Consumer Perception of Milk and Plant-Based Alternatives Added to Coffee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Environment
2.3. Samples and Sample Presentation
2.4. Procedure
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gloess, A.N.; Schönbächler, B.; Klopprogge, B.; Lucio, D.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef] [Green Version]
- López-Galilea, I.; De Peña, M.P.; Cid, C. Correlation of Selected Constituents with the Total Antioxidant Capacity of Coffee Beverages: Influence of the Brewing Procedure. J. Agric. Food Chem. 2007, 55, 6110–6117. [Google Scholar] [CrossRef]
- Chambers, E.; Sanchez, K.; Phan, U.X.T.; Miller, R.; Civille, G.V.; Donfrancesco, B.D. Development of a “living” lexicon for descriptive sensory analysis of brewed coffee. J. Sens. Stud. 2016, 31, 465–680. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of coffee. Exp. Agric. 2001, 37, 1–36. [Google Scholar] [CrossRef]
- Thurston, R.W.; Morris, J.; Steiman, S. Coffee: A Comprehensive Guide to the Bean, the Beverage, and the Industry; Rowman & Littlefield Publishers: Washington, DC, USA, 2013; 433p. [Google Scholar]
- Di Donfrancesco, B.; Gutierrez Guzman, N.; Chambers IV, E. Comparison of Results from Cupping and Descriptive Sensory Analysis of Colombian Brewed Coffee. J. Sens. Stud. 2014, 29, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Chapko, M.J.; Seo, H.-S. Characterizing product temperature-dependent sensory perception of brewed coffee beverages: Descriptive sensory analysis. Food Res. Int. 2019, 121, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Ferreira, M.M.C.; Salva, T.J.G. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta 2011, 83, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C. Profiles of volatile compounds and sensory analysis of three blends of coffee: Influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar. J. Sci. Food Agric. 2002, 82, 840–847. [Google Scholar] [CrossRef]
- Frost, S.C.; Ristenpart, W.D.; Guinard, J.-X. Effect of Basket Geometry on the Sensory Quality and Consumer Acceptance of Drip Brewed Coffee. J. Food Sci. 2019, 84, 2297–2312. [Google Scholar] [CrossRef]
- Geel, L.; Kinnear, M.; de Kock, H.L. Relating consumer preferences to sensory attributes of instant coffee. Food Qual. Prefer. 2005, 16, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, F.; Kazami, Y.; Wakayama, H.; Oboshi, R.; Tanaka, H.; Maeda, G.; Hoshino, C.; Iwawaki, H.; Miyabayashi, T. Sensory Lexicon of Brewed Coffee for Japanese Consumers, Untrained Coffee Professionals and Trained Coffee Tasters. J. Sens. Stud. 2010, 25, 917–939. [Google Scholar] [CrossRef]
- Giacalone, D.; Degn, T.K.; Yang, N.; Liu, C.; Fisk, I.; Münchow, M. Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Qual. Prefer. 2019, 71, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; O’Mahony, M. At What Temperatures Do Consumers Like to Drink Coffee?: Mixing Methods. J. Food Sci. 2002, 67, 2774–2777. [Google Scholar] [CrossRef]
- McCarthy, K.S.; Parker, M.; Ameerally, A.; Drake, S.L.; Drake, M.A. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J. Dairy Sci. 2017, 100, 6125–6138. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow Milk versus Plant-Based Milk Substitutes: A Comparison of Product Image and Motivational Structure of Consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Liu, K. Chemistry and Nutritional Value of Soybean Components. In Soybeans: Chemistry, Technology, and Utilization [Internet]; Liu, K., Ed.; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Ma, L.; Li, B.; Han, F.; Yan, S.; Wang, L.; Sun, J. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chem. 2015, 173, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Torres-Penaranda, A.V.; Reitmeier, C.A. Sensory Descriptive Analysis of Soymilk. J. Food Sci. 2001, 66, 352–356. [Google Scholar] [CrossRef]
- Torres-Penaranda, A.V.; Reitmeier, C.A.; Wilson, L.A.; Fehr, W.R.; Narvel, J.M. Sensory Characteristics of Soymilk and Tofu Made from Lipoxygenase-Free and Normal Soybeans. J. Food Sci. 1998, 63, 1084–1087. [Google Scholar] [CrossRef]
- Maghsoudlou, Y.; Alami, M.; Mashkour, M.; Shahraki, M.H. Optimization of Ultrasound-Assisted Stabilization and Formulation of Almond Milk. J. Food Process. Preserv. 2016, 40, 828–839. [Google Scholar] [CrossRef]
- Demir, H.; Simsek, M.; Yıldırım, G. Effect of oat milk pasteurization type on the characteristics of yogurt. LWT 2021, 135, 110271. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lapsley, K.; Blumberg, J. A nutrition and health perspective on almonds. J. Sci. Food Agric. 2006, 86, 2245–2250. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deswal, A.; Deora, N.S.; Mishra, H.N. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food Bioprocess. Technol. 2014, 7, 610–618. [Google Scholar] [CrossRef]
- Villanueva, N.D.M.; Da Silva, M.A.A.P. Comparative performance of the nine-point hedonic, hybrid and self-adjusting scales in the generation of internal preference maps. Food Qual. Pref. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Heo, J.; Choi, K.S.; Wang, S.; Adhikari, K.; Lee, J. Cold Brew Coffee: Consumer Acceptability and Characterization Using the Check-All-That-Apply [CATA] Method. Foods 2019, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Ares, G.; Tárrega, A.; Izquierdo, L.; Jaeger, S.R. Investigation of the number of consumers necessary to obtain stable sample and descriptor configurations from check-all-that-apply [CATA] questions. Food Qual. Prefer. 2014, 31, 135–141. [Google Scholar] [CrossRef]
- Ares, G.; de Andrade, J.C.; Antúnez, L.; Alcaire, F.; Swaney-Stueve, M.; Gordon, S.; Jaeger, S.R. Hedonic product optimisation: CATA questions as alternatives to JAR scales. Food Qual. Prefer. 2017, 55, 67–78. [Google Scholar] [CrossRef]
- Ares, G.; Dauber, C.; Fernandez, E.; Gimenez, A.; Varela, P. Penalty analysis based on CATA questions to identify drivers of liking and directions for product reformulation. Food Qual. Pref. 2014, 32A, 65–76. [Google Scholar] [CrossRef]
- Hough, G.; Wakeling, I.; Mucci, A.; Chambers IV, E.; Gallardo, I.M.; Alves, L.R. Number of consumers necessary for sensory acceptability tests. Food Qual. Pref. 2006, 17, 522–526. [Google Scholar] [CrossRef]
- Ares, G.; Antúnez, L.; Bruzzone, F.; Vidal, L.; Giménez, A.; Pineau, B.; Beresford, M.K.; Jin, D.; Paisley, A.G.; Chheang, S.L.; et al. Comparison of sensory product profiles generated by trained assessors and consumers using CATA questions: Four case studies with complex and/or similar samples. Food Qual. Prefer. 2015, 45, 75–86. [Google Scholar] [CrossRef]
- Frost, S.C.; Ristenpart, W.D.; Guinard, J.-X. Effects of brew strength, brew yield, and roast on the sensory quality of drip brewed coffee. J. Food Sci. 2020, 85, 2530–2543. [Google Scholar] [CrossRef]
- Kundu, P.; Dhankhar, J.; Sharma, A. Development of Non Dairy Milk Alternative Using Soymilk and Almond Milk. Curr. Res. Nutr. Food Sci. J. 2018, 6, 203–210. [Google Scholar] [CrossRef]
- Lozano, P.R.; Drake, M.; Benitez, D.; Cadwallader, K.R. Instrumental and Sensory Characterization of Heat-Induced Odorants in Aseptically Packaged Soy Milk. J. Agric. Food Chem. 2007, 55, 3018–3026. [Google Scholar] [CrossRef]
- Spencer, M.; Sage, E.; Velez, M.; Guinard, J.-X. Using Single Free Sorting and Multivariate Exploratory Methods to Design a New Coffee Taster’s Flavor Wheel. J. Food Sci. 2016, 81, S2997–S3005. [Google Scholar] [CrossRef] [Green Version]
- Meyners, M.; Casture, J.C.; Carr, B.T. Existing and new approaches for the analysis of CATA data. Food Qual. Prefer. 2013, 30, 309–319. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Dunshea, F.R. Cross-cultural effects of food product familiarity on sensory acceptability and non-invasive physiological responses of consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef]
- Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual. Prefer. 2016, 52, 222–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Liu, Z.; Chang, S.K.C. Off-Flavor Related Volatiles in Soymilk As Affected by Soybean Variety, Grinding, and Heat-Processing Methods. J. Agric. Food Chem. 2012, 60, 7457–7462. [Google Scholar] [CrossRef]
- Pramudya, R.C.; Seo, H.-S. Influences of Product Temperature on Emotional Responses to, and Sensory Attributes of, Coffee and Green Tea Beverages. Front. Psychol. 2018, 8, 2264. [Google Scholar] [CrossRef] [Green Version]
- Cotter, A.R.; Batali, M.E.; Ristenpart, W.D.; Guinard, J.-X. Consumer preferences for black coffee are spread over a wide range of brew strengths and extraction yields. J. Food Sci. 2021, 86, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Seninde, D.R.; Chambers, E. Coffee Flavor: A Review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Lawrence, S.E.; Lopetcharat, K.; Drake, M.A. Preference Mapping of Soymilk with Different U.S. Consumers. J. Food Sci. 2016, 81, S463–S476. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 1–15. [Google Scholar]
- Barnes, D.L.; Harper, S.J.; Bodyfelt, F.W.; McDaniel, M.R. Prediction of Consumer Acceptability of Yogurt by Sensory and Analytical Measures of Sweetness and Sourness1. J. Dairy Sci. 1991, 74, 3746–3754. [Google Scholar] [CrossRef]
- Li, B.; Hayes, J.E.; Ziegler, G.R. Interpreting consumer preferences: Physicohedonic and psychohedonic models yield different information in a coffee-flavored dairy beverage. Food Qual. Prefer. 2014, 36, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.M.C.; Shellie, R.A.; Mohebbi, M.; Mahato, D.K.; Keast, R. The effect of fat and coffee concentration on the consumer acceptance of iced-coffee beverages. J. Food Sci. 2021, in press. [Google Scholar] [CrossRef]
- Lipan, L.; Rusu, B.; Simon, E.L.; Sendra, E.; Hernández, F.; Vodnar, D.C.; Corell, M.; Carbonell-Barrachina, Á. Chemical and sensorial characterization of spray dried hydroSOStainable almond milk. J. Sci. Food Agric. 2021, 101, 1372–1381. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Consumer Perception of Red Wine by the Degree of Familiarity Using Consumer-Based Methodology. Foods 2021, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Harwood, W.S.; McLean, K.G.; Ennis, J.M.; Ennis, D.M.; Drake, M. Comparison of preference mapping with projective mapping for characterizing consumer perception of brewed black coffees. J. Sens. Stud. 2020, 35, e12563. [Google Scholar] [CrossRef]
- Narain, C.; Paterson, A.; Reid, E. Free choice and conventional profiling of commercial black filter coffees to explore consumer perceptions of character. Food Qual. Prefer. 2004, 15, 31–41. [Google Scholar] [CrossRef]
Characteristics | Population |
---|---|
Age | |
18–20 | 6.5% |
21–29 | 27.6% |
30–39 | 16.7% |
40–49 | 17.1% |
50–59 | 19.1% |
60–69 | 13.0% |
Gender | |
Male | 43.1% |
Female | 56.9% |
What kind of milk do you usually add to your coffee? | |
1% Milk | 14% |
2% Milk | 12% |
Skim Milk | 8% |
Half-and-Half | 8% |
Cream | 9% |
Soy | 21% |
Almond | 14% |
Oat | 11% |
Other | 4% |
Product | Ingredients |
---|---|
1% Milk | Partly Skimmed Milk, Vitamin A Palmitate, Vitamin D3. |
Soy | Organic Soy Base (Filtered Water, Organic Soybeans), Gellan Gum, Sea Salt, Natural Flavour, Sodium Bicarbonate. Vitamins and Minerals: Calcium Carbonate, Zinc Gluconate, Vitamin A Palmitate, Vitamin D2, Riboflavin (b2), Vitamin B12. |
Almond | Almond Base (Filtered Water, Almonds), Vitamin and Mineral Blend (Calcium Carbonate, Zinc Gluconate, Vitamin A Palmitate, Riboflavin (b2), Vitamin D2, Vitamin B12), Dipotassium Phosphate, Sea Salt, Locust Bean Gum, Gellan Gum, Ascorbic Acid, Natural Flavour. |
Oat | Oat Base (Filtered Water, Oats) Canola Oil, Tricalcium Phosphate, Gellan Gum, Sea Salt, Natural Flavour, Zinc Gluconate, Vitamin A Palmitate, Vitamin D2, Riboflavin, Vitamin B12, Amylase. Natural Sugar from Oats. |
Appearance | Flavour | Mouthfeel | Overall Liking | |
---|---|---|---|---|
Milk | 6.9a 1,2 +/− 0.9 | 6.0a +/− 1.0 | 6.2a +/− 1.0 | 6.0a +/− 1.0 |
Soy | 6.4ab +/− 1.1 | 5.5ab +/− 0.7 | 5.6a +/− 1.0 | 5.3ab +/− 0.9 |
Almond | 6.2b +/− 0.8 | 5.7ab +/− 0.8 | 5.8a +/− 0.9 | 5.7ab +/− 0.7 |
Oat | 6.1b +/− 1.0 | 5.1b +/− 0.9 | 5.5a +/− 1.1 | 5.2b +/− 0.7 |
Appearance | Flavour | Mouthfeel | Overall Liking | |||||
---|---|---|---|---|---|---|---|---|
Dairy (n = 58) | Plant (n = 58) | Dairy (n = 58) | Plant (n = 58) | Dairy (n = 58) | Plant (n = 58) | Dairy (n = 58) | Plant (n = 58) | |
Milk | 7.4a *,1,2 +/− 0.9 | 6.9a +/− 1.1 | 6.5a * +/− 0.9 | 5.4a * +/− 1.1 | 6.7a * +/− 0.9 | 5.7a * +/− 1.1 | 6.5a * +/− 1.1 | 5.4a * +/− 1.1 |
Soy | 6.6ab +/− 0.8 | 6.2a +/− 1.2 | 5.5b +/− 1.0 | 5.5a +/− 1.1 | 5.9ab +/− 0.8 | 5.3a +/− 1.0 | 5.5bc +/− 1.1 | 5.2a +/− 0.8 |
Almond | 6.3bc +/− 1.1 | 6.1a +/− 0.6 | 5.8ab +/− 1.1 | 5.6a +/− 0.8 | 6.1ab +/− 0.8 | 5.6a +/− 1.0 | 5.9ab +/− 1.0 | 5.5a +/− 0.8 |
Oat | 5.9c +/− 1.0 | 6.4a +/− 0.6 | 4.9b +/− 1.0 | 5.3a +/− 0.9 | 5.5b +/− 0.8 | 5.5a +/− 0.8 | 4.9c +/− 1.2 | 5.4a +/− 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorman, M.; Knowles, S.; Falkeisen, A.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception of Milk and Plant-Based Alternatives Added to Coffee. Beverages 2021, 7, 80. https://doi.org/10.3390/beverages7040080
Gorman M, Knowles S, Falkeisen A, Barker S, Moss R, McSweeney MB. Consumer Perception of Milk and Plant-Based Alternatives Added to Coffee. Beverages. 2021; 7(4):80. https://doi.org/10.3390/beverages7040080
Chicago/Turabian StyleGorman, Mackenzie, Sophie Knowles, Anika Falkeisen, Sophie Barker, Rachael Moss, and Matthew B. McSweeney. 2021. "Consumer Perception of Milk and Plant-Based Alternatives Added to Coffee" Beverages 7, no. 4: 80. https://doi.org/10.3390/beverages7040080