Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review
Abstract
:1. Introduction
2. Chemical Composition of Red Wine
Chemical Compounds | Contents | Reference |
---|---|---|
Glycerol | 4–10 g/L | [16] |
Organic acids | upto 6 g/L | [16,17] |
Sulfur-containing compounds: sulfite | 10–80 mg/L | [18,19] |
Nitrogen-containing compounds: Amino acids proteins | 300 to 1300 mg/L 70–80 mg/L | [20] |
Higher alcohol Isoamyl alcohol | 300–600 mg/L 140–417 mg/L | [16,21,22] |
Minerals: potassium, nitrogen, phosphorus, sulfur, magnesium and calcium, boron, manganese, iron, and others | Total 1.5–3 g/L | [17] |
Flavonoids: flavonols | up to 100 mg/L | [6,24] |
Flavanols | up to 800 mg/L | [6,24] |
Anthocyanins | up to 700 mg/L | [6,24] |
Condensed tannins Hydrolysable tannins | 1.2–3.3 g/L up to 50 mg/L | [24] |
Proanthocyanidins | 1 g/L | [24] |
Hydroxybenzoic acids | 2–500 mg/L | [16] |
Hydroxycinnamic acids | up to 100 mg/L | [6,24] |
Gallic acid | up to 70 mg/L | [6] |
Stilbenes | 1.1–2.7 mg/L | [34,35,36] |
Hydroxytyrosol | up to 3.89 mg/L | [6] |
3. Analysis of Polyphenols and Other Compounds in Red Wine
3.1. Spectrophotometric Methods
3.2. Gas Chromatography-Mass Spectroscopy
3.3. High Performance Liquid Chromatography (HPLC)
3.4. Nuclear Magnetic Resonance (NMR)
3.5. Inductively Coupled Plasma Mass Spectroscopy (ICPMS)
3.6. Other Analyticial Techniques
4. Factors Affecting the Phenolic Content
4.1. Grape Varieties
4.2. Storage
4.2.1. Ageing and Co-Pigmentation
4.2.2. Barrel
4.2.3. Closure
5. Antioxidant Activity of Red Wines
6. The Effect of Moderate Consumption of Red Wine on Human Health
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feher, J.; Lenguello, G.; Lugasi, A. The cultural history of wine—Theoretical background to wine therapy. Cent. Eur. J. Med. 2007, 2, 379–391. [Google Scholar] [CrossRef]
- Carrolo, C.; Presti, R.; Gregorio, C. Wine, diet, and arterial hypertension. Angiology 2007, 58, 92–96. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Franchini, M.; Favaloro, E.J.; Targher, G. Moderate red wine consumption and cardiovascular disease risk: Beyond the French Paradox. Semin. Thromb. Hemost. 2010, 36, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Zhang, X.; Kontoudakis, N.; Šuklje, K.; Antalick, G.; Blackman, J.W.; Rutledge, D.N.; Schmidtke, L.M.; Clark, A.C. Changes in red wine composition during bottle aging: Impacts of grape variety, vineyard location, maturity, and oxygen availability during aging. J. Agric. Food Chem. 2020, 68, 13331–13343. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evolution of the phenolic content of red wines from Vitis vinifera L. during ageing in bottle. Food Chem. 2006, 95, 405–412. [Google Scholar] [CrossRef]
- Wen, M.; Anque, G.; Yulin, Z.; Hua, W.; Ye, L.; Hua, L. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–9. [Google Scholar]
- Pavlidou, E.; Mentzorou, M.; Fasoulos, A.; Tryfonos, C.; Petridis, D.; Giaginis, C. Wine—An aspiring agent to promoting longevity and preventing chronic diseases. Diseases 2018, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.L.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef]
- Artero, A.; Artero, A.; Tarin, J.J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Vartolomei, M.D.; Kimura, S.; Ferro, M.; Foerster, B.; Abufaraj, M.; Briganti, A.; Karakiewicz, P.I.; Shariat, S.F. The impact of moderate wine consumption on the risk of developing prostate cancer. Clin. Epidemiol. 2018, 10, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Wurz, D.A. Wine and health—A review of its benefits to human health. BIO Web Conf. 2019, 12, 04001. [Google Scholar] [CrossRef]
- Covas, M.I.; Gambert, P.; Fitó, M.; de La Torre, R. Wine and oxidative stress: Up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 2010, 208, 297–304. [Google Scholar] [CrossRef]
- Red Wine Composition. Available online: https://waterhouse.ucdavis.edu/whats-in-wine/red-wine-composition (accessed on 22 November 2021).
- Sirén, H.; Sirén, K.; Sirén, J. Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Anal. Chem. Res. 2015, 3, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.S. Wine, food, and health. In Wine Science, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 947–978. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, Y.; Cheng, W.; Wang, J.; Wu, B.; Wang, J. Determination of free and total sulfite in red globe grape by ion chromatography. Food Sci. Technol. Res. 2014, 20, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Pekka, L. Determination of amines and amino acids in wine—A review. Am. J. Enol. Vitic. 1996, 47, 127–133. [Google Scholar]
- Zoecklein, B.; Fugelsang, K.; Gump, B.; Nury, F. Wine Analysis and Production; Chapman & Hall: New York, NY, USA, 1995; pp. 101–104, 422. [Google Scholar]
- Cordente, A.G.; Nandorfy, D.E.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic higher alcohols in wine: Implication on aroma and palate attributes during chardonnay aging. Molecules 2021, 26, 4979. [Google Scholar] [CrossRef] [PubMed]
- Schreier, P.; Jennings, W.G. Flavor composition of wines: A review. Crit. Rev. Food Sci. Nutr. 1979, 12, 59–111. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- McDonald, M.S.; Hughes, M.; Burns, J.; Lean, M.E.; Matthews, D.; Crozier, A. Survey of the free and conjugated myricetin and quercetin of red wine of different geographical origins. J. Agric. Food Chem. 1998, 46, 368–375. [Google Scholar] [CrossRef]
- Katalic, V.; Milos, M.; Modun, D.; Music, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004, 86, 593–600. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- de Villiers, A.; Vanhoenacker, G.; Majek, P.; Sandra, P. Determination of anthocyanins in wine by direct injection liquid chromatography-diode array detection-mass spectrometry and classification of wines using discriminant analysis. J. Chromatogr. A 2004, 29, 195–204. [Google Scholar] [CrossRef]
- Berente, B.; De la Calle García, D.; Reichenbächer, M.; Danzer, K. Method development for the determination of anthocyanins in red wines by high-performance liquid chromatography and classification of German red wines by means of multivariate statistical methods. J. Chromatogr. A 2000, 871, 95–103. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- USDA Database for the Proanthocyanidin Content of Selected Foods Food. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/data/pa/pa.pdf (accessed on 23 December 2021).
- Rentzsch, M.; Wilkens, A.; Winterhalter, P. Non-flavonoid phenolic compounds. In Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009; pp. 509–527. ISBN 9780387741161. [Google Scholar]
- Ferreira-Lima, N.; Vallverdú-Queralt, A.; Meudec, E.; Pinasseau, L.; Verbaere, A.; Bordignon-Luiz, M.T.; le Guernevé, C.; Cheynier, V.; Sommerer, N. Quantification of hydroxycinnamic derivatives in wines by UHPLC-MRM-MS. Anal. Bioanal. Chem. 2018, 410, 3483–3490. [Google Scholar] [CrossRef] [PubMed]
- Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem. 2006, 98, 649–657. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villar, E. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography—Mass spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.-M.; Cluzet, S. Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J. Agric. Food Chem. 2013, 61, 11392–11399. [Google Scholar] [CrossRef]
- Visioli, F.; Panaite, S.-A.; Tomé-Carneiro, J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.M.; Ng, E.; Yan, J.; Karumanchiri, A.; Soleas, G.J.; Diamandis, E.P. Regional differences in resveratrolisomer concentrations of wines from various cultivars. J. Wine Res. 1996, 7, 13–24. [Google Scholar] [CrossRef]
- Fernandez-Mar, M.T.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine-resveratrol, hydroxytirosol and melatonin. A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Boselli, E.; Minardi, M.; Giomo, A.; Frega, N.G. Phenolic composition and quality of white d.o.c. wines from Marche (Italy). Anal. Chim. Acta 2006, 563, 93–108. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric analysis of phenolic compounds in grapes and wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT 2020, 118, 108785. [Google Scholar] [CrossRef]
- Azzi-Achkouty, S.; Estephan, N.; Ouaini, N.; Rutledge, D.N. Headspace solid-phase microextraction for wine volatile analysis. Crit. Rev. Food Sci. Nutr. 2017, 57, 2009–2020. [Google Scholar] [CrossRef]
- Nobrega, I.C.C.; Pereira, G.E.; Silva, M.; Pereira, E.V.S.; Medeiros, M.M.; Telles, D.L.; Albuquerque, E.C., Jr.; Oliveira, J.B.; Lachenmeier, D.W. Improved sample preparation for GC-MS-SIM analysis of ethyl carbamate in wine. Food Chem. 2015, 177, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, M.; Pozo-Bayón, M.Á. Development of an in-mouth headspace sorptive extraction method (HSSE) for oral aroma monitoring and application to wines of different chemical composition. Food Res. Int. 2019, 121, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Ziółkowska, A.; Wąsowicz, E.; Jeleń, H.H. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Food Chem. 2016, 213, 714–720. [Google Scholar] [CrossRef]
- Valentina, L.; Barrosob, L.P.; Barbosac, R.M.; de Paulod, G.A.; Castro, I.A. Chemical typicality of South American red wines classified according to their volatile and phenolic compounds using multivariate analysis. Food Chem. 2020, 302, 125340. [Google Scholar] [CrossRef]
- Stupaka, M.; KocourekaIrena, V.; Kolouchovab, J. Rapid approach for the determination of alcoholic strength and overall quality check of various spirit drinks and wines using GC–MS. Food Control 2017, 80, 307–313. [Google Scholar] [CrossRef]
- Revilla, E.; Ryan, J.M. Analysis of several phenolic compounds with potential antioxidant properties in grape extracts and wines by HPLC-photodiode array detection without sample preparation. J. Chrmatogr. A 2000, 881, 461–469. [Google Scholar] [CrossRef]
- Carneiro, C.N.; Gomez, F.J.V.; Spisso, A.; Silva, M.F.; Azcarate, S.M.; Dias, F.D.S. Geographical characterization of South America wines based on their phenolic and melatonin composition: An exploratory analysis. Microchem. J. 2020, 158, 105240. [Google Scholar] [CrossRef]
- Lukic’, I.; Radeka, S.; Budic’-Leto, I.; Bubola, M.; Vrhovsek, U. Targeted UPLC-QqQ-MS/MS profiling of phenolic compounds for differentiation of monovarietal wines and corroboration of particular varietal typicity concepts. Food Chem. 2019, 300, 125251. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.Á.; Monforte, L.; Tomás-Las-Heras, R.; Núñez-Olivera, E.; Martínez-Abaigar, J. A supplement of ultraviolet-B radiation under field conditions increases phenolic and volatile compounds of tempranillo grape skins and the resulting wines. Eur. J. Agron. 2020, 121, 126150. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Nowicka, P.; Chmielewska, J. Characterisation of (Poly)Phenolic constituents of two interspecific red hybrids of rondo and regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chem. 2018, 239, 94–101. [Google Scholar] [CrossRef]
- Simonetti, P.; Pietta, P.; Testolin, G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 1997, 45, 1152–1155. [Google Scholar] [CrossRef]
- Blanco-Vega, D.; Lopez-Bellido, F.J.; Alía-Robledo, J.M.; Hermosín-Gutiérrez, I. HPLC-DAD-ESI-MS characterization of proanthocyanidins pigments formed in model wine. J. Agric. Food Chem. 2011, 59, 9523–9531. [Google Scholar] [CrossRef]
- Gonçalves, J.; Silva, C.L.; Castilho, P.C.; Câmara, J.S. An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchem. J. 2013, 106, 129–138. [Google Scholar] [CrossRef]
- Seruga, M.; Novak, I.; Jakobik, L. Determination of polyphenol contents and antioxidant activity of some red wine by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef]
- de Peredo, A.V.G.; Vázquez-Espinosa, M.; Piñeiro, Z.; Espada-Bellido, E.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Development of a rapid and accurate UHPLC-PDA-FL method for the quantification of phenolic compounds in grapes. Food Chem. 2021, 334, 127569. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Chmielewska, J. Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of dornfelder wines elaborated in cold climate. Food Chem. 2021, 339, 127888. [Google Scholar] [CrossRef]
- Aru, V.; Sorensen, K.M.; Khakimov, B.; Toldam-Andersen, T.B.; Engelsen, S.B. Cool-climate red wines-chemical composition and comparison of two protocols for 1H-NMR analysis. Molecules 2018, 23, 160. [Google Scholar] [CrossRef] [Green Version]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Wine evolution during bottle aging, studied by 1H NMR spectroscopy and multivariate statistical analysis. Food Res. Int. 2019, 116, 566–577. [Google Scholar] [CrossRef]
- Hong, Y.S. NMR-based metabolomics in wine science. Magn. Reson. Chem. 2011, 49, 13–21. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Martino, E.; Chianese, G.; Coppola, F.; Picariello, L.; Moio, L.; Balestrieri, M.L.; Gambuti, A.; Forino, M. Phenolic profiles of red wine relate to vascular endothelial benefits mediated by SIRT1 and SIRT6. Int. J. Mol. Sci. 2021, 22, 5677. [Google Scholar] [CrossRef] [PubMed]
- Barátossy, G.; Donkó, M.B.; Vásárhelyi, H.C.; Héberger, K.; Rácz, A. Comprehensive classification and regression modeling of wine samples using 1H NMR spectra. Foods 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Forinoa, M.; Picarielloa, L.; Rinaldia, A.; Moioa, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT—Food Sci. Technol. 2020, 129, 109546. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Sredojević, M.; Cirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental analysis and phenolic profiles of selected italian wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Karaś, K.; Zioła-Frankowska, A.; Frankowski, M. Chemical speciation of aluminum in wine by LC–ICP–MS. Molecules 2020, 25, 1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. Multi-elemental analysis of wine samples in relation to their type, origin, and grape variety. Molecules 2021, 26, 214. [Google Scholar] [CrossRef]
- Perez-Alvarez, E.P.; Garcia, R.; Barrulas, P.; Cabritae, M.J.; Garde-Cerdán, T. Classification of wines according to several factors by ICP-MS multi-element analysis. Food Chem. 2019, 270, 273–280. [Google Scholar] [CrossRef]
- Gu, X.; Chu, Q.; Dwuer, M.; Zeece, M. Analysis of resveratrol in wine by capillary electrophoresis. J. Chromatogr. A 2000, 881, 471–481. [Google Scholar] [CrossRef]
- Arribas, A.S.; Martinez-Fernandez, M.; Chicharro, M. The role of electroanalytical techniques in analysis of polyphenols in wine. Trends Anal. Chem. 2013, 34, 78–96. [Google Scholar] [CrossRef]
- Guadalupe, L.; Soldevilla, A.; Sáenz-Navajas, M.P.; Ayestarán, B. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation. J. Chromatogr. A 2006, 1112, 112–120. [Google Scholar] [CrossRef]
- Cetó, X.; Céspedes, F.; del Valle, M. BioElectronic tongue for the quantification of total polyphenol content in wine. Talanta 2012, 99, 544–551. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Anal. Chim. Acta 2010, 662, 82–89. [Google Scholar] [CrossRef]
- Luzzini, G.; Slaghenaufi, D.; Pasetto, F.; Ugliano, M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT—Food Sci. Technol. 2021, 143, 111120. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Matei, C.; Deaconu, M.; Stanciuc, A.-M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into Mesoporous silica-type matrices. Food Chem. Toxicol. 2019, 133, 110787. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Liazid, A.; Palma, M.; Puertas, B.; González-Barrio, R.; Gil-Izquierdo, Á.; García-Barroso, C.; Cantos-Villar, E. Phenolic characterisation of red grapes Autochthonous to Andalusia. Food Chem. 2009, 112, 949–955. [Google Scholar] [CrossRef]
- Kondrashov, A.; Ševčík, R.; Benákovaá, H.; Koštířová, M.; Štípek, S. The key role of grape variety for antioxidant capacity of red wines. e-SPEN Eur. e-J. Clin. Nutr. Metabol. 2009, 4, e41–e46. [Google Scholar] [CrossRef] [Green Version]
- Leeuw, R.V.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommesb, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Li, J.M.; Pan, Q.H.; Huang, W.D. Determination of red wine flavonoids by HPLC and effect of aging. Food Chem. 2007, 101, 428–433. [Google Scholar] [CrossRef]
- de Esteban, M.L.G.; Ubeda, C.; Heredia, F.J.; Catania, A.A.; Assof, M.V.; Fanzone, M.L.; Jofre, V.P. Impact of closure type and storage temperature on chemical and sensory composition of Malbec wines (Mendoza, Argentina) during aging in bottle. Food Res. Int. 2019, 125, 108553. [Google Scholar] [CrossRef]
- Escribano-Bailón, M.T.; Santos-Buelga, C. Anthocyanin copigmentation—Evaluation, mechanisms, and implications for the colour of red wines. Curr. Org. Chem. 2012, 16, 715–723. [Google Scholar] [CrossRef]
- Rustioni, L.; Bedgood, D.R.; Failla, O.; Prenzler, P.D.; Robards, K. Copigmentation and anti-copigmentation in grape extracts studied by spectrophotometry and post-column-reaction HPLC. Food Chem. 2012, 132, 2194–2201. [Google Scholar] [CrossRef]
- Bimpilas, A.; Panagopoulou, M.; Tsimogiannis, D.; Oreopoulou, V. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem. 2016, 197, 39–46. [Google Scholar] [CrossRef]
- Hermosín, G.I.; Sánchez-Palomo, L.E.; Vicario Espinosa, A. Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- De Simón, B.F.; Cadahía, E.; del Álamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef]
- Frangipane, T.M.; DeSantis, D.; Ceccarelli, A. Influence of oak woods of different geographical origins on quality of wines aged in barriques and using oak chips. Food Chem. 2007, 103, 46–54. [Google Scholar] [CrossRef]
- Dumitriu, G.-D.; López de Lerma, N.; Zamfir, C.-I.; Cotea, V.V.; Peinado, R.A. Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. LWT 2017, 86, 643–651. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Waterhouse, A.L. Oak barrel tannin and toasting temperature: Effects on red wine anthocyanin chemistry. LWT 2018, 98, 444–450. [Google Scholar] [CrossRef]
- Silva, M.A.; Julien, M.; Jourdes, M.; Teissedre, P.L. Impact of closures on wine post-bottling development: A review. Eur. Food Res. Technol. 2011, 233, 905–914. [Google Scholar] [CrossRef]
- Baiano, A.; De Gianni, A. A study on the effects of oxygen transmission rate of synthetic stopper on wine quality: The case of Nero di Troia. Eur. Food Res. Technol. 2016, 242, 1857–1867. [Google Scholar] [CrossRef]
- Vidal, J.C.; Caillé, S.; Samson, A.; Salmon, J.M. Comparison of the effect of 8 closures in controlled industrial conditions on the shelf life of a red wine. BIO Web Conf. 2017, 9, 02024. [Google Scholar] [CrossRef] [Green Version]
- Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chem. 2010, 123, 107–116. [Google Scholar] [CrossRef]
- Rossetti, F.; Jouin, A.; Jourdes, M.; Teissedre, P.L.; Foligni, R.; Longo, E.; Boselli, E. Impact of different stoppers on the composition of red and Rosé Lagrein, Schiava (Vernatsch) and Merlot wines stored in bottle. Molecules 2020, 25, 4276. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo1, C.D.; Badea, M.; Colombo, F.; Orgiu, F.; Frigerio, G.; Pastor, R.F.; Restan, P. Antioxidant activity of wine assessed by different in vitro methods. BIO Web Conf. 2017, 9, 04008. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Fassonla, E.; Economou, A.; Calokerines, A. Development and validation of a sequential injection method with chemiluminescence assay of the total antioxidant capacity of wine. Talanta 2011, 85, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Tubaro, F.; Pizzuto, R.; Raino, G.; Paventi, G. A novel fluorimetric method to evaluate red wine antioxidant activity. Period. Polytech. Chem. Eng. 2019, 69, 57–64. [Google Scholar] [CrossRef]
- Sabat, S.; Chaitra, L.M.; Ranjitha, R. Evaluation of antioxidant and antimicrobial activity of wine from various sources. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 26–35. [Google Scholar] [CrossRef]
- Giammanco, M.; De Majo, D. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008, 111, 45–49. [Google Scholar] [CrossRef]
- Muselic, J.; Garcia-Alonso, M.; Martin-Lopez, M.P.; Žemlička, M.; Julián, C.R.G. Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanidins. Int. J. Mol. Sci. 2007, 8, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Kharadze, M.; Japaridze, I.; Kalendia, A.; Vanidze, M. Anthocyanins and antioxidant activity of red wines made from endemic grape varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Buyuktuncel, E.; Porgali, E.; Colak, C. Comparison of total phenolic content and total antioxidant activity in local red wine determined by spectrophotometric methods. Food Nutr. Res. 2014, 5, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Mannino, S.; Brenna, O.; Buratti, S.; Casio, M.S. A new method for the evaluation of the antioxidant power of wines. Electroanalysis 1998, 10, 908–912. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hontz, B.A. Phenol antioxidant index: Comparative antioxidant effectiveness of red and white wines. J. Agric. Food Chem. 1995, 43, 401–403. [Google Scholar] [CrossRef]
- Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant activity of different phenolic fraction separated from Italian red wine. J. Agric. Food Chem. 1998, 46, 361–367. [Google Scholar] [CrossRef]
- Baydar, N.G.; Balalik, Z.; Turk, F.H.; Cetin, E.S. Phenolic composition, and antioxidant activitys of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci. 2011, 11, 67–76. [Google Scholar] [CrossRef]
- Ghatak, A.A.; Chatarvedi, P.A.; Desai, N.S. Indian grape wines-a potential sources of phenols, polyphenols, and antioxidants. Int. J. Food Prop. 2014, 17, 818–828. [Google Scholar] [CrossRef]
- Campos, A.M.; Lissi, E.A. Total antioxidant potential of Chilean wines. Nutr. Res. 1996, 16, 385–389. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, E.; Gelderblom, W.C.A.; Manley, M. Antioxidant activity of South African red and white cultivarwines and selected phenolic compounds: In vitro inhibitionof microsomal lipid peroxidation. J. Agric. Food Chem. 2003, 51, 902–909. [Google Scholar] [CrossRef]
- Landrault, N.; Poucheret, R.; Ravel, P.; Gasc, F.; Teissedre, P.L. Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J. Agric. Food Chem. 2001, 49, 2341–2348. [Google Scholar] [CrossRef]
- Jordano, A.M.; Simoes, S.; Correia, A.C.; Goncalves, F.J. Antioxidant activity evolution during Portuguese red wine vinification and their relation with proanthocyanidin and anthocyanin composition. J. Food Process. Preserv. 2012, 36, 298–309. [Google Scholar] [CrossRef]
- Fanzone, M.; Pena-Neira, A.; Gil, M.; Jofré, V.; Assof, M.; Zamora, F. Impact of phenolic and poly saccharidic composition on commercial value of Argentinean Malbec and Cabernet Souvignon wines. Food Res. Int. 2012, 45, 402–414. [Google Scholar] [CrossRef]
- de Simón, B.F.; Herrandez, T.; Cadahía, E.; Dueñas, M.; Estrella, I. Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Technol. 2003, 216, 150–156. [Google Scholar] [CrossRef]
- Stasko, A.; Brezova, V.; Mazur, M.; Čertík, M.; Kaliňák, M.; Gescheidt, G. A comparative study of the antioxidant properties of Slovakian and Austrian wines. LWT—Food Sci. Technol. 2008, 41, 2126–2135. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected china wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Lachman, J.; Sulc, M.; Schilla, M. Comparison of the total antioxidant status of Bohemian wines during the wine-making process. Food Chem. 2007, 103, 802–807. [Google Scholar] [CrossRef]
- Lucena, A.P.S.; Nascimento, R.J.B.; Maciel, J.A.C.; Tavares, J.X.; Barbosa-Filho, J.M.; Oliveira, E.J. Antioxidant activity and phenolic contents of selected Brazilian wines. J. Food Compos. Anal. 2010, 23, 30–36. [Google Scholar] [CrossRef]
- Snopek, L.; Micek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, L.; Narv’aez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem. 2019, 26, 3542–3566. [Google Scholar] [CrossRef]
- Cordova, H.C.; Jackson, L.S.; Berke-Schlessel, D.W.; Sumpio, B.E. The cardiovascular protective effect of red wine. J. Am. Coll. Surg. 2005, 200, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights 2016, 9, 51–57. [Google Scholar] [CrossRef]
- Kondo, K.; Matsumoto, A.; Kurata, H.; Tanahashi, H.; Koda, H.; Amachi, T.; Itakura, H. Inhibition of oxidation of low-density lipoproteins with red wines. Lancet 1994, 344, 1152. [Google Scholar] [CrossRef]
- He, S.; Sun, C.; Pan, Y. Red wine polyphenols for cancer prevention. Int. J. Mol. Sci. 2008, 9, 842–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambini, J.; Gimeno-Mallench, L.; Olaso-Gonzalez, G.; Mastaloudis, A.; Traber, M.G.; Monleón, D.; Borrás, C.; Viña, J. Moderate red wine consumption increases the expression of longevity-associated genes in controlled human populations and extends lifespan in Drosophila melanogaster. Antioxidants 2021, 10, 301. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Yngve, A.; Lagergren, J.; Lu, Y. A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of esophageal cancer. Br. J. Nutr. 2014, 112, 2002–2009. [Google Scholar] [CrossRef] [Green Version]
- Oi, N.; Jeong, C.H.; Nadas, J.; Cho, Y.Y.; Pugliese, A.; Bode, A.M.; Dong, Z. Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A4 hydrolase. Cancer Res. 2010, 70, 9755–9764. [Google Scholar] [CrossRef] [Green Version]
- Amor, S.; Chalons, P.; Aires, V.; Delmas, D. Polyphenol extracts from red wine and grape vine potential effects on cancer. Diseases 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Damianaki, A.; Bakogeorgan, E.; Kampa, M.; Notas, G.; Hatzoglou, A.; Panagiotou, S.; Gemetzi, C.; Kouroumalis, E.; Martin, P.M.; Castanas, E. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem. 2000, 78, 429–441. [Google Scholar] [CrossRef]
- Caruana, M.; Canchi, R.; Vassallo, N. Putative role of red wine polyphenols against brain pathology in Alzheimer and Parkinson disease. Front. Nutr. 2016, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Zorraquín-Peña, I.; Esteban-Fernández, A.; de Llano, D.G.; Bartolomé, B.; Moreno-Arribas, M.V. Wine-derived phenolic metabolites in the digestive and brain function. Beverages 2019, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Santa-Maria, I.; Ho, L.; Ksiezak-Reding, H.; Ono, K.; Teplow, D.B.; Pasinetti, G.M. Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2010, 22, 653–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, N.; Zhao, J.; Kurihara, H.; Nakagata, N.; Okajima, K. Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J. Nutr. Biochem. 2011, 22, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Basli, A.; Soulet, S.; Chaher, N.; Merillon, J.M.; Chibane, M.; Monti, J.P.; Richard, T. Wine polyphenols-potential agents in neuroprotection. Oxid. Med. Cell. Longev. 2012, 2012, 805762. [Google Scholar] [CrossRef]
- Caimi, G.; Carollo, C.; Lo Presti, R. Diabetes mellitus-oxidative stress and wine. Curr. Med. Res. Opin. 2003, 19, 581–586. [Google Scholar] [CrossRef]
- Di Lorenzo, D.; Stockley, C.; Colombo, F.; Biella, S.; Orgiu, F.; Dell’Agli, M.; Restani, P. The role of wine in modulating inflammatory processes—A review. Beverages 2018, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Presti, R.L.; Carollo, C.; Caimi, G. Wine consumption and renal disease. New perspectives. Nutrition 2007, 23, 598–602. [Google Scholar] [CrossRef]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta 2011, 412, 65–69. [Google Scholar] [CrossRef]
- Marwell, S.; Cruickshank, A.; Thorpe, G. Red wine and antioxidant activity in serum. Lancet 1994, 344, 193–194. [Google Scholar] [CrossRef]
- Grujic-Melanovic, M.Z.; Jonovic, D.; Jacevic, V.; Milosavljevic, I.; Milanovic, S.D.; Mihailovic-Stanojevic, N. The red wine polyphenol, resveratrol improves hemodynamics, oxidative defense and aortal structure in essential and malignant hupertension. J. Funct. Foods. 2017, 34, 266–276. [Google Scholar] [CrossRef]
- Esteban-Fernandez, A.; Zirraquin-Pena, I.; Orgiu, F.; Dell’Agli, M.; Restani, P. The role of wine and food polyphenols in oral health. Trends Food Sci. Technol. 2017, 69, 118–130. [Google Scholar] [CrossRef]
- Tanaka, T.; Iuchi, A.; Harada, H.; Hashimoto, S. Potential beneficial effects of wine flavonoids on allergic diseases. Diseases 2019, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Type of Wine, Grape Variety, Year of Production, (Country of Production) | Resveratrol Content in mg/L | ||
---|---|---|---|---|
Trans-Resveratrol | Cis-Resveratrol | Total | ||
1 | Red wine, “Exposicion Carmenere”, 2005, (Chile) | 1.80 | 1.20 | 3.00 |
2 | Red wine “Estampa Cabernet Sauvignon”, 2006, (Chile) | 2.00 | 0.60 | 2.60 |
3 | Red wine “Estampa Cabernet Sauvignon Merlot”, 2006, (Chile) | 1.60 | 0.80 | 2.40 |
4 | Red wine “Negroamaro Salento IGT”, 2006. (Italy, Apulia) | 0.80 | 1.20 | 2.00 |
5 | Red wine “Merlot Myskhako”, 2006, (Russia) | 0.50 | 1.40 | 1.90 |
6 | Red wine “Salento IGT”, 2006, (Italy, Apulia) | 0.40 | 0.80 | 1.20 |
7 | Red wine “Vistamar Cabernet Sauvignon”, 2006, (Chile) | 0.80 | 0.20 | 1.00 |
8 | Red wine “Cabernet Myskhako”, 2005, (Russia) | 0.20 | 0.40 | 0.60 |
9 | Red wine “Nero d′Avola Sangiovese Emporio”, 2004, (Italy, Sicily) | 0.50 | 0.10 | 0.60 |
10 | Red wine “Las Moras Malbec”, 2006, (Argentina) | 0.25 | 0.35 | 0.60 |
11 | Red wine “Merlot Tamani”, 2006, (Russia) | 0.40 | 0.10 | 0.50 |
12 | Red wine “Cabernet Tamani”, 2006, (Russia) | 0.40 | 0.10 | 0.50 |
13 | Red semi-dry Cabernet Sauvignon, 2006, (South Africa) | 0.30 | 0.20 | 0.50 |
14 | Red wine Chianti Badiolo, (Italy) | 0.30 | 0.10 | 0.40 |
15 | White wine Estampa Chardonnay, 2006, (Chile) | 0.35 | 0.05 | 0.40 |
16 | Red wine “Las Moras Bonarda”, 2006, (Argentina) | 0.09 | 0.15 | 0.24 |
17 | White wine “Chardonnay Myskhako”, 2007, (Russia) | 0.12 | 0.07 | 0.19 |
18 | White wine “Sauvignon Blanc Myskhako”, 2007, (Russia) | 0.09 | 0.02 | 0.11 |
19 | Rose wine “Folonari Bardolino Chiaretto”, 2005, (Italy) | 0.05 | 0.06 | 0.11 |
20 | White wine “Malvasia Chardonnay Salento IGT”, 2006, (Italy, Apulia) | 0.10 | 0.01 | 0.11 |
21 | White wine “Chardonnay Sicily IGT”, 2005\2006 (Italy, Sicily) | 0.05 | 0.01 | 0.06 |
Name of Diseases | Positive Effects | References |
---|---|---|
Heart disease | Prevents heart disease, inhibit platelet aggregation | [123] |
Oxidation of low-density lipoproteins | Inhibits low density lipo-proteins (LDL) oxidation | [128] |
Oncological diseases | Reduces esophageal cancer, reduced the progression of malignant phase of cancer, inhibited carcinogenesis with pleiotropic effect, in vivo hepatoprotective effects, suppresses the proliferation of anchorage-independent b(4) production | [13,132,133] |
Type 2 diabetes | Ameliorates diabetic oxidative status, lowers glucose levels | [127,141] |
Neurodegenerative diseases: Alzheimer′s and Parkinson′s | Neuroprotection | [136,137,138,139,140] |
Inflammatory processes | Inhibits phosphorylation activation, prevents radical formation and their activities, prevents aortic lipid deposition | [142] |
Kidney diseases | Kidney antioxidant defenses, exert protective effects against renal ischemia/reperfusion injury, inhibit apoptosis of mesangial cells | [143] |
Oxidative stress | Prevents radical formation, antioxidant activities | [144,145,146] |
Antidiabetic activities | Controls glucose levels, prevent diabetes | [10,147] |
Allergic diseases | Inhibits immunoglobulin (IgE) synthesis, activate of mast cells and basophils or other inflammatory cells, produce inflammatory mediators, including cytokines | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. https://doi.org/10.3390/beverages8010001
Nemzer B, Kalita D, Yashin AY, Yashin YI. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages. 2022; 8(1):1. https://doi.org/10.3390/beverages8010001
Chicago/Turabian StyleNemzer, Boris, Diganta Kalita, Alexander Y. Yashin, and Yakov I. Yashin. 2022. "Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review" Beverages 8, no. 1: 1. https://doi.org/10.3390/beverages8010001
APA StyleNemzer, B., Kalita, D., Yashin, A. Y., & Yashin, Y. I. (2022). Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages, 8(1), 1. https://doi.org/10.3390/beverages8010001