Strontium Isotope Systematics of Tenerife Wines (Canary Islands): Tracing Provenance in Ocean Island Terroir
Abstract
:1. Introduction
1.1. Sr Isotopes in Nature
1.2. Viniculture in Tenerife
2. Materials and Methods
2.1. Wine Collection
2.2. Isotopic Analyses—Equipment and Reagents
2.3. Isotopic Analyses—Purification of Sr
2.4. Isotopic Analyses—Instrumentation and Measurement
2.5. Isotopic Analyses—Laboratory Collaboration
2.6. Trace Element Analyses
3. Results
4. Discussion
4.1. Anthropogenic Inputs—Farming, Clearing and Ageing Wines
4.2. Comparisons with Other Wine Growing Regions
4.3. Substratum Influence
4.4. Natural Inputs of Sr
- Rainfall
- Groundwater (irrigation)
- Marine spray
- Atmospheric dust
4.5. Predicting Direct Effects of Natural Sr Inputs
4.6. Tracing Variable Influences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lombardi, P.; Bianco, A.D.; Freda, R.; Caracciolo, F.; Cembalo, L. Development and trade competitiveness of the European wine sector: A gravity analysis of intra-EU flows. Wine Econ. Policy 2016, 5, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Agricultura, Pesca y Alimentación. Datos de las Denominaciones de Origen Protegidas de Vinos (DOPs); Centro de Publicaciones Secretaría General Técnica: Madrid, Spain, 2019. [Google Scholar]
- Nathan Wajsman; Executive Summary. The Economic Cost of IPR Infringement in Spirits and Wine; EUIPO: Alicante, Spain, 2016. [Google Scholar]
- Barbaste, M.; Medina, B.; Sarabia, L.; Ortiz, M.; Pérez-Trujillo, J. Analysis and comparison of SIMCA models for denominations of origin of wines from de Canary Islands (Spain) builds by means of their trace and ultratrace metals content. Anal. Chim. Acta 2002, 472, 161–174. [Google Scholar] [CrossRef]
- Pérez-Trujillo, J.-P.; Barbaste, M.; Médina, B. Chemometric Study of Bottled Wines with Denomination of Origin from the Canary Islands (Spain) Based on Ultra-Trace Elemental Content Determined by ICP-MS. Anal. Lett. 2003, 36, 679–697. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Llorens, A.; Cervera, M.; Armenta, S.; de la Guardia, M. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem. 2009, 112, 26–34. [Google Scholar] [CrossRef]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Day, M. Feasibility Study for Origin Verification of Australian Wine: The Use of Strontium Isotope Ratio, Selected Trace Element Concentrations, Infrared Spectroscopy and DNA Profiling; The Australian Wine Research Institute: Adelaide, Australia, 2015. [Google Scholar]
- Christoph, N.; Hermann, A.; Wachter, H. 25 Years authentication of wine with stable isotope analysis in the European Union—Review and outlook. BIO Web Conf. 2015, 5, 02020. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Zhong, Q.; Gao, H.; Wang, D.; Li, G.; Huang, Z. Elemental profile and oxygen isotope ratio (δ 18 O) for verifying the geographical origin of Chinese wines. J. Food Drug Anal. 2018, 26, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Epova, E.N.; Bérail, S.; Séby, F.; Vacchina, V.; Bareille, G.; Médina, B.; Sarthou, L.; Donard, O.F. Strontium elemental and isotopic signatures of Bordeaux wines for authenticity and geographical origin assessment. Food Chem. 2019, 294, 35–45. [Google Scholar] [CrossRef]
- Larcher, R.; Nicolini, G.; Pangrazzi, P. Isotope Ratios of Lead in Italian Wines by Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 5956–5961. [Google Scholar] [CrossRef]
- Vorster, C.; Greeff, L.; Coetzee, P.P. The Determination of 11B/10B and 87Sr/86Sr Isotope Ratios by Quadrupole-Based ICP-MS for the Fingerprinting of South African Wine. Afr. J. Chem. 2010, 63, 207–214. [Google Scholar]
- Almeida, C.M.; Vasconcelos, M.T.S.D. ICP-MS determination of strontium isotope ratio in wine in order to be used as a fingerprint of its regional origin. J. Anal. At. Spectrom. 2001, 16, 607–611. [Google Scholar] [CrossRef]
- Marchionni, S.; Braschi, E.; Tommasini, S.; Bollati, A.; Cifelli, F.; Mulinacci, N.; Mattei, M.; Conticelli, S. High-Precision 87Sr/86Sr Analyses in Wines and Their Use as a Geological Fingerprint for Tracing Geographic Provenance. J. Agric. Food Chem. 2013, 61, 6822–6831. [Google Scholar] [CrossRef] [PubMed]
- Tescione, I.; Marchionni, S.; Mattei, M.; Tassi, F.; Romano, C.; Conticelli, S. A Comparative 87Sr/86Sr Study in Red and White Wines to Validate its Use as Geochemical Tracer for the Geographical Origin of Wine. Procedia Earth Planet. Sci. 2015, 13, 169–172. [Google Scholar] [CrossRef]
- Marchionni, S.; Buccianti, A.; Bollati, A.; Braschi, E.; Cifelli, F.; Molin, P.; Parotto, M.; Mattei, M.; Tommasini, S.; Conticelli, S. Conservation of 87Sr/86Sr isotopic ratios during the winemaking processes of ‘Red’ wines to validate their use as geographic tracer. Food Chem. 2016, 190, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, C.; de Pinho, M.; Curvelo-Garcia, A.S.; de Sousa, B.R.; Ricardo-da-Silva, J.M.; Catarino, S. Evaluating Nanofiltration Effect on Wine 87Sr/86Sr Isotopic Ratio and the Robustness of this Geographical Fingerprint. S. Afr. J. Enol. Vitic. 2017, 38, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Gabel, B. Wine origin authentication linked to terroir—Wine fingerprint. BIO Web Conf. 2019, 15, 02033. [Google Scholar] [CrossRef] [Green Version]
- Durante, C.; Baschieri, C.; Bertacchini, L.; Bertelli, D.; Cocchi, M.; Marchetti, A.; Manzini, D.; Papotti, G.; Sighinolfi, S. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes. Food Chem. 2015, 173, 557–563. [Google Scholar] [CrossRef]
- Durante, C.; Bertacchini, L.; Cocchi, M.; Manzini, D.; Marchetti, A.; Rossi, M.C.; Sighinolfi, S.; Tassi, L. Development of 87Sr/86Sr maps as targeted strategy to support wine quality. Food Chem. 2018, 255, 139–146. [Google Scholar] [CrossRef]
- Frei, R.; Frei, K.M. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark)—A base for provenance studies in archaeology and agriculture. Appl. Geochem. 2013, 38, 147–160. [Google Scholar] [CrossRef]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; Wiley: New York, NY, USA, 2004; ISBN 978-0-471-38437-3. [Google Scholar]
- Araña, V.; Marti, J.; Aparicio, A.; García-Cacho, L.; García-García, R. Magma mixing in alkaline magmas: An example from Tenerife, Canary Islands. Lithos 1994, 32, 1–19. [Google Scholar] [CrossRef]
- Ablay, G.J.; Carroll, M.R.; Palmer, M.R.; Marti, J.; Sparks, R.S.J. Basanite-Phonolite Lineages of the Teide-Pico Viejo Volcanic Complex, Tenerife, Canary Islands. J. Pet. 1998, 39, 905–936. [Google Scholar] [CrossRef]
- IGME (Instituto Geológico y Minero de España) Mapa Geológico Continuo de España a Escala 1/50,000, Continuous Geological Map of Spain Scale 1/50,000. Available online: https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=44df600f5c6241b59edb596f54388ae4 (accessed on 9 June 2021).
- GEOROC—Geochemistry of Rocks of the Oceans and Continents. Available online: http://georoc.mpch-mainz.gwdg.de/georoc/ (accessed on 29 June 2021).
- Criado, C.; Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 2003, 55, 765–783. [Google Scholar] [CrossRef]
- Grousset, F.; Rognon, P.; Coudé-Gaussen, G.; Pédemay, P. Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition. Palaeogeogr. Palaeoclim. Palaeoecol. 1992, 93, 203–212. [Google Scholar] [CrossRef]
- Wine Folly Wine from Tenerife—The Canary Islands. Available online: https://winefolly.com/lifestyle/wine-from-tenerife-the-canary-islands/ (accessed on 9 June 2020).
- Jancis Robinson. Available online: https://www.jancisrobinson.com/ (accessed on 9 June 2020).
- Observatorio Español del Mercado del Vino. Exportaciones vitivinícolas por Comunidades Autónomas y Provincias 2019. Available online: https://www.oemv.es/exportaciones-vitivinicolas-por-comunidades-autonomas-y-provincias-ano-2019 (accessed on 18 August 2020).
- Estadísticas y Datos. Available online: https://www.gobiernodecanarias.org/agp/icca/servicios/estadisticas/ (accessed on 14 June 2020).
- Vinos de Tenerife, D.O. Available online: https://www.isladetenerifevivela.com/2011/07/vinos-de-tenerife-do.html (accessed on 8 August 2020).
- Consejos R deguladorese La Denominación de Origen de Los Vinos de Tenerife. Available online: https://www.tenerife.es/portalcabtfe/es/descubre-tenerife/sobre-la-isla-de-tenerife/agroindustria-en-tenerife/el-vino/consejos-reguladores-de-la-denominacion-de-origen-de-los-vinos-de-tenerife (accessed on 14 June 2020).
- Pin, C.; Gannoun, A.; Dupont, A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 1858–1870. [Google Scholar] [CrossRef]
- Ribeiro, S.; Azevedo, M.R.; Santos, J.F.; Medina, J.; Costa, A. Sr isotopic signatures of Portugese bottles mineral waters and their relationships with the geological setting. Com. Geológicas. 2014, 101, 29–37. [Google Scholar]
- Techer, I.; Lancelot, J.; Descroix, F.; Guyot, B. About Sr isotopes in coffee ‘Bourbon Pointu’ of the Réunion Island. Food Chem. 2011, 126, 718–724. [Google Scholar] [CrossRef]
- Diaz, F.; Tejedor, M.; Jimenez, C.; Dahlgren, R. Soil fertility dynamics in runoff-capture agriculture, Canary Islands, Spain. Agric. Ecosyst. Environ. 2011, 144, 253–261. [Google Scholar] [CrossRef]
- Tescione, I.; Casalini, M.; Marchionni, S.; Braschi, E.; Mattei, M.; Conticelli, S. Conservation of 87Sr/86Sr During Wine-Making of White Wines: A Geochemical Fingerprint of Geographical Provenance and Quality Production. Front. Environ. Sci. 2020, 8, 153. [Google Scholar] [CrossRef]
- Kaya, A.D.; de Sousa, R.B.; Curvelo-Garcia, A.S.; Ricardo-Da-Silva, J.M.; Catarino, S. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio. J. Agric. Food Chem. 2017, 65, 4766–4776. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.; Brunner, M.; Steiman, S.; Bowen, G.J.; Nogueira, J.M.F.; Gautz, L.; Prohaska, T.; Máguas, C. Isotopes as Tracers of the Hawaiian Coffee-Producing Regions. J. Agric. Food Chem. 2011, 59, 10239–10246. [Google Scholar] [CrossRef] [PubMed]
- Sighinolfi, S.; Durante, C.; Lisa, L.; Tassi, L.; Marchetti, A. Influence of Chemical and Physical Variables on 87Sr/86Sr Isotope Ratios Determination for Geographical Traceability Studies in the Oenological Food Chain. Beverages 2018, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Boari, E.; Tommasini, S.; Mercurio, M.; Morra, V.; Mattei, M.; Mulinacci, N.; Conticelli, S. 87Sr/86Sr of Some Central and Southern Italian Wines and Its Use as Fingerprints for Geographic Provenance. In Proceedings of the 6th General Assembly of the OIV-2008, 31st World, Verona, Italy, 1 June 2008. [Google Scholar]
- Di Paola-Naranjo, R.D.; Baroni, M.V.; Podio, N.S.; Rubinstein, H.R.; Fabani, M.P.; Badini, R.G.; Inga, M.; Ostera, H.A.; Cagnoni, M.; Gallegos, E.; et al. Fingerprints for Main Varieties of Argentinean Wines: Terroir Differentiation by Inorganic, Organic, and Stable Isotopic Analyses Coupled to Chemometrics. J. Agric. Food Chem. 2011, 59, 7854–7865. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, V.; Stevenson, R.; Pedneault, K.; Poirier, A.; Hélie, J.-F.; Widory, D. Strontium isotope characterization of wines from Quebec, Canada. Food Chem. 2016, 210, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Catarino, S.; Castro, F.; Brazão, J.S.; Moreira, L.; Pereira, L.; Fernandes, J.; Dias, J.E.; Graça, A.; Martins-Lopes, P. 87Sr/86Sr isotopic ratios in vineyard soils and varietal wines from Douro Valley. BIO Web Conf. 2019, 12, 02031. [Google Scholar] [CrossRef]
- Petrini, R.; Sansone, L.; Slejko, F.; Buccianti, A.; Marcuzzo, P.; Tomasi, D. The 87Sr/86Sr strontium isotopic systematics applied to Glera vineyards: A tracer for the geographical origin of the Prosecco. Food Chem. 2015, 170, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, B.W.; Capo, R.C.; A Chadwick, O. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim. Cosmochim. Acta 2001, 65, 1087–1099. [Google Scholar] [CrossRef]
- Agencía Estatal de Meteorología (España); Instituto de Metrologia (Portugal). Atlas climático de los archipiélagos de Canarias, Madeira y Azores; Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España: Madrid, Spain, 2012. [Google Scholar]
- Marrero-Diaz, R.; López, D.; Perez, N.M.; Custodio, E.; Sumino, H.; Melián, G.V.; Padrón, E.; Hernández, G.D.P.; Calvo, D.; Barrancos, J.; et al. Carbon dioxide and helium dissolved gases in groundwater at central Tenerife Island, Canary Islands: Chemical and isotopic characterization. Bull. Volcanol. 2015, 77, 86. [Google Scholar] [CrossRef]
- Herrera, R.F.G.; Puyol, D.G.; Martín, E.H.; Presa, L.G.; Rodríguez, P.R. Influence of the North Atlantic Oscillation on the Canary Islands Precipitation. J. Clim. 2001, 14, 3889–3903. [Google Scholar] [CrossRef] [Green Version]
- Custodio, E.; Guerra, J.A.; Jiménez, J.; Medina, J.A.; Soler, C. The effects of agriculture on the volcanic aquifers of the canary islands. Environ. Earth Sci. 1983, 5, 225–231. [Google Scholar] [CrossRef]
- Marrero-Diaz, R.; Alcalá, F.J.; Pérez, N.M.; López, D.L.; Melián, G.V.; Padrón, E.; Padilla, G.D. Aquifer Recharge Estimation through Atmospheric Chloride Mass Balance at Las Cañadas Caldera, Tenerife, Canary Islands, Spain. Water 2015, 7, 2451–2471. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Menendez, M.; McVicar, T.; Acevedo, A.; Vicente-Serrano, S.M.; Cuevas, E.; Minola, L.; Chen, D. Wind speed variability over the Canary Islands, 1948–2014: Focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Clim. Dyn. 2017, 50, 4061–4081. [Google Scholar] [CrossRef] [Green Version]
- Schütz, L. Long range transport of desert dust with special emphasis on the Sahara. Ann. New York Acad. Sci. 1980, 338, 515–532. [Google Scholar] [CrossRef]
- Grousset, F.E.; Biscaye, P.E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem. Geol. 2005, 222, 149–167. [Google Scholar] [CrossRef]
- Menéndez, I.; Diaz-Hernandez, J.L.; Mangas, J.; Alonso, I.; Sánchez-Soto, P.J. Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain). J. Arid. Environ. 2007, 71, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Giraudi, C. Eolian sand in peridesert northwestern Libya and implications for Late Pleistocene and Holocene Sahara expansions. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 218, 161–173. [Google Scholar] [CrossRef]
- McTainsh, G. Harmattan dust deposition in northern Nigeria. Nat. Cell Biol. 1980, 286, 587–588. [Google Scholar] [CrossRef]
- Andersson, P.; Löfvendahl, R.; Åberg, G. Major element chemistry, δ2H, δ18O and 87Sr/86Sr in a snow profile across central Scandinavia. Atmos. Environ. Part A Gen. Top. 1990, 24, 2601–2608. [Google Scholar] [CrossRef]
- Bestland, E.; George, A.; Green, G.; Olifent, V.; Mackay, D.; Whalen, M. Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia. J. Hydrol. Reg. Stud. 2017, 9, 216–235. [Google Scholar] [CrossRef] [Green Version]
- Graustein, W.C. 87Sr/86Sr Ratios Measure the Sources and Flow of Strontium in Terrestrial Ecosystems. In Proceedings of the Stable Isotopes in Ecological Research; Rundel, P.W., Ehleringer, J.R., Nagy, K.A., Eds.; Springer: New York, NY, USA, 1989; pp. 491–512. [Google Scholar]
- Raiber, M.; Webb, J.; Bennetts, D.A. Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia. J. Hydrol. 2009, 367, 188–199. [Google Scholar] [CrossRef]
- Song, B.-Y.; Ryu, J.-S.; Shin, H.S.; Lee, K.-S. Determination of the Source of Bioavailable Sr Using 87Sr/86Sr Tracers: A Case Study of Hot Pepper and Rice. J. Agric. Food Chem. 2014, 62, 9232–9238. [Google Scholar] [CrossRef] [PubMed]
Denominación de Origen (Area of Vineyards, Ha) | Area (Ha) and % of Total Coverage | Municipalities Included | Altitude Range of Vineyards (m) | White: Red Grapes | Dominant White Varietals | Dominant Red Varietals | Market Contribution 2017/2018 (EUR Millions) and Percent of Total |
---|---|---|---|---|---|---|---|
Abona | 852 (34.0%) | Granadilla de Abona, Arico, Adeje, Arona | 400–1700 | 80:20 | Listán Blanco, Malvasía, Marmajuelo | Listán Negro, Negromoll, Tintilla | 3.5 (24.9%) |
Valle de Güímar | 165 (6.6%) | Güímar, Arafo, Candelaria | 100–1500 | 62:38 | Listán Blanco, Malvasía, Moscatel, Gual, Verdello, Sabro | Listán Negro, Negromoll, Cabernet Sauvignon, Merlot, Pinot Noir, Shiraz, Temperanillo | 1.02 (7.3%) |
Tacoronte-Acentejo | 1016 (40.5%) | Tacoronte, Santa Ursula, Tegueste, La Matanza, La Victoria, El Sauzal, La Laguna, El Rosario, part of Santa Cruz | 100–1000 | 6:94 | Listán Blanco, Malvasía, Moscatel, Gual, Verdello, Vijariego | Listán Negro, Negromoll | 5.75 (40.9%) |
Valle de la Orotava | 317 (12.6%) | Los Realejos, La Orotava, Puerto de la Cruz | 250–800 | 50:50 | Listán Blanco, Malvasía, Marmajuelo, Albillo Moscatel, Gual, Sabro, Verdello, Vijariego | Castellana Negra, Listán Negro, Negromoll, Tintilla, Malvasía Rosada | 2.58 (18.3%) |
Ycoden-Daute-Isora | 158 (6.3%) | Buenavista del Norte, El Tanque, Garachico, Guía de Isora, Icod de los Vinos, Los Silos, San Juan de la Rambla, La Guancha, Santiago del Teide | 50–1400 | 70:30 | Listán Blanco | Listán Negro, Negromoll | 1.21 (8.6%) |
Location | Number of Samples | Red/White/Rosé |
---|---|---|
DO Abona | 13 | 7/4/2 |
DO Tacoronte-Acentejo | 12 | 6/4/2 |
DO Valle de la Orotava | 8 | 4/3/1 |
DO Valle de Güímar | 8 | 2/4/2 |
DO Ycoden-Daute-Isora | 8 | 4/4/0 |
DO Tenerife | 22 | 11/10/1 |
VC Canarias | 10 | 3/6/1 |
Guachinches (Tenerife, no DO, small batches) | 10 | 8/2/0 |
Peninsular DOs | 10 | 4/5/1 |
Mean 87Sr/86Sr | Mean Sr (ppb) | Sr Min (ppb) | Sr Max (ppb) | ||
---|---|---|---|---|---|
DO Abona | 0.70602 | 1260 | 490 | 2827 | |
Red wines | 0.70649 | 1455 | |||
White wines | 0.70561 | 843 | |||
DO Tacoronte-Acentejo | 0.70670 | 819 | 487 | 1541 | |
Red wines | 0.70677 | 917 | |||
White wines | 0.70682 | 538 | |||
DO Valle de Güímar | 0.70577 | 1130 | 710 | 1738 | |
Red wines | 0.70653 | 1487 | |||
White wines | 0.70553 | 929 | |||
DO Valle de la Orotava | 0.70621 | 952 | 402 | 1397 | |
Red wines | 0.70605 | 1122 | |||
White wines | 0.70648 | 782 | |||
DO Ycoden-Daute-Isora | 0.70600 | 654 | 304 | 1081 | |
Red wines | 0.70592 | 931 | |||
White wines | 0.70608 | 378 | |||
DO Tenerife | 0.70625 | 855 | 304 | 1788 | |
VC Canarias | 0.70633 | 877 | 460 | 1642 | |
Guachinches | 0.70670 | 965 | 409 | 1587 |
Model Input | Sr concentration * (ppb) | 87Sr/86Sr |
---|---|---|
Basalt “soil” average | 769–76,921 | 0.703093 |
Phonolite “soil” average | 232–23,172 | 0.703669 |
Marine spray | 10,835 | 0.709175 (+/−0.00003) |
Local groundwater (irrigation) | 324 | 0.70372 (+/−0.00005) |
Atmospheric deposition (rain) | 21 | 0.710113 (+/−0.00002) |
Southern Morocco Saharan dust (Calima) | 90,000 | 0.72212 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coldwell, B.C.; Pérez, N.M.; Vaca, M.C.; Pankhurst, M.J.; Hernández, P.A.; Rodriguez, G.V.M.; Padrón, E.; Asensio-Ramos, M.; Ribeiro, S.; Santos, J.F. Strontium Isotope Systematics of Tenerife Wines (Canary Islands): Tracing Provenance in Ocean Island Terroir. Beverages 2022, 8, 9. https://doi.org/10.3390/beverages8010009
Coldwell BC, Pérez NM, Vaca MC, Pankhurst MJ, Hernández PA, Rodriguez GVM, Padrón E, Asensio-Ramos M, Ribeiro S, Santos JF. Strontium Isotope Systematics of Tenerife Wines (Canary Islands): Tracing Provenance in Ocean Island Terroir. Beverages. 2022; 8(1):9. https://doi.org/10.3390/beverages8010009
Chicago/Turabian StyleColdwell, Beverley C., Nemesio M. Pérez, Maria Cordero Vaca, Matthew J. Pankhurst, Pedro A. Hernández, Gladys V. Melián Rodriguez, Eleazar Padrón, María Asensio-Ramos, Sara Ribeiro, and José Francisco Santos. 2022. "Strontium Isotope Systematics of Tenerife Wines (Canary Islands): Tracing Provenance in Ocean Island Terroir" Beverages 8, no. 1: 9. https://doi.org/10.3390/beverages8010009
APA StyleColdwell, B. C., Pérez, N. M., Vaca, M. C., Pankhurst, M. J., Hernández, P. A., Rodriguez, G. V. M., Padrón, E., Asensio-Ramos, M., Ribeiro, S., & Santos, J. F. (2022). Strontium Isotope Systematics of Tenerife Wines (Canary Islands): Tracing Provenance in Ocean Island Terroir. Beverages, 8(1), 9. https://doi.org/10.3390/beverages8010009