Sensory Analysis as a Simple and Low-Cost Tool to Evaluate and Valorize a New Product from Local Fruits in Rural Communities: The Case of Highly Aromatic Vinegar from Prickly Pear Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methodology
2.3. Data Processing
3. Results
3.1. Stage 1: Generation of the Odor Descriptors
3.1.1. Free Choice Profiling (FCP) Methodology
3.1.2. Descriptive Quantitative Analysis (QDA) Methodology
3.2. Stage 2: Sensory Analysis of the Prickly Pear Vinegars
3.2.1. Free Choice Profiling (FCP)
3.2.2. Descriptive Quantitative Analysis (QDA)
3.2.3. FCP vs. QDA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coria Cayupán, Y.S.; Ochoa, M.J.; Nazareno, M.A. Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem. 2011, 126, 514–519. [Google Scholar] [CrossRef]
- de Albuquerque, J.G.; de Souza Aquino, J.; de Albuquerque, J.G.; de Farias, T.G.S.; Escalona-Buendía, H.B.; Bosquez-Molina, E.; Azoubel, P.M. Consumer perception and use of nopal (Opuntia ficus-indica): A cross-cultural study between Mexico and Brazil. Food Res. Int. 2019, 124, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; El Ghouizi, A.; Conte, R.; Lyoussi, B.; El Arabi, I. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules 2022, 27, 222. [Google Scholar] [CrossRef] [PubMed]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological processes in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Sudzuki, F.; Muñoz, C.; Berger, H. El Cultivo de la Tuna (Cactus Pear); Facultad de Ciencias Agrarias y Forestales, Universidad de Chile: Santiago, Chile, 1993. [Google Scholar]
- Pérez, M.; Rodríguez, M.; Martínez, M. Elaboración de vinagre de tuna amarilla “Naranjona o Pico Chulo”. In Proceedings of the VIII Congreso Nacional y VI Internacional sobre Conocimiento y Aprovechamiento del Nopal, San Luis Potosí, México, 6–10 September 1999; pp. 8–9. [Google Scholar]
- Prieto, C.; Sáenz, C.; Silva, P.; Loyola, E. Balsamic Type Vinegar from Colored Ecotypes of Cactus Pear (Opuntia ficus-indica). Acta Hortic. 2009, 811, 123–126. [Google Scholar] [CrossRef]
- Es-Sbata, I.; Castro, R.; Carmona-Jiménez, Y.; Zouhair, R.; Durán-Guerrero, E. Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods 2022, 11, 303. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- De Carvalho, M.A.; Benassi, M.T.; De Londrina, U.E.; Scholz, M.B.S. Free choice profiling sensory analysis and principal component analysis as tools to support an apple breeding program. AIMS Agric. Food 2020, 5, 769–784. [Google Scholar] [CrossRef]
- Cristovam, E.; Paterson, A.; Piggott, J.R. Differentiation of port wines by appearance using a sensory panel: Comparing free choice and conventional profiling. Eur. Food Res. Technol. 2000, 211, 65–71. [Google Scholar] [CrossRef]
- Jack, F.R.; Piggott, J.R. Free choice profiling in consumer research. Food Qual. Prefer. 1991, 3, 129–134. [Google Scholar] [CrossRef]
- Liu, J.; Bredie, W.L.P.; Sherman, E.; Harbertson, J.F.; Heymann, H. Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile. Food Res. Int. 2018, 106, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Parolari, G. Taste quality of Italian raw ham in a free-choice profile study. Food Qual. Prefer. 1994, 5, 129–133. [Google Scholar] [CrossRef]
- Williams, A.; Arnold, G. A comparison of the aromas of 6 coffees characterized by conventional profiling, free-choice profiling and similarity scaling methods. J. Sci. Food Agric. 1985, 36, 204–214. [Google Scholar] [CrossRef]
- Arnold, G.; Williams, A. The use of generalised procrustes techniques in Sensory Analysis. In Statistical Procedures in Food Research; Piggott, J.R., Ed.; Elsevier Applied Science Publishers Ltd.: Amsterdam, The Netherlands, 1986; pp. 233–253. [Google Scholar]
- Dijksterhuis, G.B.; Gower, J.C. The interpretation of Generalized Procrustes Analysis and allied methods. Food Qual. Prefer. 1991, 3, 67–87. [Google Scholar] [CrossRef]
- Dijksterhuis, G. Procrustes analysis in sensory research. In Multivariate Analysis of Data in Sensory Science; Noes, T., Risvik, E., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; pp. 185–219. [Google Scholar]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory analysis. General Guidance for the Design of Test Rooms. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- ISO 16657:2006; Sensory Analysis. Apparatus. Olive Oil Tasting Glass. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- Ares, G.; Varela, P. Novel Techniques in Sensory Characterization and Consumer Profiling; CRC Press; Taylor & Francis Group: London, UK; New York, NY, USA, 2014. [Google Scholar]
- UNE 87027; Análisis Sensorial. Identificación y Selección de Descriptores para la Elaboración de un Perfil Sensorial Mediante Diferentes Enfoques. Asociación Española de Normalización: Madrid, Spain, 2018.
- ISO 13299:2016; Sensory Analysis. Methodology. General Guidance for Establishing a Sensory Profile. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Wakeling, I.; Raats, M.; MacFie, H. A new significance test for consensus in Generalised Procrustes Analysis. J. Sens. Stud. 1992, 7, 91–96. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Schlich, P. Defining and validating assossor compromises about product distances and attribute correlations. In Multivariate Analysis of Data in Sensory Sciences; Naes, T., Risvik, E., Eds.; Elsevier: New York, NY, USA, 1996. [Google Scholar]
- Rodríguez-Noriega, S.; Buenrostro-Figueroa, J.J.; Rebolloso-Padilla, O.N.; Corona-Flores, J.; Camposeco-Montejo, N.; Flores-Naveda, A.; Ruelas-Chacón, X. Developing a descriptive sensory characterization of flour tortilla applying flash profile. Foods 2021, 10, 1473. [Google Scholar] [CrossRef]
- Wu, W.; Guo, Q.; De Jong, S.; Massart, D.L. Randomisation test for the number of dimensions of the group average space in generalised Procrustes analysis. Food Qual. Prefer. 2002, 13, 191–200. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Durán-Guerrero, E.; García-Barroso, C.; Castro-Mejías, R. Comparative study of submerged and surface culture acetification process for orange vinegar. J. Sci. Food Agric. 2018, 98, 1052–1060. [Google Scholar] [CrossRef]
- Ünal Turhan, E.; Canbaş, A. Chemical and Sensory Properties of Vinegar from Dimrit Grape by Submerged and Surface Method. Gida 2016, 41, 1–7. [Google Scholar] [CrossRef]
- Callejón, R.M.; Tesfaye, W.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chem. 2009, 113, 1252–1259. [Google Scholar] [CrossRef]
- Hommel, R.K. Gluconobacter. Encycl. Food Microbiol. 2014, 2, 955–961. [Google Scholar]
- Campaniello, D.; Sinigaglia, M. Wine Spoiling Phenomena; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081005033. [Google Scholar]
- Ou, A.S.; Chang, R. Taiwan Fruit Vinegar. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milan, Italy, 2009. [Google Scholar]
Sample | Acetification Methods | Bacterium | Temperature (°C) |
---|---|---|---|
Sub-Aceto-30 | Submerged | Acetobacter malorum | 30 |
Sub-Aceto-37 | Submerged | Acetobacter malorum | 37 |
Sub-Aceto-40 | Submerged | Acetobacter malorum | 40 |
Sub-Gluco-30 | Submerged | Gluconobacter oxydans | 30 |
Sub-Gluco-37 | Submerged | Gluconobacter oxydans | 37 |
Sub-Gluco-40 | Submerged | Gluconobacter oxydans | 40 |
Sur-Aceto-30 | Surface | Acetobacter malorum | 30 |
Sur-Aceto-37 | Surface | Acetobacter malorum | 37 |
Sur-Gluco-30 | Surface | Gluconobacter oxydans | 30 |
Sur-Gluco-37 | Surface | Gluconobacter oxydans | 37 |
Assessor 1 | Assessor 2 | Assessor 3 | Assessor 4 |
---|---|---|---|
Fruity | Spicy | Spicy | Ethyl acetate |
Complexity | Floral | Floral | Spicy |
Off-odor | Fruity | Ripe fruit | Fruity |
Spicy/Pepper | Ripe fruit | Raisin | Smoky |
Floral | Dairy | Pepper | Raisin |
Fresh/Balsamic | Raisin | Pungent | Vegetal |
Very dried fruit/Off-odor | Wet earth/Infusion | Earthy/Straw | |
Ripe fruit/Raisin | |||
Aromatic intensity | |||
Pungent | |||
Vinous |
Olfactory Descriptor | Definition |
---|---|
Pungency | Pungent feeling in the nose when inhaling, mainly due to acetic acid. |
Aromatic intensity | Intensity of the positive aromatic notes as a whole. |
Floral | Olfactory reminiscence of flowers. |
Balsamic | Refreshing sensation reminiscent of pine and camphor. |
Fruity | Fruity notes, particularly prickly pear or other tropical fruit (mango, pineapple). |
Ripe fruit | Ripe fruit notes. |
Raisin | Notes of dried fruit (grape, plumps). |
Spicy | Spicy notes, particularly pepper. |
Vegetal | Olfactory reminiscence of cooked vegetables. |
Complexity | Diversity of positive aromatic notes. |
Off-odor | Unpleasant sensation with reminiscences of earth, straw, or very dried fruit. |
Olfactory quality | General orthonasal perception of the aromatic complexity and intensity and lack of flaws. |
Sample | Pungency | Aromatic Intensity | Floral | Balsamic | Fruity | Ripe Fruit | Raisin | Spicy | Vegetal | Complexity | Off-Odor | Olfactory Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Aceto-30 | 6.3 ± 1.4 | 6.6 ± 1.5 | 6.0 ± 2.0 | 2.9 ± 1.3 | 6.4 ± 1.0 | 3.7 ± 1.1 | 1.0 ± 1.4 | 2.1 ± 1.1 | 0.3 ± 0.5 | 4.8 ± 1.5 | 0.0 ± 0.0 | 7.4 ± 1.0 |
Sub-Aceto-37 | 5.4 ± 1.7 | 5.0 ± 1.9 | 4.3 ± 2.1 | 2.7 ± 1.7 | 4.7 ± 2.1 | 3.4 ± 1.7 | 0.8 ± 1 | 2.5 ± 1.4 | 0.0 ± 0.0 | 4.4 ± 2.1 | 0.0 ± 0.0 | 6.0 ± 1.6 |
Sub-Aceto-40 | 5.3 ± 0.8 | 5.5 ± 1.4 | 3.7 ± 2.1 | 2.0 ± 1.3 | 4.0 ± 2.1 | 4.8 ± 2.0 | 1.0 ± 1.3 | 2.1 ± 1.3 | 0.3 ± 0.8 | 3.0 ± 1.0 | 0.3 ± 0.5 | 6.0 ± 1.7 |
Sub-Gluco-30 | 4.5 ± 0.5 | 5.4 ± 1.0 | 3.6 ± 1.6 | 3.3 ± 1.2 | 5.4 ± 1.5 | 4.3 ± 1.4 | 2.5 ± 1.8 | 2.3 ± 1.6 | 0.0 ± 0.0 | 4.4 ± 0.5 | 0.0 ± 0.0 | 6.4 ± 1.1 |
Sub-Gluco-37 | 4.8 ± 1.0 | 4.5 ± 0.8 | 3.0 ± 2.0 | 2.7 ± 0.5 | 4.5 ± 1.4 | 3.6 ± 1.6 | 1.0 ± 1.3 | 3.7 ± 2.0 | 0.4 ± 0.8 | 4.7 ± 1.0 | 0.2 ± 0.4 | 6.8 ± 0.8 |
Sub-Gluco-40 | 5.3 ± 1.1 | 5.0 ± 0.9 | 3.4 ± 1.1 | 2.7 ± 1.7 | 4.4 ± 2.1 | 3.7 ± 2.0 | 1.4 ± 1.1 | 2.6 ± 1.4 | 0.7 ± 1.3 | 4.0 ± 1.4 | 0.0 ± 0.0 | 5.6 ± 2.1 |
Sur-Aceto-30 | 4.8 ± 0.8 | 4.3 ± 0.5 | 2.7 ± 1.3 | 3.2 ± 1.3 | 3.0 ± 1.9 | 3.2 ± 1.2 | 2.6 ± 2.0 | 2.7 ± 1.0 | 1.0 ± 0.8 | 3.6 ± 1.1 | 0.2 ± 0.4 | 5.3 ± 1.5 |
Sur-Aceto-37 | 1.0 ± 1.3 | 1.7 ± 1.5 | 0.3 ± 0.5 | 1.1 ± 1.2 | 0.4 ± 0.5 | 1.3 ± 1.7 | 2.6 ± 0.8 | 2.0 ± 1.5 | 4.0 ± 1.1 | 1.4 ± 1.5 | 5.6 ± 1.8 | 2.1 ± 1.3 |
Sur-Gluco-30 | 4.0 ± 1.3 | 4.0 ± 1.2 | 1.6 ± 1.3 | 3.1 ± 1.1 | 2.4 ± 0.5 | 2.1 ± 1.8 | 3.6 ± 1.1 | 3.4 ± 1.1 | 2.6 ± 1.9 | 2.5 ± 1.5 | 3.0 ± 2.1 | 4.4 ± 1.7 |
Sur-Gluco-37 | 1.0 ± 1.8 | 2.0 ± 1.5 | 0.1 ± 2.1 | 1.4 ± 1.5 | 0.6 ± 2.1 | 0.7 ± 2.1 | 2.3 ± 1.5 | 2.5 ± 1.5 | 5.1 ± 2.0 | 1.1 ± 1.8 | 5.6 ± 2.1 | 1.7 ± 2.1 |
psample | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.000 |
passessor | 0.071 | 0.953 | 0.449 | 0.052 | 0.723 | 0.467 | 0.219 | 0.085 | 0.886 | 0.594 | 0.198 | 0.060 |
pculture | 0.000 | 0.000 | 0.040 | 0.095 | 0.000 | 0.000 | 0.001 | 0.976 | 0.000 | 0.000 | 0.000 | 0.000 |
pbacteria | 0.022 | 0.237 | 0.003 | 0.681 | 0.275 | 0.116 | 0.138 | 0.053 | 0.122 | 0.320 | 0.068 | 0.100 |
ptemperature | 0.090 | 0.000 | 0.000 | 0.006 | 0.000 | 0.017 | 0.068 | 0.953 | 0.088 | 0.119 | 0.165 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es-Sbata, I.; Castro-Mejías, R.; Rodríguez-Dodero, C.; Zouhair, R.; Durán-Guerrero, E. Sensory Analysis as a Simple and Low-Cost Tool to Evaluate and Valorize a New Product from Local Fruits in Rural Communities: The Case of Highly Aromatic Vinegar from Prickly Pear Fruits. Beverages 2023, 9, 74. https://doi.org/10.3390/beverages9030074
Es-Sbata I, Castro-Mejías R, Rodríguez-Dodero C, Zouhair R, Durán-Guerrero E. Sensory Analysis as a Simple and Low-Cost Tool to Evaluate and Valorize a New Product from Local Fruits in Rural Communities: The Case of Highly Aromatic Vinegar from Prickly Pear Fruits. Beverages. 2023; 9(3):74. https://doi.org/10.3390/beverages9030074
Chicago/Turabian StyleEs-Sbata, Ikram, Remedios Castro-Mejías, Carmen Rodríguez-Dodero, Rachid Zouhair, and Enrique Durán-Guerrero. 2023. "Sensory Analysis as a Simple and Low-Cost Tool to Evaluate and Valorize a New Product from Local Fruits in Rural Communities: The Case of Highly Aromatic Vinegar from Prickly Pear Fruits" Beverages 9, no. 3: 74. https://doi.org/10.3390/beverages9030074