Volatile and Non-Volatile Characterization of White and Rosé Wines from Different Spanish Protected Designations of Origin
Abstract
:1. Introduction
2. Material and Methods
2.1. Wine Samples
2.2. Reagents and Standards
2.3. Analytical Methods
2.4. Statistical Analyses
3. Results
3.1. Characterization of White Wines from Different PDOs
3.1.1. Classic Enological Parameters, Glycerol and Organic Acids
3.1.2. Phenolic Composition and Color Intensity
3.1.3. Volatile Composition
3.1.4. Polysaccharide Composition
3.2. Characterization of Rosé Wines from Different PDOs
3.2.1. Classic Enological Parameters, Glycerol and Organic Acids
3.2.2. Phenolic Composition and Color Intensity
3.2.3. Volatile Composition
3.2.4. Polysaccharide Composition
3.3. Multivariate Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Vidal, L.; Antúneza, L.; Rodríguez-Haralambides, A.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. Relationship between astringency and phenolic composition of commercial Uruguayan Tannat wines: Application of boosted regression trees. Food Res. Int. 2018, 112, 25–37. [Google Scholar] [CrossRef]
- Ebeler, S.E. Analytical chemistry: Unlocking the secrets of wine flavor. Food Rev. Int. 2001, 17, 45–64. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Del Barrio-Galán, R.; Pérez-Magariño, S.; Ortega-Heras, M.; Williams, P.; Doco, T. Effect of aging on lees and of three different dry yeast derivative products on Verdejo white wine composition and sensorial characteristics. J. Agric. Food Chem. 2011, 59, 12433–12442. [Google Scholar] [CrossRef] [PubMed]
- Gawel, R.; Smith, P.A.; Waters, E.J. Influence of polysaccharides on the taste and mouthfeel of white wine. Aust. J. Grape Wine Res. 2016, 22, 350–357. [Google Scholar] [CrossRef]
- Chong, H.H.; Cleary, M.T.; Dokoozlian, N.; Ford, C.M.; Fincher, G.B. Soluble cell wall carbohydrates and their relationship with sensory attributes in Cabernet Sauvignon wine. Food Chem. 2019, 298, 124745–124753. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- Nonier, M.F.; Vivas, N.; Vivas-de-Gaulejac, N.; Absalon, C.; Vitry, C.; Fouquet, E. Global fractionation of oak heartwood extractable polymers (lignins, polysaccharides and ellagitannins) by selective precipitations. J. Sci. Food Agric. 2005, 85, 343–353. [Google Scholar] [CrossRef]
- Silva, F.L.N.; Schmid, E.; Messias, C.; Nogueira-Eberlin, M.; Frankland-Sawaya, A.C.H. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal. Methods 2015, 7, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Fontoin, H.; Saucier, C.; Teissedre, P.; Glories, Y. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Rinaldi, A.; Gambuti, A.; Moio, L. Precipitation of salivary proteins after the interaction with wine: The effect of ethanol, pH, fructose, and mannoproteins. J. Food Sci. 2012, 77, 485–490. [Google Scholar] [CrossRef]
- Noble, A.C.; Bursick, G.F. The contribution of glycerol to perceived viscosity and sweetness in white wine. Am. J. Enol. Vitic. 1984, 35, 110–112. [Google Scholar]
- Riu-Aumatell, M.; López-Barajas, M.; López-Tamames, E.; Buxaderas, S. Influence of yield and maturation index on polysaccharides and other compounds of grape juice. J. Agric. Food Chem. 2002, 50, 4604–4607. [Google Scholar] [CrossRef]
- Del Barrio-Galán, R.; Bueno-Herrera, M.; López de la Cuesta, P.; Pérez-Magariño, S. Stepwise linear discriminant analysis to differentiate Spanish red wines by their protected designation of origin or category using physico-chemical parameters. Oeno One 2020, 1, 86–99. [Google Scholar] [CrossRef]
- Makris, D.; Kallithraka, S.; Mamalos, A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 2006, 70, 1143–1152. [Google Scholar] [CrossRef]
- Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-elemental analysis as a tool for characterization and differentiation of Portuguese wines according to their protected geographical indication. Food Control 2019, 103, 27–35. [Google Scholar] [CrossRef]
- Bernabéu, R.; Brugarolas, M.; Martínez-Carrasco, L.; Díaz, M. Wine origin and organic elaboration, differentiating strategies in traditional producing countries. Br. Food J. 2008, 110, 174–188. [Google Scholar] [CrossRef]
- Galletto, L.; Caracciolo, F.; Boatto, V.; Barisan, L.; Franceschi, D.; Lillo, M. Do consumers really recognise a distinct quality hierarchy amongst PDO sparkling wines? The answer from experimental auctions. Br. Food J. 2021, 123, 1478–1493. [Google Scholar] [CrossRef]
- Vilanova, M.; Vilariño, F. Influence of geographic origin on aromatic descriptors of Spanish Albariño wine. Flavour Fragr. J. 2006, 21, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Murru, C.; Chimeno-Trinchet, C.; Díaz-García, M.E.; Badía-Laíño, R.; Fernández-González, A. Artificial neural network and attenuated total reflectance-fourier transform infrared spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for protected designation of origin wine production. Comput. Electron. Agric. 2019, 164, 104922–104927. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M.L. Differentiation parameters of Ribera del Duero wines from other Spanish denomination of origin. Food Sci. Tech. Int. 2001, 7, 237–244. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME-GC-MS and HPLC-MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2016. [Google Scholar]
- Monteiro-Coelho, E.; da Silva Padilha, C.; Miskinis, G.; de Sá, A.; Pereira, G.; de Azevêdo, L.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Comp. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interpretation. Oeno One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; Cano-Mozo, E.; González-Sanjosé, M. The influence of oak wood chips, micro-oxygenation treatment, and grape variety on colour, and anthocyanin and phenolic composition of red wines. J. Food Comp. Anal. 2009, 22, 204–211. [Google Scholar] [CrossRef]
- Mercurio, M.; Dambergs, R.; Herderich, M.; Smith, P. High throughput analysis of red wine and grape phenolics. Adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; Cano-Mozo, E. Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. J. Agric. Food Chem. 2008, 56, 11560–11570. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Bueno-Herrera, M.; López de la Cuesta, P.; González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Volatile composition, foam characteristics and sensory properties of Tempranillo red sparkling wines elaborated using different techniques to obtain the base wines. Eur. Food Res. Technol. 2019, 245, 1047–1059. [Google Scholar] [CrossRef]
- Úbeda, C.; Kania-Zelada, I.; Del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Gawel, R.; Van Sluyter, S.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- López-Toledano, A.; Mayen, M.; Merida, J.; Medina, M. Yeast used to delay browing in white wines. Food Chem. 2006, 97, 498–504. [Google Scholar] [CrossRef]
- González Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC-MS. Food Chem. 2011, 129, 890–898. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazarotto, M.; Zini, C.A. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Cullere, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some oxidation-related aldehydes in wine aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef]
- Moreira, N.; Guedes de Pinho, P.; Santos, C.; Vasconcelos, I. Volatile sulphur compounds composition of monovarietal white wines. Food Chem. 2010, 123, 1198–1203. [Google Scholar] [CrossRef]
- Ye, D.Q.; Zheng, X.T.; Xu, X.Q.; Wang, Y.H.; Duan, C.Q.; Liu, Y.L. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels. Food Chem. 2016, 202, 236–246. [Google Scholar] [CrossRef]
- Vidal, S.; Courcoux, P.; Francis, L.; Kwiatkowski, M.; Gawel, R.; Williams, P.; Waters, E.; Cheynier, V. Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Prefer. 2004, 15, 209–217. [Google Scholar] [CrossRef]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The influence of interactions between major white wine components on the aroma, flavour and texture of model wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems-An overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- González-Manzano, S.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Santos-Buelga, C. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem. 2009, 114, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.S. Chemical constituent in grape and wine. In Wine Science: Principles and Applications, 3rd ed.; Elsevier: London, UK, 2008; pp. 270–331. [Google Scholar]
- Garde-Cerdan, T.; Ancin-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Gómez García-Carpintero, E.; Sánchez-Palomo, E.; Gómez Gallego, M.A.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- Sousa, F.M.; Ferreira, R.J.R.; de Sá, S.V.M.; Cunha, S.C.S.; de Oliveira Fernandes, J. Novel analytical approach to assess the profile of volatile phenols in Portuguese red wines. Aust. J. Grape Wine Res. 2020, 26, 90–100. [Google Scholar] [CrossRef]
GRAPE VARIETY | PDO | |||||
---|---|---|---|---|---|---|
White wines | Rueda | Cigales | Toro | Ribera del Duero | Bierzo | Total |
Verdejo | 12 (85%) | 6 (50%) | 5 (85%) | 23 | ||
Sauvignon blanc | 9 (85%) | 9 | ||||
Godello | 9 (85%) | 9 | ||||
Malvasía castellana | 4 (85%) | 4 | ||||
Albillo mayor | 4 (75%) | 4 | ||||
Total | 21 | 6 | 9 | 4 | 9 | 49 |
Rosé wines | Rueda | Cigales | Toro | Ribera del Duero | Bierzo | Total |
Tempranillo | 10 (50%) | 4 (50%) | 4 (50%) | 18 | ||
Mencía | 6 (50%) | 6 | ||||
Total | 10 | 4 | 4 | 6 | 24 |
PDO | Grape Variety | |||||||
---|---|---|---|---|---|---|---|---|
Ribera del Duero | Bierzo | Toro | Cigales | Rueda | Verdejo | Sauvignon blanc | Malvasía | |
Basic parameters | ||||||||
pH | 3.11 ± 0.11 a | 3.18 ± 0.10 a | 3.33 ± 0.16 b | 3.14 ± 0.06 a | 3.21 ± 0.13 a | 3.21 ± 0.14 a,b | 3.22 ± 0.09 a,b | 3.35 ± 0.22 b |
Total acidity (g L−1) | 5.99 ± 0.74 b | 5.37 ± 0.37 a | 5.16 ± 0.69 a | 5.64 ± 0.63 a,b | 5.29 ± 0.31 a | 5.24 ± 0.47 a | 5.46 ± 0.25 a,b | 5.38 ± 0.98 a |
Ethanol (% vol.) | 12.4 ± 0.7 a | 12.1 ± 0.3 a | 11.9 ± 0.5 a | 13.1 ± 0.5 b | 13.8 ± 0.5 c | 13.3 ± 1.0 b | 13.5 ± 0.4 b | 11.8 ± 0.1 a |
Organic acids (g L−1) | 4.62 ± 0.63 b,c | 3.95 ± 0.45 a | 4.24 ± 0.65 a,b | 4.47 ± 0.08 b,c | 4.77 ± 0.38 c | 4.50 ± 0.32 a | 5.03 ± 0.42 b | 4.11 ± 0.75 a |
Color intensity | 0.103 ± 0.026 b | 0.100 ± 0.000 b | 0.078 ± 0.017 a | 0.107 ± 0.024 b | 0.096 ± 0.017 b | 0.096 ± 0.019 | 0.092 ± 0.021 | 0.078 ± 0.024 |
Glycerol (g L−1) | 5.93 ± 0.54 b | 5.76 ± 0.56 b | 5.51 ± 0.50 a,b | 5.56 ± 0.98 a,b | 5.25 ± 0.38 a | 5.43 ± 0.57 a,b | 5.05 ± 0.19 a | 5.74 ± 0.64 b |
Polysaccharide composition (mg L−1) | ||||||||
High-molecular-weight (50 –730 kDa) | 110.8 ± 63.4 | 90.8 ± 45.3 | 122.7 ± 43.1 | 87.2 ± 22.8 | 91.9 ± 34.9 | 92.2 ± 31.8 | 108.1 ± 41.9 | 115.8 ± 56.5 |
Medium-molecular-weight (15–50 kDa) | 77.3 ± 17.2 | 89.8 ± 24.4 | 81.2 ± 31.7 | 105.2 ± 38.7 | 94.3 ± 30.8 | 98.5 ± 50.0 | 71.6 ± 18.9 | 108.3 ± 28.8 |
Low-molecular-weight (9–15 kDa) | 38.3 ± 19.3 a,b,c | 25.1 ± 10.7 a | 38.3 ± 15.0 b,c | 29.8 ± 11.5 a,b | 44.0 ± 12.6 c | 37.0 ± 12.5 | 45.4 ± 15.6 | 47.0 ± 13.7 |
Very low-molecular-weight (5–9 kDa) | 21.3 ± 15.0 b | 11.9 ± 7.5 a,b | 20.2 ± 14.8 b | 20.3 ± 9.5 b | 7.2 ± 6.5 a | 11.6 ± 9.8 a | 8.7 ± 5.3 a | 27.8 ± 12.5 b |
Total polysaccharides | 247 ± 86 | 218 ± 50 | 263 ± 66 | 243 ± 106 | 237 ± 84 | 239 ± 91 | 233.4 ± 49 | 299 ± 798 |
Phenolic composition (mg L−1) | ||||||||
Total polyphenols | 251 ± 78 b | 182 ± 31 a | 219 ± 61 a | 206 ± 58 a | 195 ± 23 a | 206 ± 39 b | 190 ± 19 a | 212 ± 88 b |
Total tannins | 387 ± 174 b | 243 ± 62 a | 281 ± 101 a | 240 ± 55 a | 258 ± 62 a | 260 ± 54 | 237 ± 63 | 316 ± 151 |
Hydroxybenzoic acids | 8.71 ± 7.45 | 7.42 ± 4.99 | 14.66 ± 8.65 | 9.56 ± 3.55 | 10.40 ± 4.17 | 13.52 ± 9.56 | 7.86 ± 4.54 | 6.51 ± 2.50 |
Hydroxycinnamic acids | 2.63 ± 0.83 a,b | 2.83 ± 1.38 a,b | 2.58 ± 1.72 a | 2.81 ± 1.55 a,b | 4.88 ± 2.62 b | 4.27 ± 2.70 b | 4.32 ± 1.77 b | 1.36 ± 0.14 a |
Hydroxycinnamic tartaric esters | 22.05 ± 8.10 b | 12.29 ± 7.21 a | 12.02 ± 8.24 a | 8.84 ± 4.55 a | 12.99 ± 5.01 a | 10.54 ± 4.90 | 14.40 ± 4.26 | 15.53 ± 11.64 |
Flavanols | 3.75 ± 3.46 a,b | 4.17 ± 1.59 a,b | 6.11 ± 2.56 b | 3.61 ± 2.69 a | 5.28 ± 1.77 a,b | 5.36 ± 2.53 | 5.00 ± 1.18 | 4.83 ± 2.62 |
Flavonols | 0.830 ± 0.432 a,b | 0.080 ± 0.136 a | 0.527 ± 0.645 a,b | 0.490 ± 0.575 a,b | 0.856 ± 0.490 b | 0.783 ± 0.884 | 0.493 ± 0.515 | 0.800 ± 0.817 |
Phenolic alcohols | 19.0 ± 7.7 | 13.7 ± 5.4 | 13.2 ± 6.5 | 14.4 ± 6.8 | 12.4 ± 5.0 | 13.8 ± 5.7 b | 9.44 ± 1.64 a | 15.4 ± 8.2 b |
Volatile composition (µg L−1) | ||||||||
Higher alcohols | 243,535 ± 31,859 a,b | 247,147 ± 34,462 a,b | 286,215 ± 58,299 b | 254,661 ± 35,580 a,b | 232,003 ± 28,792 a | 246,706 ± 32,357 a | 228,076 ± 23,810 a | 312,262 ± 84,034 b |
Ethyl esters | 2162 ± 445 a | 2130 ± 332 a | 2913 ± 845 a,b | 4167 ± 496 b | 3009 ± 564 a,b | 3237 ± 2317 | 2919 ± 365 | 3425 ± 233 |
Alcohol acetates | 926 ± 771 a | 1126 ± 333 a | 3673 ± 2080 b | 1036 ± 714 a | 4176 ± 1445 b | 3231 ± 2003 | 4194 ± 1533 | 3726 ± 1996 |
Σ ethyl esters and acetates | 3088 ± 542 a | 3256 ± 586 a | 6587 ± 2636 b,c | 5204 ± 4961 b | 7184 ± 1612 c | 6467 ± 3115 | 7113 ± 1571 | 7151 ± 2025 |
C6 alcohols | 661 ± 45.3 a | 1384 ± 283 b | 1345 ± 479 b | 1592 ± 468 b,c | 1874 ± 676 c | 1626 ± 582 | 2015 ± 664 | 1370 ± 701 |
Terpenes | 145 ± 39.2 c | 74.3 ± 21.6 b | 41.3 ± 32.2 a | 47.0 ± 8.0 a | 40.4 ± 14.4 a | 38.8 ± 21.4 | 47.7 ± 12.3 | 45.4 ± 19.4 |
Whiskey lactones | 105 ± 79.4 b | 46.1 ± 24.0 a,b | 17.5 ± 9.1 a | 57.0 ± 28.8 a,b | 32.2 ± 22.7 a,b | 32.3 ± 18.8 | 47.1 ± 42.5 | 2.7 ± 1.6 |
Vanillic derivatives | 96.9 ± 21.3 a,b | 89.1 ± 85.2 a | 135.9 ± 36.0 b | 121.7 ± 17.7 a,b | 96.4 ± 25.6 a | 107.7 ± 29.4 | 107.5 ± 32.1 | 133.3 ± 45.3 |
Furanic derivatives | 1076 ± 148 a | 1113 ± 484 a | 1886 ± 908 b | 1223 ± 632 a,b | 1398 ± 578 a,b | 1500 ± 779 | 1321 ± 629 | 1824 ± 157 |
Positive volatile phenols | 76.3 ± 65.1 b | 57.9 ± 47 a,b | 52.9 ± 47.6 a,b | 24.3 ± 17.9 a | 42.8 ± 25.5 a,b | 47.3 ± 36.5 | 28.7 ± 20.4 | 43.3 ± 16.1 |
Fatty acids | 12,650 ± 891 a,b | 11,237 ± 1017 a | 13,161 ± 1902 b | 14,116 ± 3130 b,c | 14,805 ± 1036 c | 14,267 ± 1996 | 14,733 ± 1405 | 13,328 ± 1604 |
Aldehydes | 21.6 ± 3.9 a,b | 20.6 ± 6.4 a | 34.4 ± 12.3 c | 32.4 ± 8.4 b,c | 25.2 ± 8.7 a,b | 29.6 ± 5.4 | 25.3 ± 6.4 | 31.6 ± 4.9 |
Negative volatile phenols | 358 ± 73 a | 402 ± 237 a | 1079 ± 738 b | 320 ± 193 a | 277 ± 149 a | 464.8 ± 394 a | 196.1 ± 87 a | 1248 ± 842 b |
Sulfur compounds | 17.8 ± 4.9 a | 16.7 ± 5.2 a | 32.4 ± 11.0 b | 14.8 ± 2.7 a | 14.5 ± 4.5 a | 17.8 ± 10.1 a | 15.6 ± 3.9 a | 33.9 ± 7.3 b |
PDO | ||||
---|---|---|---|---|
Ribera Del Duero | Bierzo | Toro | Cigales | |
Basic parameters | ||||
pH | 3.37 ± 0.03 | 3.39 ± 0.18 | 3.30 ± 0.14 | 3.41 ± 0.09 |
Total acidity (g L−1) | 4.84 ± 0.37 | 4.81 ± 0.68 | 4.94 ± 1.05 | 4.54 ± 0.62 |
Ethanol (% vol.) | 16.1 ± 0.2 b | 13.7 ± 1.4 a | 13.7 ± 1.2 a | 13.2 ± 1.7 a |
Organic acids (g L−1) | 4.06 ± 0.39 | 3.69 ± 0.53 | 3.68 ± 0.40 | 4.20 ± 0.62 |
Color intensity | 0.735 ± 0.055 | 0.833 ± 0.653 | 0.897 ± 0.140 | 0.969 ± 0.360 |
Glycerol (g L−1) | 6.21 ± 0.34 | 6.07 ± 0.56 | 5.61 ± 0.96 | 5.60 ± 1.04 |
Polysaccharide composition (mg L−1) | ||||
High-molecular-weight (50–730 kDa) | 96.3 ± 47.5 | 118 ± 64.1 | 80.8 ± 15.2 | 80.2 ± 11.9 |
Medium-molecular-weight (15–50 kDa) | 53.8 ± 23.4 a | 116.2 ± 31.9 b | 77.5 ± 57.8 ab | 82.6 ± 19.1 ab |
Low-molecular-weight (9–15 kDa) | 14.8 ± 6.1 a | 48.2 ± 23.1 b | 25.8 ± 14.7 a | 48.5 ± 13.4 b |
Very low-molecular-weight (5–9 kDa) | 10.3 ± 7.3 ab | 22.2 ± 20.2 b | 7.5 ± 9.6 a | 11.6 ± 8.7 ab |
Total polysaccharides | 175 ± 29 a | 305 ±108 b | 192 ± 71 a | 223 ± 30 a |
Phenolic composition (mg L−1) | ||||
Total polyphenols | 290 ± 48 | 326 ± 137 | 349 ± 56 | 370 ± 150 |
Total tannins | 376 ± 91 | 449 ± 108 | 587 ± 82 | 513 ± 182 |
Total anthocyanins | 25.0 ± 12.5 | 52.2 ± 46.8 | 48.5 ± 8.8 | 29.3 ± 17.1 |
Hydroxybenzoic acids | 9.54 ± 7.59 a | 10.7 ± 7.1 a | 28.8 ± 12.4 b | 17.7 ± 8.3 ab |
Hydroxycinnamic acids | 11.1 ± 5.19 b | 3.85 ±2.16 a | 3.04 ±0.83 a | 3.05 ± 1.82 a |
Hydroxycinnamic tartaric esters | 21.4 ± 6.5 ab | 14.1 ± 6.5 a | 33.6 ± 14.1 b | 23.0 ± 10.7 ab |
Flavanols | 7.95 ± 2.74 | 12.02 ± 8.76 | 7.53 ± 1.62 | 9.39 ± 2.99 |
Flavonols | 1.88 ± 0.56 a | 1.00 ± 1.17 a | 1.62 ± 0.48 a | 3.72 ± 1.33 b |
Phenolic alcohols | 42.3 ± 15.6 c | 18.7 ± 8.0 a | 38.7 ± 8.7 bc | 26.9 ± 11.9 ab |
Volatile composition (µg L−1) | ||||
Higher alcohols | 289,206 ± 32,407 ab | 280,482 ± 27,838 ab | 322,054 ± 35,152 b | 275,116 ± 56,012 a |
Ethyl esters | 2425 ± 569 | 2470 ± 506 | 2307 ± 627 | 2426 ± 801 |
Alcohol acetates | 4377 ± 1125 b | 2960 ± 1973 a | 2455 ± 1111 a | 2805 ± 1129 a |
Σ ethyl esters and acetates | 6802 ± 1171 b | 5430 ± 2230 ab | 4880 ± 621 a | 5112 ± 1747 ab |
C6 alcohols | 1345 ± 307 a | 1120 ± 242 a | 2193 ± 311 b | 1920 ± 365 b |
Terpenes | 48.0 ± 9.5 a | 43.7 ± 18.7 a | 130 ± 58.0 a | 437 ± 198 b |
Whiskey lactones | 12.3 ± 7.1 a | 12.0 ± 8.9 a | 55.2 ± 35.1 a | 605.2 ± 328.9 b |
Vanillic derivatives | 49 ± 13.6 a | 70.2 ± 32.3 a | 131.5 ± 102.6 a | 676.3 ± 400.4 b |
Furanic derivatives | 1222 ± 587 | 772 ± 245 | 1583 ± 827 | 1072 ± 633 |
Positive volatile phenols | 28.8 ± 16.5 a | 36.2 ± 36.8 a | 19.8 ± 10.2 a | 316 ± 121 b |
Fatty acids | 11,797 ± 377 c | 11,338 ± 1117 bc | 10,512 ± 1787 b | 9657 ± 1205 a |
Aldehydes | 20.9 ± 4.8 | 24.5 ± 5.6 | 23.8 ± 4.7 | 27.0 ± 7.6 |
Negative volatile phenols | 45.7 ± 32.5 a | 83.7 ± 57.9 ab | 20.0 ± 11.4 a | 183.4 ± 96.5 b |
Sulfur compounds | 17.0 ± 5.3 | 15.5 ± 3.3 | 19.6 ± 7.7 | 18.3 ± 4.9 |
Variables | PC1 | PC2 |
---|---|---|
pH | 0.523 | |
Total acidity | −0.463 | |
Ethanol | 0.714 | |
Organic acids | 0.576 | |
Color intensity | ||
Glycerol | −0.595 | −0.362 |
LMW polysaccharides | 0.259 | 0.456 |
VLMW polysaccharides | −0.467 | |
Total polyphenols | −0.314 | 0.557 |
Total tannins | −0.287 | 0.380 |
Hydroxycinnamic acids | 0.399 | |
Hydroxycinnamic tartaric esters | 0.424 | |
Flavanols | 0.563 | |
Flavonols | 0.502 | |
Higher alcohols | −0.443 | 0.485 |
Ethyl esters | 0.336 | |
Alcohol acetates | 0.586 | 0.544 |
C6 alcohols | 0.529 | |
Terpenes | −0.528 | −0.317 |
Whiskey lactones | −0.392 | |
Vanillic derivatives | −0.250 | 0.542 |
Furanic derivatives | 0.321 | |
Positive volatile phenols | −0.388 | |
Fatty acids | 0.646 | |
Aldehydes | 0.242 | |
Negative volatile phenols | −0.421 | 0.617 |
Sulfur compounds | −0.633 |
Variables | PC1 | PC2 |
---|---|---|
Ethanol | −0.606 | −0.423 |
MMW polysaccharides | 0.890 | |
LMW polysaccharides | 0.486 | 0.767 |
VLMW polysaccharides | 0.633 | |
Hydroxybenzoic acids | −0.344 | |
Hydroxycinnamic acids | −0.328 | −0.416 |
Hydroxycinnamic tartaric esters | ||
Flavonols | 0.463 | |
Phenolic alcohols | −0.488 | |
Alcohol acetates | −0.370 | |
C6 alcohols | 0.448 | |
Terpenes | 0.913 | |
Whiskey lactones | 0.689 | −0.376 |
Vanillic derivatives | 0.871 | |
Positive volatile phenols | 0.817 | −0.347 |
Fatty acids | −0.652 | |
Negative volatile phenols | 0.433 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Barrio-Galán, R.; Valle-Herrero, H.d.; Bueno-Herrera, M.; López-de-la-Cuesta, P.; Pérez-Magariño, S. Volatile and Non-Volatile Characterization of White and Rosé Wines from Different Spanish Protected Designations of Origin. Beverages 2021, 7, 49. https://doi.org/10.3390/beverages7030049
Del Barrio-Galán R, Valle-Herrero Hd, Bueno-Herrera M, López-de-la-Cuesta P, Pérez-Magariño S. Volatile and Non-Volatile Characterization of White and Rosé Wines from Different Spanish Protected Designations of Origin. Beverages. 2021; 7(3):49. https://doi.org/10.3390/beverages7030049
Chicago/Turabian StyleDel Barrio-Galán, Rubén, Héctor del Valle-Herrero, Marta Bueno-Herrera, Pedro López-de-la-Cuesta, and Silvia Pérez-Magariño. 2021. "Volatile and Non-Volatile Characterization of White and Rosé Wines from Different Spanish Protected Designations of Origin" Beverages 7, no. 3: 49. https://doi.org/10.3390/beverages7030049
APA StyleDel Barrio-Galán, R., Valle-Herrero, H. d., Bueno-Herrera, M., López-de-la-Cuesta, P., & Pérez-Magariño, S. (2021). Volatile and Non-Volatile Characterization of White and Rosé Wines from Different Spanish Protected Designations of Origin. Beverages, 7(3), 49. https://doi.org/10.3390/beverages7030049