Brewing Efficacy of Non-Conventional Saccharomyces Non-cerevisiae Yeasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Beers
2.2. Yeasts
2.3. Pilot-Scale Fermentations
2.4. Sample Collection and Preparation
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Pilot Fermentations
3.2. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.C.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Tian, J. Determination of several flavours in beer with headspace sampling-gas chromatography. Food Chem. 2010, 123, 1318–1321. [Google Scholar] [CrossRef]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
- Dykstra, J. The Beer Connoisseur; Café Media: Atlanta, GA, USA, 2020; pp. 18–29. [Google Scholar]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Application of non-Saccharomyces yeasts isolated from kombucha in the production of alcohol-free beer. Fermentation 2018, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Bellut, K.; Arendt, E.K. Chance and challenge: Non-Saccharomyces yeasts in nonalcoholic and low alcohol beer brewing—A review. J. Am. Soc. Brew. Chem. 2019, 77, 77–91. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.-M.A.; Hittinger, C.T.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J. New yeasts—New brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 2017, 17, fox038. [Google Scholar] [CrossRef] [PubMed]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. Novel brewing yeast hybrids: Creation and application. Appl. Microbiol. Biotechnol. 2017, 101, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Comitini, F.; Ciani, M. Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol. 2016, 56, 45–51. [Google Scholar] [CrossRef]
- Gamero, A.; Dijkstra, A.; Smit, B.; De Jong, C. Aromatic potential of diverse non-conventional yeast species for winemaking and brewing. Fermentation 2020, 6, 50. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef]
- Tyakht, A.; Kopeliovich, A.; Klimenko, N.; Efimova, D.; Dovidchenko, N.; Odintsova, V.; Kleimenov, M.; Toshchakov, S.; Popova, A.; Khomyakova, M.; et al. Characteristics of bacterial and yeast microbiomes in spontaneous and mixed-fermentation beer and cider. Food Microbiol. 2021, 94, 103658. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, A.; Zara, G.; Legras, J.-L.; Del Caro, A.; Mascia, I.; Fadda, C.; Budroni, M. Novel starters for old processes: Use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale. J. Ind. Microbiol. Biotechnol. 2015, 42, 85–92. [Google Scholar] [CrossRef]
- Peris, D.; Lopes, C.A.; Belloch, C.; Querol, A.; Barrio, E. Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genom. 2012, 13, 407. [Google Scholar] [CrossRef] [Green Version]
- Krogerus, K.; Preiss, R.; Gibson, B.; Krogerus, K.; Preiss, R.; Gibson, B. A Unique Saccharomyces cerevisiae × Saccharomyces uvarum hybrid isolated from Norwegian farmhouse beer: Characterization and reconstruction. Front. Microbiol. 2018, 9, 2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulero-Cerezo, J.; Briz-Redón, A.; Serrano-Aroca, A. Saccharomyces Cerevisiae Var. Boulardii: Valuable probiotic starter for craft beer production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef] [Green Version]
- Peris, D.; Pérez-Torrado, R.; Hittinger, C.T.; Barrio, E.; Querol, A. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzeviihybrids. Yeast 2018, 35, 51–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, Y.; Kielland-Brandt, M.C.; Hansen, J. Lager brewing yeast. In Comparative Genomics; Sunnerhagen, P., Piskur, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 145–164. [Google Scholar]
- Rainieri, S.; Kodama, Y.; Kaneko, Y.; Mikata, K.; Nakao, Y.; Ashikari, T. Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl. Environ. Microbiol. 2006, 72, 3968–3974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikulin, J.; Vidgren, V.; Krogerus, K.; Magalhães, F.; Valkeemäki, S.; Kangas-Heiska, T.; Gibson, B. Brewing potential of the wild yeast species Saccharomyces paradoxus. Eur. Food Res. Technol. 2020, 246, 2283–2297. [Google Scholar] [CrossRef]
- Gibson, B.; Liti, G. Saccharomyces pastorianus: Genomic insights inspiring innovation for industry. Yeast 2015, 32, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Kanamori, T.; Itoh, T.; Kodama, Y.; Rainieri, S.; Nakamura, N.; Shimonaga, T.; Hattori, M.; Ashikari, T. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res. 2009, 16, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Bing, J.; Han, P.-J.; Liu, W.-Q.; Wang, Q.-M.; Bai, F.-Y. Evidence for a Far East Asian origin of lager beer yeast. Curr. Biol. 2014, 24, R380–R381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendland, J. Lager yeast comes of age. Eukaryot. Cell 2014, 13, 1256–1265. [Google Scholar] [CrossRef] [Green Version]
- Brown, H.; Morris, G. On certain functions of hops used in the dry-hopping of beers. Trans. Inst. Brew 1893, 6, 94–106. [Google Scholar]
- Moritz, E.R.; Morris, G.H. A Text-Book of the Science of Brewing; Spon: London, UK, 1891. [Google Scholar]
- LaFontaine, S.R.; Shellhammer, T.H. How hoppy beer production has redefined hop quality and a discussion of agricultural and processing strategies to promote it. MBAA TQ 2019, 56, 1–12. [Google Scholar] [CrossRef]
- LaFontaine, S.R.; Shellhammer, T.H. Investigating the factors impacting aroma, flavor, and stability in dry-hopped beers. MBAA TQ 2019, 56, 13–23. [Google Scholar] [CrossRef]
- Mortimer, R.K. Evolution and variation of the yeast (Saccharomyces) genome. Genome Res. 2000, 10, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Sicard, D.; Legras, J.-L. Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biol. 2011, 334, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Borneman, A.R.; Pretorius, I. Genomic insights into the Saccharomyces sensu stricto complex. Genetics 2015, 199, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Libkind, D.; Hittinger, C.T.; Valério, E.; Gonçalves, C.; Dover, J.; Johnston, M.; Gonçalves, P.; Sampaio, J. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 14539–14544. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.E.; Pérez-Través, L.; Sangorrín, M.P.; Barrio, E.; Querol, A.; Lopes, C.A. Saccharomyces uvarum is responsible for the traditional fermentation of apple CHICHA in Patagonia. FEMS Yeast Res. 2016, 17, fow109. [Google Scholar] [CrossRef] [Green Version]
- Demuyter, C.; Lollier, M.; Legras, J.-L.; Le Jeune, C. Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J. Appl. Microbiol. 2004, 97, 1140–1148. [Google Scholar] [CrossRef]
- Cordente, T.; Curtin, C.D.; Varela, C.; Pretorius, I.S. Flavour-active wine yeasts. Appl. Microbiol. Biotechnol. 2012, 96, 601–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumova, E.S.; Korshunova, I.V.; Jespersen, L.; Naumov, G.I. Molecular genetic identification of sensu stricto strains from African sorghum beer. FEMS Yeast Res. 2003, 3, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.; Jimenez, M.; Huerta, T.; Pastor, A. Contribution of different yeasts isolated from musts of monastrell grapes to the aroma of wine. Int. J. Food Microbiol. 1991, 14, 153–160. [Google Scholar] [CrossRef]
- Bisson, L.F. Yeast hybrids in winemaking. Catal. Discov. Pract. 2016, 1, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Bruner, J.; Fox, G. Novel non-Cerevisiae Saccharomyces yeast species used in beer and alcoholic beverage fermentations. Fermentation 2020, 6, 116. [Google Scholar] [CrossRef]
- Nguyen, H.-V.; Legras, J.-L.; Neuvéglise, C.; Gaillardin, C. Deciphering the hybridisation history leading to the lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380T. PLoS ONE 2011, 6, e25821. [Google Scholar] [CrossRef]
- Naumov, G.I.; James, S.A.; Naumova, E.S.; Louis, E.; Roberts, I.N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Evol. Microbiol. 2000, 50, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, M.; Michel, M.; Kunz, O.; Kuusisto, T.; Magalhães, F.; Krogerus, K.; Gibson, B. Unique brewing-relevant properties of a strain of Saccharomyces jurei isolated from ash (Fraxinus excelsior). Front. Microbiol. 2021, 12, 681. [Google Scholar] [CrossRef]
- Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei, F.; Casaregola, S.; Legras, J.L. Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the Northern European wine-making environment. Appl. Environ. Microbiol. 2012, 78, 3256–3265. [Google Scholar] [CrossRef] [Green Version]
- Masneuf, I.; Hansen, J.; Groth, C.; Piskur, J.; Dubourdieu, D. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl. Environ. Microbiol. 1998, 64, 3887–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groth, C.; Hansen, J.; Piškur, J. A natural chimeric yeast containing genetic material from three species. Int. J. Syst. Evol. Microbiol. 1999, 49, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Gonzaález, S.S.; Barrio, E.; Querol, A. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl. Environ. Microbiol. 2008, 74, 2314–2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, J.P.; Gonçalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 2008, 74, 2144–2152. [Google Scholar] [CrossRef] [Green Version]
- Orlic, S.; Redžepović, S.; Jeromel, A.; Herjavec, S.; Iacumin, L. Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int. J. Food Sci. Technol. 2007, 42, 95–101. [Google Scholar] [CrossRef]
- Martini, A.V.; Martini, A. A proposal for correct nomenclature of the domesticated species of the genus Saccharomyces. In Biotechnology Applications in Beverage Production; Cantarelli, C., Lanzarini, G., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 1–16. [Google Scholar]
- Majdak, A.; Herjavec, S.; Orlic, S.; Redzepovic, S.; Mirosevic, N. Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae Strains. Food Technol. Biotechnol. 2002, 40, 103–109. [Google Scholar]
- Dunn, B.; Richter, C.; Kvitek, D.J.; Pugh, T.; Sherlock, G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012, 22, 908–924. [Google Scholar] [CrossRef] [Green Version]
- Bellon, J.R.; Schmid, F.; Capone, D.L.; Dunn, B.; Chambers, P.J. Introducing a new breed of wine yeast: Interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS ONE 2013, 8, e62053. [Google Scholar] [CrossRef] [Green Version]
- Bellon, J.; Schmidt, S.; Solomon, M. Case study: Development of Saccharomyces cerevisiae × Saccharomyces mikatae wine yeast hybrids and their potential to deliver alternative wine styles. AWRI Technol. Rev. 2019, 241, 6–11. [Google Scholar]
- Naumova, E.S.; Naumov, G.I.; Masneuf-Pomarède, I.; Aigle, M.; Dubourdieu, D. Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast 2005, 22, 1099–1115. [Google Scholar] [CrossRef] [Green Version]
- Fay, J.C.; Liu, P.; Ong, G.T.; Dunham, M.J.; Cromie, G.A.; Jeffery, E.W.; Ludlow, C.L.; Dudley, A.M. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biol. 2019, 17, e3000147. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, P.M.C. Microbe Domestication and the Identification of the Wild Genetic Stock of Wine Yeasts. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2016. [Google Scholar]
- Nguyen, H.-V.; Gaillardin, C. Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species. FEMS Yeast Res. 2005, 5, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Torrado, R.P.; González, S.S.; Combina, M.; Barrio, E.; Querol, A. Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid. Int. J. Food Microbiol. 2015, 204, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januszek, M.; Satora, P.; Wajda, L.; Tarko, T. Saccharomyces bayanus enhances volatile profile of apple brandies. Molecules 2020, 25, 3127. [Google Scholar] [CrossRef] [PubMed]
- SAFŒNOTM HD T18. Available online: https://fermentis.com/en/fermentation-solutions/you-create-wine/safoeno-hd-t18/ (accessed on 6 April 2021).
- Lafontaine, S.; Caffrey, A.; Dailey, J.; Varnum, S.; Hale, A.; Eichler, B.; Dennenlöhr, J.; Schubert, C.; Knoke, L.; Lerno, L.; et al. Evaluation of variety, maturity, and farm on the concentrations of monoterpene diglycosides and hop volatile/nonvolatile composition in five Humulus lupulus cultivars. J. Agric. Food Chem. 2021, 69, 4356–4370. [Google Scholar] [CrossRef]
- Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [Google Scholar] [CrossRef]
- Bruner, J.; Marcus, A.; Fox, G. Dry-hop creep potential of various Saccharomyces yeast species and strains. Fermentation 2021, 7, 66. [Google Scholar] [CrossRef]
- Schisler, D.O. Comparison of revised yeast counting methods. J. Am. Soc. Brew. Chem. 1986, 44, 81–85. [Google Scholar] [CrossRef]
- Bamforth, C.W. Scientific Principles of Malting and Brewing; American Society of Brewing Chemists, Ed.; American Society of Brewing Chemists: St. Paul, MN, USA, 2006; p. 246. [Google Scholar]
- Lafontaine, S.R.; Shellhammer, T.H. Impact of static dry-hopping rate on the sensory and analytical profiles of beer. J. Inst. Brew. 2018, 124, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Hauser, D.G.; Van Simaeys, K.R.; Lafontaine, S.R.; Shellhammer, T.H. A comparison of single-stage and two-stage dry-hopping regimes. J. Am. Soc. Brew. Chem. 2019, 77, 251–260. [Google Scholar] [CrossRef]
- Boulton, C.; Quain, D. Brewing Yeast and Fermentation, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2001; p. 656. [Google Scholar]
- A Technical Committee. Alcohol. In ASBC Methods of Analysis; American Society of Brewing Chemists: St. Paul, MN, USA, 2011. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food, 2nd ed.; Springer New York: New York, NY, USA, 2010; pp. 227–257. [Google Scholar]
- Varela, P.; Ares, G. (Eds.) Novel Techniques in Sensory Characterization and Consumer Profiling; CRC Press: Boca Raton, FL, USA, 2014; p. 408. [Google Scholar]
- Moskowitz, H.R. Intensity scales for pure tastes and for taste mixtures. Percept. Psychophys. 1971, 9, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, H.R.; Sidel, J.L. Magnitude and hedonic scales of food acceptability. J. Food Sci. 1971, 36, 677–680. [Google Scholar] [CrossRef]
- Jenkins, C.L.; Kennedy, A.I.; Hodgson, J.A.; Thurston, P.; Smart, K.A. Impact of serial repitching on lager brewing yeast quality. J. Am. Soc. Brew. Chem. 2003, 61, 1–9. [Google Scholar] [CrossRef]
- Kalayu, G. Serial re-pitching: Its effect on yeast physiology, fermentation performance, and product quality. Ann. Microbiol. 2019, 69, 787–796. [Google Scholar] [CrossRef]
- Large, C.R.L.; Hanson, N.A.; Tsouris, A.; Abou Saada, O.; Koonthongkaew, J.; Toyokawa, Y.; Schmidlin, T.; Moreno-Habel, D.A.; McConnellogue, H.; Preiss, R.; et al. Genomic stability and adaptation of beer brewing yeasts during serial repitching in the brewery. BioRxiv 2020, 166157. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Choi, Y.-R.; Lee, S.-Y.; Park, J.-T.; Shim, J.-H.; Park, K.-H.; Kim, J.-W. Screening wild yeast strains for alcohol fermentation from various fruits. Mycobiology 2011, 39, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Olodokun, O.; Cowley, T.; James, S.; Smart, K.A. Dry-hopping: The effects of temperature and hop variety on the bittering profiles and properties of resultant beers. Brew. Sci. 2017, 70, 187–196. [Google Scholar]
- Kirkpatrick, K.R.; Shellhammer, T.H. A cultivar-based screening of hops for dextrin degrading enzymatic potential. J. Am. Soc. Brew. Chem. 2018, 76, 247–256. [Google Scholar] [CrossRef]
- Kirkendall, J.A.; Mitchell, C.A.; Chadwick, L.R. The freshening power of centennial hops. J. Am. Soc. Brew. Chem. 2018, 76, 178–184. [Google Scholar] [CrossRef]
- Bruner, J.; Williams, J.; Fox, G. Further exploration of hop creep variability with Humulus lupulus cultivars and proposed method for determination of secondary fermentation. MBAA TQ 2020, 57, 169–176. [Google Scholar] [CrossRef]
- Stokholm, A.; Lindsey, N.R.; Shellhammer, T.H. Evaluating a benchtop fermentation method for estimating dextrin degradation by hops’ diastatic enzymes during dry-hopping. Brew. Sci. 2020, 73, 140–148. [Google Scholar]
- Maye, J.P.; Smith, R.; Leker, J. Humulinone formation in hops and hop pellets and its implications for dry hopped beers. MBAA TQ 2016, 53, 23–27. [Google Scholar] [CrossRef]
- Hopsteiner. Hop Profiles—Centennial. Available online: https://www.hopsteiner.com/variety-data-sheets/Centennial/ (accessed on 12 April 2021).
- Mertens, S.; Steensels, J.; Gallone, B.; Souffriau, B.; Malcorps, P.; Verstrepen, K.J. Rapid screening method for Phenolic Off-Flavor (POF) production in yeast. J. Am. Soc. Brew. Chem. 2017, 75, 318–323. [Google Scholar] [CrossRef]
Scientific Name | Yeast Name | Type Strain | Isolated from | Geographic Origin | Flocculation | Attenuation |
---|---|---|---|---|---|---|
Saccharomyces kudriavzevii | UCDFST 11-515 | NCYC 2889T | oak tree bark | Western Europe | Medium High | Moderate |
Saccharomyces paradoxus | UCDFST 01-161 | DBVPG 6411 | tree exudate | Northeast Europe | Medium | Moderate |
Saccharomyces mikatae | UCDFST 11-510 | NCYC 2888T | Soil | Japan | Medium | Moderate Low |
Saccharomyces bayanus | UCDFST 01-135 | CBS 380 | turbid beer | Italy | Medium | Moderate |
Saccharomyces uvarum | UCDFST 11-512 | CBS 395 | fruit and seeds | Scandinavia | High | Moderate |
Saccharomyces cerevisiae × Saccharomyces bayanus | SafŒno™ HD T18 | * | LeSaffre R&D | France | Medium | High |
Saccharomyces cerevisiae | SafAle™ US-05 ** | * | * | USA | Medium | 78–82% |
Saccharomyces pastorianus | SafLager™ W 34/70 | W 34/70 | Weihenstephan | Germany | High | 80–84% |
Beer: | XXX | Sex: M/F | Age: | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Score each attribute by choosing a number, with 0 = none to 9 = extremely strong | ||||||||||
Aroma: | ||||||||||
Cereal: Grainy, Biscuit, Cracker, Wort | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Earthy: Musty, Barnyard, Mushroom | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Spicy: Clove, Black Pepper, Ginger | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Grassy: Fresh Cut, Dry Leaves, Green, Hay | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Citrus: Grapefruit, Orange, Lemon, Lime | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Tropical: Mango, Papaya, Guava, Banana | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Stone Fruit: Apricot, Nectarine, Peach | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Stale: Cardboard, Goat Hair, Oxidation, Meaty | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Vegetal: Cooked Vegetable, Onion, Celery | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Solvent: Chemical, Paint Thinner, Nail Polish Remover | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Rotten: Baby Vomit, Sweat, Boiled Egg | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Metallic | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Other: (Write In) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Taste: | ||||||||||
Sweet | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Bitter | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Sour | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Salty | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Umami | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Mouthfeel: | ||||||||||
Body | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Alcohol | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Astringency | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Species | S. cerevisiae | S. pastorianus | S. kudriavzevii | S. paradoxus | S. mikatae | S. bayanus | S. uvarum | Hybrid |
---|---|---|---|---|---|---|---|---|
Code Name | US-05 * | W 34/70 | 11-515 | 01-161 | 11-510 | 01-135 | 11-512 | HD T18 |
Non-Hopped | ||||||||
O.G. (°P) | 10.3 ± 0.6 | 10.4 | 10.0 | 10.1 | 10.1 | 10.3 | 10.4 | 9.80 |
F.G. (°P) | 1.99 ± 0.36 | 1.84 | 1.93 | 3.43 | 8.75 | 2.10 | 3.33 | 3.32 |
ABV (%v/v) | 4.44 ± 0.19 | 4.45 | 4.26 | 3.78 | 0.95 | 4.51 | 3.74 | 3.56 |
RDF (%) | 66.6 ± 1.63 | 67.5 | 66.4 | 55.9 | 14.2 | 66.1 | 56.2 | 55.4 |
Cal (kJ/100 mL) | 156 ± 10.6 | 154 | 150 | 160 | 163 | 160 | 157 | 152 |
Final pH | 4.36 ± 0.06 | 4.42 | 4.24 | 4.45 | 4.60 | 4.31 | 4.48 | 4.16 |
Viability (%) | ** | ** | 80.7 ± 2.4 | 97.1 ± 0.8 | 99.0 ± 0.5 | 83.7 ± 1.9 | 81.6 ± 4.5 | ** |
Ferm. Length (days) | 8.33 ± 0.58 | 6 | 13 | 10 | 8 | 6 | 15 | 9 |
Dry-Hopped | ||||||||
O.G. (°P) | 10.3 ± 0.6 | 10.4 | 10.0 | 10.1 | 10.1 | 10.3 | 10.4 | 9.80 |
F.G. (°P) | 1.69 ± 0.42 | 1.57 | 1.79 | 3.44 | 8.96 | 1.64 | 3.39 | 3.09 |
ABV (%v/v) | 4.69 ± 0.20 | 4.76 | 4.43 | 3.91 | 0.92 | 4.85 | 3.86 | 3.91 |
RDF (%) | 69.2 ± 2.19 | 70.0 | 67.8 | 56.5 | 13.5 | 69.8 | 56.5 | 58.2 |
Cal (kJ/100 mL) | 159 ± 11.5 | 159 | 153 | 163 | 165 | 162 | 161 | 158 |
Final pH | 4.64 ± 0.02 | 4.70 | 4.47 | 4.68 | 4.75 | 4.47 | 4.55 | 4.45 |
Ferm. Length (days) | 10.0 ± 1.0 | 8 | 13 | 11 | 9 | 8 | 11 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruner, J.; Marcus, A.; Fox, G. Brewing Efficacy of Non-Conventional Saccharomyces Non-cerevisiae Yeasts. Beverages 2021, 7, 68. https://doi.org/10.3390/beverages7030068
Bruner J, Marcus A, Fox G. Brewing Efficacy of Non-Conventional Saccharomyces Non-cerevisiae Yeasts. Beverages. 2021; 7(3):68. https://doi.org/10.3390/beverages7030068
Chicago/Turabian StyleBruner, James, Andrew Marcus, and Glen Fox. 2021. "Brewing Efficacy of Non-Conventional Saccharomyces Non-cerevisiae Yeasts" Beverages 7, no. 3: 68. https://doi.org/10.3390/beverages7030068
APA StyleBruner, J., Marcus, A., & Fox, G. (2021). Brewing Efficacy of Non-Conventional Saccharomyces Non-cerevisiae Yeasts. Beverages, 7(3), 68. https://doi.org/10.3390/beverages7030068