tomato juices | A combination of e-tongue and e-nose | Detection of adulteration | Detection limit: 10% | [92] |
Spanish wine | E-nose | Differentiation of wine | PCA Classification: 91.3% using first two principal components (PCs) | [93] |
Sample | Technique | Aim | Accuracy | Reference |
---|---|---|---|---|
Gran Reserva wine | DIA | Detection of adulterated wine | Detection limit: 2.3% | [95] |
Physalis juice | DIA | Detection of juice adulteration | Detection limit: 20% | [96] |
Orange and mandarin juices | DIA | Differentiation of juices | Classification correction: 83–97% | [97] |
Red and white wines | LBI | Detection of wine adulteration by water dilution and the addition of sugar | Classification correction: 53.33–76.67% for water addition and ≥93.33% for sugar addition. | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mac, H.X.; Pham, T.T.; Ha, N.T.T.; Nguyen, L.L.P.; Baranyai, L.; Friedrich, L. Current Techniques for Fruit Juice and Wine Adulterant Detection and Authentication. Beverages 2023, 9, 84. https://doi.org/10.3390/beverages9040084
Mac HX, Pham TT, Ha NTT, Nguyen LLP, Baranyai L, Friedrich L. Current Techniques for Fruit Juice and Wine Adulterant Detection and Authentication. Beverages. 2023; 9(4):84. https://doi.org/10.3390/beverages9040084
Chicago/Turabian StyleMac, Hoa Xuan, Thanh Tung Pham, Nga Thi Thanh Ha, Lien Le Phuong Nguyen, László Baranyai, and László Friedrich. 2023. "Current Techniques for Fruit Juice and Wine Adulterant Detection and Authentication" Beverages 9, no. 4: 84. https://doi.org/10.3390/beverages9040084
APA StyleMac, H. X., Pham, T. T., Ha, N. T. T., Nguyen, L. L. P., Baranyai, L., & Friedrich, L. (2023). Current Techniques for Fruit Juice and Wine Adulterant Detection and Authentication. Beverages, 9(4), 84. https://doi.org/10.3390/beverages9040084