Nutritional Parameters in Colostrum of Different Mammalian Species
Abstract
:1. Introduction
- Stage 1—infant formulas (0–6 months of age);
- Stage 2—follow-up formulas (6–12 months of age);
- Stage 3—toddler formulas (above 12 months of age),
2. Human Milk
3. Comparison between the Nutritional Properties of Human, Cow, Donkey, Buffalo, Goat, and Donkey Colostrum
3.1. Human Colostrum
3.2. Bovine Colostrum
3.2.1. Use of BC in Human Nutrition
3.3. Donkey Colostrum
3.4. Goat Colostrum
3.5. Alpaca Colostrum
3.6. Mare’s Colostrum
3.7. Ewe’s Colostrum
3.8. Camel’s Colostrum
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiocchi, A.; Dahda, L.; Dupont, C.; Campoy, C.; Fierro, V.; Nieto, A. Cow’s milk allergy: Towards an update of DRACMA guidelines. World Allergy Organ. J. 2016, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; Alves, N.G.; Ascari, I.J.; Junqueira, F.B.; Coutinho, A.S.; Lima, R.R.; Perez, J.R.O.; De Paula, S.O.; Furusho-Garcia, I.F.; Abreu, L.R. Colostrum composition of Santa Ines sheep and passive transfer of immunity to lambs. J. Dairy Sci. 2015, 68, 3706–3716. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Boldura, O.; Milovanov, C.; Dronca, D.; Mircu, C.; Hutu, I.; Popescu, S.; Pădeanu, I.; Tulcan, C. Colostrum from Different Animal Species–A Product for Health Status Enhancement. Bullet. UASVM Anim. Sci. Biotechnol. 2016, 73, 95–100. [Google Scholar] [CrossRef]
- Vatankhah, M. Relationship between Immunoglobulin concentration in the ewe’s serum and colostrum, and lamb’s serum in Lori-Bakhtiari Sheep. Iran. J. Appl. Anim. Sci. 2013, 3, 539–544. [Google Scholar]
- Mehra, R.; Singh, R.; Nayan, V.; Buttar, H.S.; Kumar, N.; Kumar, S.; Bhardwaj, A.; Kaushik, R.; Kumar, H. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Biosci. 2021, 40, 100907. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Arenz, S.; Rückerl, R.; Koletzko, B.; Von Kries, R. Breast-feeding and childhood obesity—A systematic review. Int. J. Obes. 2004, 28, 1247–1256. [Google Scholar] [CrossRef]
- Belfort, M.B. The Science of Breastfeeding and Brain Development. Breastfeed. Med. 2017, 12, 459–461. [Google Scholar] [CrossRef]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Peila, C.; Sottemano, S.; Cesare Marincola, F.; Stocchero, M.; Pusceddu, N.G.; Dessì, A.; Baraldi, E.; Fanos, V.; Bertino, E. NMR Metabonomic Profile of Preterm Human Milk in the First Month of Lactation: From Extreme to Moderate Prematurity. Foods 2022, 11, 345. [Google Scholar] [CrossRef]
- Caba-Flores, M.D.; Ramos-Ligonio, A.; Camacho-Morales, A.; Martínez-Valenzuela, C.; Viveros-Contreras, R.; Caba, M. Breast Milk and the Importance of Chrononutrition. Front. Nutr. 2022, 12, 867507. [Google Scholar] [CrossRef] [PubMed]
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef]
- Fidler, N.; Koletzko, B. The fatty acid composition of human colostrum. Eur. J. Nutr. 2000, 39, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.A.; Kneebone, G.M. Fatty acid composition of human colostrum and mature breast milk. Am. J. Clin. Nutr. 1981, 34, 252–257. [Google Scholar] [CrossRef]
- Rønneberg, R.; Skåra, B. Essential fatty acids in human colostrum. Acta Pediatr. 1992, 81, 779–783. [Google Scholar]
- Serra, G.; Marletta, A.; Bonacci, W.; Campone, F.; Bertini, I.; Lantieri, P.; Risso, D.; Ciangherotti, S. Fatty acid composition of human milk in Italy. Biol. Neonate. 1997, 72, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hurley, W.L.; Theil, P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef] [PubMed]
- Civra, A.; Francese, R.; Donalisio, M.; Tonetto, P.; Coscia, A.; Sottemano, S.; Balestrini, R.; Faccio, A.; Cavallarin, L.; Moro, G.E.; et al. Human Colostrum and Derived Extracellular Vesicles Prevent Infection by Human Rotavirus and Respiratory Syncytial Virus in Vitro. J. Human Lactat. 2021, 37, 122–134. [Google Scholar] [CrossRef]
- Thapa, B.R. Health Factors in Colostrum. Indian J. Pediatr. 2005, 72, 579–581. [Google Scholar] [CrossRef]
- Cohen, S.M. Jaundice in the full-term newborn. Pediatr. Nurs. 2006, 32, 202–208. [Google Scholar]
- Morris, J.A.; Wray, C.; Sojka, W.J. Passive protection of lambs against enteropathogenic Escherichia coli: Role of antibodies in serum and colostrums. J. Med. Microbiol. 1980, 13, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Stephan, W.; Dichtelmuller, H.; Lissner, R. Antibodies from colostrum in oral immunotherapy. J. Clin. Chem. Clin. Biochem. 1990, 28, 1923. [Google Scholar]
- Van Hooijdonk, A.C.; Kussendrager, K.D.; Steijns, J.M. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br. J. Nutr. 2000, 84, S127–S134. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, S.; Tharappel, L.J.P.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef]
- Martini, M.; Licitra, R.; Altomonti, I.; Salari, F. Quality of donkey mammary secretion during the first ten days of lactation. Int. Dairy J. 2020, 109, 104781. [Google Scholar] [CrossRef]
- Wen, L.; Wu, Y.; Yang, Y.; Han, T.; Wang, W.; Fu, H.; Zheng, Y.; Shan, T.; Chen, J.; Xu, P.; et al. Gestational Diabetes Mellitus Changes the Metabolomes of Human Colostrum, Transition Milk and Mature Milk. Med. Sci. Monit. 2019, 25, 6128–6152. [Google Scholar] [CrossRef]
- Sangild, P.T.; Vonderohe, C.; Melendez Hebib, V.; Burrin, D.G. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021, 13, 2551. [Google Scholar] [CrossRef]
- Ginger, M.R.; Grigor, M.R. Comparative aspects of milk caseins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 124, 133–145. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Bruni, A.; Passolungo, L.; Abeni, F.; Degano, L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 2014, 97, 5065–5072. [Google Scholar] [CrossRef]
- Lönnerdal, B. Nutritional and phyisiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef]
- Kanwar, J.; Kanwar, R.; Sun, X.; Punj, V.; Matta, H.; Morley, S.; Parratt, A.; Puri, M.; Sehgal, R. Molecular and Biotechnological Advances in Milk Proteins in Relation to Human Health. Curr. Protein Peptide Sci. 2009, 10, 308–338. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.P. Effects of milk-derived bioactives: An overview. Br. J. Nutr. 2000, 84, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Bastian, S.E.P.; Dunbar, A.J.; Priebe, I.K.; Owens, P.C.; Goddard, C. Measurement of betacellulin levels in bovine serum, colostrum and milk. J. Endocrinol. 2001, 168, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Shimokawa, Y.; Ushida, Y.; Toida, T.; Hayasawa, H. New Biological Function of Bovine α-Lactalbumin: Protective Effect against Ethanol- and Stress-induced Gastric Mucosal Injury in Rats. Biosci. Biotechnol. Biochem. 2001, 65, 1104–1111. [Google Scholar] [CrossRef]
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef]
- Urashima, T.; Saito, T.; Nakamura, T.; Messer, M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 2001, 18, 357–371. [Google Scholar] [CrossRef]
- Coelho, A.I.; Berry, G.T.; Rubio-Gozalbo, M.E. Galactose metabolism and health. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 422–427. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; Barile, D. Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2011, 2, 284–289. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; O’Donovan, M.; Murphy, J.P.; Sugrue, K.; Mannion, D.; McCarthy, W.P.; Timlin, M.; Kilcawley, K.N.; Hickey, R.M.; Tobin, J.T. Evolution of the bovine milk fatty acid profile—From colostrum to milk five days post parturition. Int. Dairy J. 2020, 104, 8721–8731. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutr. Res. 2017, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Polzonetti, V.; Pucciarelli, S.; Vincenzetti, S.; Polidori, P. Dietary Intake of Vitamin D from Dairy Products Reduces the Risk of Osteoporosis. Nutrients 2020, 12, 1743. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef]
- Cleminson, J.S.; Zalewski, S.P.; Embleton, N.D. Nutrition in the preterm infant: What’s new? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 220–225. [Google Scholar] [PubMed]
- Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; Warner, J.O.; van Neerven, R.J.J. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front. Nutr. 2018, 5, 1–20. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages 2017, 3, 34. [Google Scholar] [CrossRef]
- Seifu, E.; Buys, E.M.; Donkin, E.F. Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends Food Sci. Technol. 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Wheeler, T.T.; Hodgkinson, A.J.; Prosser, C.G.; Davis, S.R. Immune components of colostrum and milk—A historical perspective. J. Mammary Gland Biol. Neoplasia 2007, 12, 237–247. [Google Scholar] [CrossRef]
- Clare, D.; Catignani, G.; Swaisgood, H. Biodefense Properties of Milk: The Role of Antimicrobial Proteins and Peptides. Curr. Pharm. Des. 2005, 9, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, X.-X.; Liu, Y.; Xi, E.-Z.; An, J.-J.; Tabys, D.; Liu, N. The In Vitro Protective Role of Bovine Lactoferrin on Intestinal Epithelial Barrier. Molecules 2019, 24, 148. [Google Scholar] [CrossRef] [PubMed]
- King, J.C.; Cummings, G.E.; Guo, N.; Trivedi, L.; Readmond, B.X.; Keane, V.; Feigelman, S.; de Waard, R. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 245–251. [Google Scholar] [CrossRef]
- Conte, F.; Scarantino, S. A study on the quality of bovine colostrum: Physical, chemical and safety assessment. Int. Food Res. J. 2013, 20, 925–931. [Google Scholar]
- Benson, K.F.; Carter, S.G.; Patterson, K.M.; Patel, D.; Jensen, G.S. A novel extract from bovine colostrum whey supports antibacterial and anti-viral innate immune functions in vitro and in vivo I. Enhanced immune activity in vitro translates to improved microbial clearance in animal infection models. Prev. Med. 2011, 54, 116–123. [Google Scholar] [CrossRef]
- Dzik, S.; Miciński, B.; Aitzhanova, I.; Miciński, J.; Pogorzelska, J.; Beisenov, A.; Kowalski, I.M. Properties of bovine colostrum and the possibilities of use. Pol. Ann. Medic. 2017, 24, 295–299. [Google Scholar] [CrossRef]
- Wong, E.B.; Mallet, J.F.; Duarte, J.; Matar, C.; Ritz, B.W. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4. J. Food Nutr. Res. 2014, 34, 318–325. [Google Scholar] [CrossRef]
- Diarra, M.; Petitclerc, D.; Lacasse, P. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci. 2002, 85, 1141–1149. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 21, 651721. [Google Scholar] [CrossRef]
- Mehra, R.; Marnila, P.; Korhonen, H. Milk immunoglobulins for health promotion. Int. Dairy J. 2006, 16, 1262–1271. [Google Scholar] [CrossRef]
- Kangro, K.; Kurašin, M.; Gildemann, K.; Sankovski, E.; Žusinaite, E.; Lello, L.S.; Pert, R.; Kavak, A.; Poikalainen, V.; Lepasalu, L.; et al. Bovine colostrum-derived antibodies against SARS-CoV-2 show great potential to serve as prophylactic agents. PLoS ONE 2022, 10, e0268806. [Google Scholar] [CrossRef] [PubMed]
- Marchis, Z.; Odagiu, A.; Coroian, A.; Oroian, I.; Mirza, M.; Burduhos, P. Analysis of environmental factors’ impact on donkeys’ colostrum quality. Sustainability 2018, 10, 2958. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and nutraceutical quality of donkey milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Turini, L.; Bonelli, F.; Nocera, I.; Meucci, V.; Conte, G.; Sgorbini, M. Evaluation of Different Methods to Estimate the Transfer of Immunity in Donkey Foals Fed with Colostrum of Good IgG Quality: A Preliminary Study. Animals 2021, 11, 507. [Google Scholar] [CrossRef]
- Salimei, E.; Fantuz, F.; Coppola, R.; Chiofalo, B.; Polidori, P.; Varisco, G. Composition and characteristics of ass’s milk. Anim. Res. 2004, 53, 67–78. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, L.; Jiang, L.; Dong, M.L.; Ren, F.Z. The antimicrobial activity of donkey milk and microflora changes during storage. Food Control 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Pilla, R.; Daprà, V.; Zecconi, A.; Piccinini, R. Hygienic and health characteristics of donkey milk during a follow-up study. J. Dairy Res. 2010, 77, 392–397. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Polidori, P.; Mariani, P.; Cammertoni, N.; Fantuz, F.; Vita, A. Donkey’s milk protein fractions characterization. Food Chem. 2008, 106, 640–649. [Google Scholar]
- Meyer, H.; Kamphues, J. Grundlagen der Ernahrung von Neugeborenen. In Neugeborenen-und Sauglingskunde der Tiere, 2nd ed.; Walser, K., Bostedt, H., Eds.; Ferdinand Enke Verlag: Stuttgart, Germany, 1990; pp. 55–71. [Google Scholar]
- Park, Y.W. Minor species milk. In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 393–406. [Google Scholar]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, R.; Morera, P. Impact of Hot Environment on Colostrum and Milk Composition. Cell. Mol. Biol. 2013, 59, 67–83. [Google Scholar]
- Merin, U.; Bernstein, S.; Van Creveld, C.; Yagil, R.; Gollop, N. Camel (Camelus dromedarius) colostrum and milk composition during the lactation. Milchwiss 2001, 50, 70–73. [Google Scholar]
- Jandal, J.M. Comparative aspects of goat and sheep milk. Small Rum. Res. 1996, 22, 177–185. [Google Scholar] [CrossRef]
- Barowicz, T.; Migdał, W.; Pietras, M.; Živković, B. Chemical composition of colostrum and milk of sows feed conjugated linoleic acid (CLA) during last period of pregnancy. Biotech. Anim. Husb. 2002, 18, 27–32. [Google Scholar] [CrossRef]
- Kracmar, S.; Kuchtık, J.; Baran, M.; Varadyov, Z.; Kracmarova, E.; Gajdusek, S.; Jelınek, P. Dynamics of changes in contents of organic and inorganic substances in sheep colostrum within the first 72 h after parturition. Small Rum. Res. 2005, 56, 183–188. [Google Scholar] [CrossRef]
- Playford, R.J. Peptide therapy and the gastroenterologist: Colostrums and milk-derived growth factors. Clin. Nutr. 2001, 20, 101–106. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, J.; Zhang, F. Influence of goat colostrum and mature milk on intestinal microbiota. J. Funct. Foods 2021, 86, 104704. [Google Scholar] [CrossRef]
- Soloshenko, K.I.; Lych, I.V.; Voloshyna, I.M.; Shkotova, L.V. Polyfunctional properties of goat colostrum proteins and their use. Biopol. Cell. 2020, 36, 197–209. [Google Scholar] [CrossRef]
- Niznikowski, R.; Popielarczyk, D.; Strzelec, E.; Wojtowski, J.; Dankow, R.; Pikul, J.; Goslawski, W.; Kuczynska, B. The effect of early colostrums collection on selected performance traits in sheep. Arch. Tierz. 2006, 49, 226–230. [Google Scholar]
- Polidori, P.; Antonini, M.; Torres, D.; Beghelli, D.; Renieri, C. Tenderness evaluation and mineral levels of llama (Lama glama) and alpaca (Lama pacos) meat. Meat Sci. 2007, 77, 599–601. [Google Scholar] [CrossRef]
- Mößler, M.; Rychli, K.; Reichmann, V.M.; Albert, T.; Wittek, T. Immunoglobulin G Concentrations in Alpaca Colostrum during the First Four Days after Parturition. Animals 2022, 12, 167. [Google Scholar] [CrossRef]
- Mößler, M.; Aichner, J.; Müller, A.; Albert, T.; Wittek, T. Concentrations of Fat, Protein, Lactose, Macro and Trace Minerals in Alpaca Colostrum and Milk at Different Lactation Stages. Animals 2021, 11, 1955. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-Delanuez, A.; Argüello, A. From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.D.; Zhou, J.W.; Ding, L.M.; Wang, L.; Long, R.J. Short communication: Changes in the composition of yak colostrum during the first week of lactation. J. Dairy Sci. 2016, 99, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Csapó-Kiss, Z.; Stefler, J.; Martin, T.G.; Makray, S.; Csapó, J. Composition of Mares’ Colostrum and Milk. Protein Content, Amino Acid Composition and Contents of Macro and Micro-elements. Int. Dairy J. 1995, 5, 403–415. [Google Scholar] [CrossRef]
- Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.-J.; Vincenzetti, S. Nutritional Properties of Camelids and Equids Fresh and Fermented Milk. Dairy 2021, 2, 288–302. [Google Scholar] [CrossRef]
- Businco, L.; Giampietro, P.G.; Lucenti, P.; Lucaroni, F.; Pini, C.; Di Felice, G.; Iacovacci, P.; Curadi, C.; Orlandi, M. Allergenicity of mare’s milk in children with cow’s milk allergy. J. Allergy Clin. Immunol. 2000, 105, 1031–1034. [Google Scholar] [CrossRef]
- Csapó, J.; Stefler, J.; Martin, T.G.; Makray, S.; Csapó-Kiss, Z. Composition of Mares’ Colostrum and Milk. Fat Content, Fatty Acid Composition and Vitamin Content. Int. Dairy J. 1995, 5, 393–402. [Google Scholar] [CrossRef]
- Salimei, E.; Varisco, G.; Rosi, F. Major constituents, leptin, and non-protein nitrogen compounds in mares’ colostrum and milk. Reprod. Nutr. Develop. 2002, 46, 65–72. [Google Scholar] [CrossRef]
- Mariani, P.; Summer, A.; Martuzzi, F.; Formaggioni, P.; Sabbioni, A.; Catalano, A.L. Physicochemical properties, gross composition, energy value and nitrogen fractions of Haflinger nursing mare milk throughout 6 lactation months. Anim. Res. 2001, 50, 415–425. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Marino, R.; Muscio, A.; Zezza, T.; Sevi, A. Behavior, Milk Yield, and Milk Composition of Machine and Hand-Milked Murgese Mares. J. Dairy Sci. 2007, 90, 2773–2777. [Google Scholar] [CrossRef] [Green Version]
- Pikul, J.; Wójtowski, J. Fat and cholesterol content and fatty acid composition of mares’ colostrum and milk during five lactation months. Livest. Sci. 2008, 113, 285–290. [Google Scholar] [CrossRef]
- Santos, A.S.; Silvestre, A.M. A Study of Lusitano Mare Lactation Curve with Wood’s Model. J. Dairy Sci. 2008, 91, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Cieśla, A.; Palacz, R.; Janiszewska, J.; Skórka, D. Total protein, selected protein fractions and chemical elements in the colostrum and milk of mares. Archiv. Tierzucht. 2009, 52, 1–6. [Google Scholar] [CrossRef]
- Summer, A.; Sabbioni, A.; Formaggioni, P.; Mariani, P. Trend in ash and mineral element content of milk from Haflinger nursing mares throughout six lactation months. Livest. Prod. Sci. 2004, 88, 55–62. [Google Scholar] [CrossRef]
- Doreau, M.; Boulot, S.; Bauchart, D.; Barlet, J.P.; Martin-Rosset, W. Voluntary Intake, Milk Production and Plasma Metabolites in Nursing Mares Fed Two Different Diets. J. Nutr. 1992, 122, 992–999. [Google Scholar] [CrossRef]
- Bouwman, H.; Van der Schee, W. Composition and production of milk from Dutch warmblooded saddle horse mares. J. Anim. Physiol. Anim. Nutr. 1978, 40, 39–53. [Google Scholar] [CrossRef]
- Schryver, H.F.; Oftedal, O.T.; Williams, J.; Soderholm, L.V.; Hintz, H.F. Lactation in the Horse: The Mineral Composition of Mare Milk. J. Nutr. 1986, 116, 2142–2147. [Google Scholar] [CrossRef]
- Schweigert, F.J.; Gottwald, C. Effect of parturition on levels of vitamins A and E and of β-carotene in plasma and milk of mares. Equine Vet. J. 1999, 31, 319–323. [Google Scholar] [CrossRef]
- Michaelidou, A.M. Factors influencing nutritional and health profile of milk and milk products. Small Rumin. Res. 2008, 79, 42–50. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Santini, G.; Polzonetti, V.; Pucciarelli, S.; Klimanova, Y.; Polidori, P. Vitamins in Human and Donkey Milk: Functional and Nutritional Role. Nutrients 2021, 13, 1509. [Google Scholar]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Plakantara, S.; Michaelidou, A.M.; Polychroniadou, A.; Menexes, G.; Alichanidis, E. Nucleotides and nucleosides in ovine and caprine milk during lactation. J. Dairy Sci. 2010, 93, 2330–2337. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Reed, J.J.; Neville, T.L.; Thorson, J.F.; Maddock-Carlin, K.R.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Luther, J.S.; Hammer, C.J.; et al. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. J. Anim. Sci. 2011, 89, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Shogo, H.; Masashi, A.; Seiji, K.; Yoshiyuk, T. Effects of parity and litter size on the energy contents and immunoglobulin G concentrations of Awassi ewe colostrum. Turk. J. Vet. Anim. Sci. 2013, 37, 109–112. [Google Scholar]
- Galitsopoulou, A.; Michaelidou, A.M.; Menexes, G.; Alichanidis, E. Polyamine profile in ovine and caprine colostrum and milk. Food Chem. 2015, 173, 80–85. [Google Scholar] [CrossRef]
- Izadi, A.; Rahbarimanesh, A.A.; Mojtahedi, Y.; Mojtahedi, S.Y. Prevalence of enterovirus meningitis in children: Report from a tertiary center. Maedica J. Clin. Med 2018, 13, 213–216. [Google Scholar]
- El-Agamy, E.I. The challenge of cow milk protein allergy. Small Rumin. Res. 2007, 68, 64–72. [Google Scholar] [CrossRef]
- Monti, G.; Viola, S.; Baro, C.; Cresi, F.; Tovao, P.A.; Moro, G.; Ferrero, M.P.; Conti, A.; Bertino, E. Tolerability of donkey’s milk in 92 highly problematic cow’s milk allergic children. J. Biol. Regul. Homeost. Agents 2012, 26, 75–82. [Google Scholar]
- Vincenzetti, S.; Cammertoni, N.; Rapaccetti, R.; Santini, G.; Klimanova, Y.; Zhang, J.J.; Polidori, P. Nutraceutical and Functional Properties of Camelids’ Milk. Beverages 2022, 8, 12. [Google Scholar] [CrossRef]
- Faraz, A.; Waheed, A.; Tauqir, N.A.; Mirza, R.H.; Ishaq, H.M.; Nabeel, M.S. Characteristics and composition of camel (Camelus dromedarius) milk: The white gold of desert. Adv. Anim. Vet. Sci. 2020, 8, 766–770. [Google Scholar] [CrossRef]
- El-Hatmi, H.; Girardet, J.M.; Gaillard, J.L.; Yahyaoui, M.H.; Attia, H. Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Rumin. Res. 2007, 70, 267–271. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Faye, B.; Loiseau, G.; Narmuratova, M.; Ivashchenko, A.; Meldebekova, A.; Davletov, S. Physiological change in camel milk composition (Camelus dromedarius) 2: Physico-chemical composition of colostrum. Trop. Anim. Health Prod. 2010, 42, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Dell’Orto, V.; Cattaneo, D.; Beretta, E.; Baldi, A.; Savoini, G. Effects of trace element supplementation on milk yield and composition in camels. Int. Dairy, J. 2010, 10, 873–879. [Google Scholar] [CrossRef]
- Izadi, A.; Khedmat, L.; Mojtahedi, S.Y. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J. Funct. Foods 2019, 60, 103441. [Google Scholar] [CrossRef]
Colostrum | Fat | Protein | Lactose |
---|---|---|---|
Human (g/100 g) [3] | 3.8 | 1.2 | 7.0 |
Human (g/100 mL) [24] | 3–5 | 0.8–0.9 | 6.9–7.2 |
Cow (g/100 g) [3] | 3.8 | 3.3 | 4.8 |
Cow (g/100 mL) [24] | 6.7 | 14.9 | 2.5 |
Goat (g/100 g) [24] | 4.1 | 3.4 | 4.7 |
Donkey 24 h (g/100 mL) [25] | 2.08 | 2.79 | 5.30 |
Donkey 6 d (g/100 mL) [25] | 1.33 | 2.53 | 5.60 |
Minerals | BC | Mature Milk |
---|---|---|
Calcium (g/kg) | 2.6–4.7 | 1.2–1.3 |
Phosphorus (g/kg) | 4.5 | 0.9–1.2 |
Potassium (g/kg) | 1.4–2.8 | 1.5–1.7 |
Sodium (g/kg) | 0.7–1.1 | 0.4 |
Magnesium (g/kg) | 0.4–0.7 | 0.1 |
Zinc (mg/kg) | 11.6–38.1 | 3–6 |
Vitamins | ||
Thiamine—Vitamin B1 (µg/mL) | 0.58–0.90 | 0.4–0.5 |
Riboflavin—Vitamin B2 (µg/mL) | 4.55–4.83 | 1.5–1.7 |
Niacin—Vitamin B3 (µg/mL) | 0.34–0.96 | 0.8–0.9 |
Cobalamin—Vitamin B12 (µg/mL) | 0.05–0.60 | 0.004–0.006 |
Vitamin A (µg/100 mL) | 25 | 34 |
Vitamin D (IU/g fat) | 0.89–1.81 | 0.41 |
Tocopherol—Vitamin E (µg/g) | 2.92–5.63 | 0.06 |
Lactation Stage | 0 h | 24 h | 48 h | 4 d | 6 d | 8 d | 10 d |
---|---|---|---|---|---|---|---|
pH | 6.69 | 6.73 | 6.70 | 6.76 | 6.94 | 7.03 | 6.96 |
DM (g/100 mL) | 18.9 | 12.4 | 12.5 | 12.4 | 12.6 | 11.2 | 11.2 |
Lactose (g/100 mL) | 4.01 | 5.30 | 5.01 | 5.83 | 5.60 | 6.04 | 5.90 |
Fat (g/100 mL) | 2.04 | 2.08 | 1.84 | 1.58 | 1.33 | 1.05 | 1.31 |
Protein (g/100 mL) | 10.2 | 2.79 | 2.89 | 2.75 | 2.53 | 2.33 | 2.21 |
Somatic Cells Count (cells/mL × 1000) | 221 | 451 | 231 | 220 | 223 | 254 | 215 |
Species | Fat | Protein | Lactose |
---|---|---|---|
Buffalo (g/100 g) [70] | 5.44 | 18.75 | 2.70 |
Buffalo (g/100 g) [19] | 7.56–11.3 | 4.3 | 4.7 |
Yak (g/100 g) [70] | 14.0 | 16.1 | 1.90 |
Dromedary (g/100 g) [72] | 1.50 | 13.0 | 3.60 |
Camel (g/100 g) [76] | 0.30 | 19.2 | 5.90 |
Llama (g/100 g) [79] | 0.75 | 16.8 | 4.12 |
Elephant (g/kg) [70] | 56.0 | 21.0 | 61.8 |
Milk Nutrient | Goat Colostrum | Goat Mature Milk |
---|---|---|
Protein (g/100 g) | 8.78 | 3.59 |
Fat (g/100 g) | 6.61 | 4.02 |
Lactose (g/100 g) | 2.64 | 4.51 |
Minerals (g/100 g) | 0.94 | 0.72 |
Dry Matter (g/100 g) | 19.14 | 12.57 |
IgG (µg/mL) | 8123.33 | 1706.33 |
Colostrum | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
Protein (%) | 20.4 | 10.4 | 9.48 | 8.30 |
Fat (%) | 0.51 | 2.01 | 2.78 | 5.31 |
Lactose (%) | 3.95 | 5.23 | 4.84 | 5.01 |
Mineral | Colostrum | Mature Milk |
---|---|---|
Calcium (Ca) | 748–847 | 614–700 |
Phosphorus (P) | 389–742 | 216–540 |
Potassium (K) | 928–1143 | 341–370 |
Magnesium (Mg) | 140–473 | 43 |
Sodium (Na) | 320–524 | 115–161 |
Zinc (Zn) | 2.95–6.40 | 1.80–2.40 |
Iron (Fe) | 1.00–1.31 | 0.49 |
Copper (Cu) | 0.61–0.99 | 0.20–0.28 |
Vitamin | Colostrum | Mature Milk |
---|---|---|
Vitamin A | 0.88 | 0.34 |
Vitamin D3 | 0.0054 | 0.0032 |
Vitamin E | 1.342 | 1.128 |
Vitamin K3 | 0.043 | 0.029 |
Vitamin C | 23.8 | 17.2 |
Species | Lactation Day | Putrescine | Spermidine | Spermine | Total PA |
---|---|---|---|---|---|
Ewe | 1 | 0.11 | 0.37 | 0.50 | 0.95 |
15 | 0.15 | 0.48 | 0.53 | 1.04 | |
Goat | 1 | 0.16 | 0.60 | 0.53 | 1.11 |
15 | 0.00 | 0.31 | 0.25 | 0.79 |
Nutrient | Mean | Minimum | Maximum |
---|---|---|---|
Total Protein | 6.06 | 3.19 | 17.20 |
Fat | 7.88 | 1.56 | 25.94 |
Lactose | 3.63 | --- | --- |
Skimmed Dry Matter | 15.61 | 9.79 | 41.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polidori, P.; Rapaccetti, R.; Klimanova, Y.; Zhang, J.-J.; Santini, G.; Vincenzetti, S. Nutritional Parameters in Colostrum of Different Mammalian Species. Beverages 2022, 8, 54. https://doi.org/10.3390/beverages8030054
Polidori P, Rapaccetti R, Klimanova Y, Zhang J-J, Santini G, Vincenzetti S. Nutritional Parameters in Colostrum of Different Mammalian Species. Beverages. 2022; 8(3):54. https://doi.org/10.3390/beverages8030054
Chicago/Turabian StylePolidori, Paolo, Roberta Rapaccetti, Yulia Klimanova, Jing-Jing Zhang, Giuseppe Santini, and Silvia Vincenzetti. 2022. "Nutritional Parameters in Colostrum of Different Mammalian Species" Beverages 8, no. 3: 54. https://doi.org/10.3390/beverages8030054
APA StylePolidori, P., Rapaccetti, R., Klimanova, Y., Zhang, J. -J., Santini, G., & Vincenzetti, S. (2022). Nutritional Parameters in Colostrum of Different Mammalian Species. Beverages, 8(3), 54. https://doi.org/10.3390/beverages8030054