Beer Polyphenols—Bitterness, Astringency, and Off-Flavors
Abstract
:1. Introduction
2. Raw Materials and Polyphenols
2.1. Main Polyphenols in Raw Materials for Malting and Brewing
2.1.1. Prenylflavonoids
2.1.2. Catechins
2.1.3. Flavonols
2.1.4. Multifidol and Multifidol Glucosides
2.2. Polyphenols during the Malting and Brewing Process
2.3. Polyphenols Behavior during Beer Storage
2.4. Sensory Thresholds for Some Phenolic Acids
3. Bitterness
4. Astringency
5. Polyphenols/Astringency-Related Off-Flavors
5.1. Skunky Flavor
5.2. Other Off-Flavors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aron, P.M.; Shellhammer, T.H. A discussion of polyphenols in beer physical and flavour stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Lučan, M.; Mastanjević, K. Craft brewing—Is it really about the sensory revolution? Kvasny Prumysl 2019, 65, 13–16. [Google Scholar] [CrossRef]
- Dalgliesh, C.E. Flavour Stability. In Proceedings of the 16th European Brewery Convention Congress, Amsterdam, The Netherlands, 1 December 1977; DSW: Dordrecht, The Netherlands, 1977; pp. 623–659. [Google Scholar]
- Peleg, H.; Gacon, K.; Schlich, P.; Noble, A. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 1999, 79, 1123–1128. [Google Scholar] [CrossRef]
- Drewnowski, A. The science and complexity of bitter taste. Nutr. Rev. 2001, 59, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.; Roy, G. Taste Interactions of Sweet and Bitter Compounds. In Flavor-Food Interactions; American Chemical Society: Washington, DC, USA, 1996; pp. 130–142. [Google Scholar]
- McLaughlin, I.R.; Lederer, C.; Shellhammer, T.H. Bitterness-Modifying Properties of Hop Polyphenols Extracted from Spent Hop Material. J. Am. Soc. Brew. Chem. 2008, 66, 174–183. [Google Scholar] [CrossRef]
- Luck, G.; Liao, H.; Murray, N.; Grimmer, H.; Warminski, E.; Williamson, M.; Lilley, T.; Haslam, E. Polyphenols, astringency and proline—Rich proteins. Phytochemistry 1994, 37, 357–371. [Google Scholar] [CrossRef]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef] [PubMed]
- Amerine, M.A.; Pangborn, R.M.; Roessler, E.B. Principles of Sensory Evaluation of Food; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Schmelzle, A. The beer aroma wheel. Updating beer flavor terminology according to sensory standards. Brew. Sci. 2009, 62, 26–32. [Google Scholar]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavor of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Langstaff, S.A.; Lewis, M.J. The mouthfeel of beer—A review. J. Inst. Brew. 1993, 99, 31–37. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Dalgliesh, C.E.; Clapperton, J.F. Beer flavor terminology. J. Am. Soc. Brew. Chem. 1979, 37, 47–52. [Google Scholar] [CrossRef]
- Langstaff, S.A.; Guinard, J.X.; Lewis, M.J. Sensory evaluation of the mouthfeel of beer. J. Am. Soc. Brew. Chem. 1991, 49, 54–59. [Google Scholar] [CrossRef]
- Jerkovic, V.; Callemien, D.; Collin, S. Determination of stilbenes in hop pellets from different cultivars. J. Agric. Food Chem. 2005, 53, 4202–4206. [Google Scholar] [CrossRef] [PubMed]
- Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F.R. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of pad1-activity among brewing yeasts. Food Chem. 2008, 107, 221–230. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Missiaen, J.; Saison, D.; Delvaux, F.R. Contribution of monophenols to beer flavour based on flavour thresholds, interactions and recombination experiments. Food Chem. 2011, 126, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two Bavarian wheat beers by means of the sensomics approach. J. Agric. Food Chem. 2013, 61, 11303–11311. [Google Scholar] [CrossRef] [PubMed]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef] [Green Version]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, C.W. Beer: Tapping into the Art and Science of Brewing; Insight Books Plenum Publishing Corporation: New York, NY, USA; London, UK, 2003; pp. 60–65. [Google Scholar]
- Bonoli, M.; Marconi, E.; Caboni, M.F. Free and bound phenolic compounds in barley (Hordeum vulgare L.) flours: Evaluation of the extraction capability of different solvent mixtures and pressurized liquid methods by micellar electrokinetic chromatography and spectrophotometry. J. Chromatogr. A 2004, 1057, 1–12. [Google Scholar] [CrossRef]
- Bonoli, M.; Verardo, V.; Marconi, E.; Caboni, M.F. Antioxidant phenols in barley (Hordeum vulgare L.) flour: Comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J. Agric. Food Chem. 2004, 52, 5195–5200. [Google Scholar] [CrossRef]
- Dvořáková, M.; Guido, L.F.; Dostálek, P.; Skulilová, Z.; Moreira, M.M.; Barros, A.A. Antioxidant properties of free, soluble ester and insoluble-bound phenolic compounds in different barley varieties and corresponding malts. J. Inst. Brew. 2008, 114, 27–33. [Google Scholar] [CrossRef]
- Nardini, M.; Cirillo, E.; Natella, F.; Mencarelli, D.; Comisso, A.; Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002, 79, 119–124. [Google Scholar] [CrossRef]
- Nardini, M.; Ghiselli, A. Determination of free and bound phenolic acids in beer. Food Chem. 2004, 84, 137–143. [Google Scholar] [CrossRef]
- Nardini, M.; Natella, F.; Scaccini, C.; Ghiselli, A. Phenolic acids from beer are absorbed and extensively metabolized in humans. J. Nutr. Biochem. 2006, 17, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 2005, 41, 1941–1954. [Google Scholar] [CrossRef] [PubMed]
- Maillard, M.N.; Soum, M.H.; Boivin, P.; Berset, C. Antioxidant activity of barley and malt: Relationship with phenolic content. LWT—Food Sci. Technol. 1996, 29, 238–244. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem. 2007, 55, 10994–11001. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Curto, A.F.; Guido, L.F. Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry. Antioxidants 2015, 4, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Whittle, N.; Eldridge, H.; Bartley, J.; Organ, G. Identification of the polyphenols in barley and beer by HPLC/MS and HPLC/electrochemical detection. J. Inst. Brew. 1999, 105, 89–99. [Google Scholar] [CrossRef]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 1625–1634. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, H. Antioxidant activities of barley seeds extracts. Food Chem. 2007, 102, 732–737. [Google Scholar] [CrossRef]
- Kim, M.-J.; Hyun, J.-N.; Kim, J.-A.; Park, J.-C.; Kim, M.-Y.; Kim, J.-G.; Lee, S.-J.; Chun, S.-C.; Chung, I.-M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Kinitz, C.; Knutsen, S.H. Flavanol and bound phenolic acid contents in different barley varieties. J. Agric. Food Chem. 2006, 54, 2253–2260. [Google Scholar] [CrossRef]
- Dvorakova, M.; Moreira, M.M.; Dostalek, P.; Skulilova, Z.; Guido, L.F.; Barros, A.A. Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography-ultraviolet detection-electrospray ionization mass spectrometry. J. Chromatogr. A 2008, 1189, 398–405. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Plazar, J. Mechanism of Antigenotoxic Activity of Xanthohumol and Related Prenylflavonoids from Hops (Humulus lupulus L.). Ph.D. Thesis, Nacionalni Inštitut za Biologijo, Ljubljana, Slovenia, 2007. [Google Scholar]
- Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 2006, 13, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Biendl, M.; Pinzl, C. Hops and Health Uses-Effects-History, 2nd ed.; German Hop Museum Wonlzach: Wonlzach, Germany, 2013. [Google Scholar]
- Ameh, S.J.; Ibekwe, N.N.; Ebeshi, B.U. Essential Oils in Ginger, Hops, Cloves, and Pepper Flavored Beverages–A Review. J. Dietary Suppl. 2015, 12, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, E.; Minassi, A.; Appendino, G.; Moro, L. 8-Prenylnaringenin, inhibits estrogen receptor-alfa mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2007, 107, 140–148. [Google Scholar] [CrossRef]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [Green Version]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New Insights on the Anticancer Properties of Dietary Polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrêa, R.C.G.; Peralta, R.M.; Haminiuk, C.W.I.; Maciel, G.M.; Bracht, A.; Ferreira, I.C.F.R. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, J.R. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Dresel, M.; Dunkel, A.; Hofmann, T. Sensomics Analysis of Key Bitter Compounds in the Hard Resin of Hops (Humulus lupulus L.) and Their Contribution to the Bitter Profile of Pilsner-Type Beer. J. Agric. Food Chem. 2015, 63, 3402–3418. [Google Scholar] [CrossRef]
- Ghosh, S.; Basak, P.; Duttam, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 2017, 103, 41–55. [Google Scholar] [CrossRef]
- Spreng, S.; Hofmann, T. Activity-Guided Identification of in Vitro Antioxidants in Beer. J. Agric. Food Chem. 2018, 66, 720–731. [Google Scholar] [CrossRef]
- Bohr, G.; Gerhäuser, C.; Knauft, J.; Zapp, J.; Becker, H. Anti-inflammatory Acylphloroglucinol Derivatives from Hops (Humulus lupulus). J. Nat. Prod. 2005, 68, 1545–1548. [Google Scholar] [CrossRef]
- Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta 2015, 1852, 1071–1113. [Google Scholar] [CrossRef] [Green Version]
- Brglez Mojzer, E.; Knez-Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant properties of kilned and roasted malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef]
- Leitao, C.; Marchioni, E.; Bergaentzlé, M.; Zhao, M.; Didierjean, L.; Miesch, L.; Holder, E.; Miesch, M.; Ennahar, S. Fate of polyphenols and antioxidant activity of barley throughout malting and brewing. J. Cereal Sci. 2012, 55, 318–322. [Google Scholar] [CrossRef]
- Inns, E.L.; Buggey, L.A.; Booer, C.; Nursten, H.E.; Ames, J.M. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt. J. Agric. Food Chem. 2011, 59, 9335–9343. [Google Scholar] [CrossRef] [PubMed]
- Inns, E.L.; Buggey, L.A.; Booer, C.; Nursten, H.E.; Ames, J.M. Effect of heat treatment on the antioxidant activity, color, and free phenolic acid profile of malt. J. Agric. Food Chem. 2007, 55, 6539–6546. [Google Scholar] [CrossRef] [PubMed]
- Buiatti, S. Beer composition: An overview. In Beer in Health and Disease Prevention; Academic Press: London, UK, 2009; pp. 213–225. [Google Scholar]
- Pollock, J.R.A. Brewing Science; Academic Press: London, UK, 1981; Volume 12, pp. 121–157. [Google Scholar]
- Baxter, E.D.; Hughes, P.S. Beer: Quality, Safety and Nutritional Aspects; The Royal Society of Chemistry: Cambridge, UK, 2001; Volume 14, pp. 138–151. [Google Scholar]
- Hanke, S.; Kern, M.; Herrmann, M.; Back, W.; Becker, T.; Krottenthaler, M. Suppression of gushing by hop constituents. Mon. für Brauwiss. 2009, 62, 181–186. [Google Scholar]
- Srečec, S.; Zechner-Krpan, V.; Petravić-Tominac, V.; Košir, I.J.; Čerenak, A. Importance of Medical Effects of Xanthohumol, Hop (Humulus lupulus L.) Bioflavonoid in Restructuring of World Hop Industry. Agric. Conspec. Sci. 2012, 77, 61–67. [Google Scholar]
- The Role of Polyphenols in Beer Haze Formation. Available online: https://draymans.com/the-role-of-polyphenols-in-beer-haze-formation/ (accessed on 1 May 2021).
- Szwajgier, D. Dry and wet milling of malt. A preliminary study comparing fermentable sugar, total protein, total phenolics and the ferulic acid content in non-hopped worts. J. Inst. Brew. 2011, 117, 569–577. [Google Scholar]
- Vanbeneden, N.; Van Roey, T.; Willems, F.; Delvaux, F.; Delvaux, F.R. Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing. Food Chem. 2008, 111, 83–91. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F.R. Variability in the release of free and bound hydroxycinnamic acids from diverse malted barley (Hordeum vulgare L.) cultivars during wort production. J. Agri. Food Chem. 2007, 55, 11002–11010. [Google Scholar] [CrossRef]
- Schwarz, K.J.; Boitz, L.I.; Methner, F.-J. Release of phenolic acids and amino acids during mashing dependent on temperature, pH, time and raw materials. J. Am. Soc. Brew. Chem. 2012, 70, 290–295. [Google Scholar] [CrossRef]
- McMurrough, I.; Madigan, D.; Donnelly, D.; Hurley, J.; Doyle, A.-M.; Hennigan, G.; McNulty, N. Control of ferulic acid and 4-vinyl guaiacol in brewing. J. Inst. Brew. 1996, 102, 327–332. [Google Scholar] [CrossRef]
- Coghe, S.; Benoot, K.; Delvaux, F.; Vanderhaegen, B.; Delvaux, F.R. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: Indications for feruloyl esterase activity in Saccharomyces cerevisiae. J. Agric. Food Chem. 2004, 52, 602–608. [Google Scholar] [CrossRef]
- Bartolom’e, B.; Garcia-Conesa, M.T.; Williamson, G. Release of the bioactive compound, ferulic acid, from malt extracts. Biochem. Soc. Trans. 1996, 24, 379S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurková, M.; Horák, T.; Hašková, D.; Čulík, J.; Čejka, P.; Kellner, V. Control of antioxidant beer activity by the mashing process. J. Inst. Brew. 2012, 118, 230–235. [Google Scholar] [CrossRef]
- Fumi, M.D.; Galli, R.; Lambri, M.; Donadini, G.; De Faveri, D.M. Effect of full-scale brewing process on polyphenols in italian all-malt and maize adjunct lager beers. J. Food Comp. Anal. 2011, 24, 568–573. [Google Scholar] [CrossRef]
- Pascoe, H.M.; Ames, J.M.; Sachin, C. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in ale. J. Am. Soc. Brew. Chem. 2003, 61, 203–209. [Google Scholar] [CrossRef]
- Moll, M.; Fonknechten, G.; Carnielo, M.; Flayeux, R. Changes in polyphenols from raw materials to finished beer. MBAA Tech. Q. 1984, 21, 79–87. [Google Scholar]
- McMurrough, I.; Hennigan, G.P.; Loughrey, M.J. Contents of simple, polymeric and complexed flavanols in worts and beers and their relationship to haze formation. J. Inst. Brew. 1983, 89, 15–23. [Google Scholar] [CrossRef]
- Forster, A.; Gahr, A. On the fate of certain hop substances during dry hopping. Brew. Sci. 2013, 66, 93–103. [Google Scholar]
- Narziss, L.; Bellmer, H.G. Ver¨anderungen der Polyphenole und ihres P. I. Während des Hopfenkochens in Wasser und Würze. Brauwissenschaft 1975, 28, 323–343. [Google Scholar]
- Kühbeck, F.; Schütz, M.; Thiele, F.; Krottenthaler, M.; Back, W. Influence of lauter turbidity and hot trub on wort composition, fermentation, and beer quality. J. Am. Soc. Brew. Chem. 2006, 64, 16–28. [Google Scholar] [CrossRef]
- Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of polyphenol-protein interactions. J. Agric. Food Chem. 1996, 44, 80–85. [Google Scholar] [CrossRef]
- Asano, K.; Ohtsu, K.; Shinagawa, K.; Hashimoto, N. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beer and the formation of chill haze. Agric. Biol. Chem. 1984, 48, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Fantozzi, P.; Montanari, L.; Mancini, F.; Gasbarrini, A.; Addolorato, G.; Simoncini, M.; Scaccini, C. In vitro antioxidant capacity from wort to beer. LWT—Food Sci. Technol. 1998, 31, 221–227. [Google Scholar] [CrossRef]
- Leitao, C.; Marchioni, E.; Bergaentzl’e, M.; Zhao, M.; Didierjean, L.; Taidi, B.; Ennahar, S. Effects of processing steps on the phenolic content and antioxidant activity of beer. J. Agricul. Food Chem. 2011, 59, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Stevens, J.F.; Taylor, A.W.; Clawson, J.E.; Deinzer, M.L. Fate of xanthohumol and related prenylflavonoids from hops to beer. J. Agric. Food Chem. 1999, 47, 2421–2428. [Google Scholar] [CrossRef]
- Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016, 32, 1171–1178. [Google Scholar] [CrossRef]
- Stevens, J.F.; Ivancic, M.; Hsu, V.L.; Deinzer, M.L. Prenylflavonoids from Humulus lupulus. Phytochemistry 1997, 44, 1575–1585. [Google Scholar] [CrossRef]
- Back, W.; Zürcher, A.; Wunderlich, S. Verfahren zur Herstellung eines xanthohumolhaltigen Getränkes aus Malz- und/oder Rohfruchtwürze sowie derart hergestelltes Getränk. Dtschl. DE 2004, 102, 166. [Google Scholar]
- Magalháes, P.J.; Dostálek, P.; Cruz, J.M.; Guido, L.F.; Barros, A.A. The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: A pilot scale approach. J. Inst. Brew. 2008, 114, 246–256. [Google Scholar] [CrossRef]
- Magalhães, P.J.; Almeida, S.M.; Carvalho, A.M.; Goncalves, L.M.; Pacheco, J.G.; Cruz, J.M.; Barros, A.A. Influence of malt on the xanthohumol and isoxanthohumol behavior in pale and dark beers: A micro-scale approach. Food Res. Int. 2011, 44, 351–359. [Google Scholar] [CrossRef]
- Wunderlich, S.; Zürcher, A.; Back, W. Enrichment of xanthohumol in the brewing process. Mol. Nutr. Food Res. 2005, 49, 874–881. [Google Scholar] [CrossRef]
- Wunderlich, S.; Zürcher, A.; Back, W. Xanthohumol in brewing—Impact of malt, xanthohumol dosage, wort and storage temperature. Mon. Brauwiss 2012, 65, 7–15. [Google Scholar]
- Wunderlich, S.; Wurzbacher, M.; Back, W. Roasting of malt and xanthohumol enrichment in beer. Eur. Food Res. Technol. 2013, 237, 137–148. [Google Scholar] [CrossRef]
- Miedl, M.; Bamforth, C.W. The relative importance of temperature and time in the cold conditioning of beer. J. Am. Soc. Brew. Chem. 2004, 62, 75–78. [Google Scholar] [CrossRef]
- Siebert, K.J.; Lynn, P.Y. Comparison of polyphenol interactions with polyvinylpolypyrrolidone and haze-active protein. J. Am. Soc. Brew. Chem. 1998, 56, 24–31. [Google Scholar] [CrossRef]
- McMurrough, I.; Madigan, D.; Kelly, R.J. The role of flavonoid polyphenols in beer stability. J. Am. Soc. Brew. Chem. 1996, 54, 141–148. [Google Scholar]
- McMurrough, I.; Madigan, D.; Smyth, M.R. Adsorption by polyvinylpyrrolidone of catechins and proanthocyanidins from beer. J. Agric. Food Chem. 1995, 43, 2687–2691. [Google Scholar] [CrossRef]
- Gramshaw, J.W. Phenolic constituents of beer and brewing materials. II. The role of polyphenols in the formation of non-biological haze. J. Inst. Brew. 1967, 73, 455–472. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Karabín, M.; Rýparová, A.; Jelínek, L.; Kunz, T.; Wietstock, P.; Methner, F.-J.; Dostálek, P. Relationship of iso-α-acid content and endogenous antioxidative potential during storage of lager beer. J. Inst. Brew. 2014, 120, 212–219. [Google Scholar] [CrossRef]
- Intelmann, D.; Haseleu, G.; Dunkel, A.; Lagemann, A.; Stephan, A.; Hofmann, T. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. J. Agric. Food Chem. 2011, 59, 1939–1953. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, M.; Cui, C.; Sun, W.; Zhao, H. Antioxidant activity and typical ageing compounds: Their evolutions and relationships during the storage of lager beers. Int. J. Food Sci. Technol. 2016, 51, 2026–2033. [Google Scholar] [CrossRef]
- Delcour, J.A.; Dondeyne, P. The reactions between polyphenols and aldehydes and the influence of acetaldehyde on haze formation in beer. J. Inst. Brew. 1982, 88, 234–243. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Structure, organoleptic properties, quantification methods, and stability of phenolic compounds in beer—A review. Food Rev. Int. 2009, 26, 1–84. [Google Scholar] [CrossRef]
- Heuberger, A.L.; Broeckling, C.D.; Lewis, M.R.; Salazar, L.; Bouckaert, P.; Prenni, J.E. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem. 2012, 135, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Blanco, C.A.; Porras, M. Iso-a-acids, bitterness and loss of beer quality during storage. Trends Food Sci. Tech. 2012, 26, 21–30. [Google Scholar] [CrossRef]
- Arrieta, Á.A.; Rodríguez-Méndez, M.L.; De Saja, J.A.; Blanco, C.A.; Nimubona, D. Prediction of bitterness and alcoholic strength in beer using an electronic tongue. Food Chem. 2010, 123, 642–646. [Google Scholar] [CrossRef]
- Haseleu, G.; Lagemann, A.; Stephan, A.; Intelmann, D.; Dunkel, A.; Hofmann, T. Quantitative sensomics profiling of hopderived bitter compounds throughout a full-scale beer manufacturing process. J. Agric. Food Chem. 2010, 58, 7930–7939. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, C.; Kostelecky, T. 125th anniversary review: The role of hops in brewing. J. Inst. Brew. 2011, 117, 259–267. [Google Scholar] [CrossRef]
- De Keukeleire, D. Fundamentals of beer and hop chemistry. Quím. Nova 2000, 23, 108–112. [Google Scholar] [CrossRef]
- Schmidt, C.; Biendl, M.; Lagemann, A.; Stettner, G.; Vogt, C.; Dunkel, A.; Hofmann, T. Influence of different hop products on the cis/trans ratio of iso-a-acids in beer and changes in key aroma and bitter taste molecules during beer ageing. J. Am. Soc. Brew. Chem, 2014, 72, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Negri, G.; di Santi, D.; Tabach, R. Bitter acids from hydroethanolic extracts of Humulus lupulus L., Cannabaceae, used as anxiolytic. Rev. Bras. Farmacogn. 2010, 20, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, P.H. A study of Factors Affecting the Extraction of Flavor When Dry Hopping Beer. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2013. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rx913t14h (accessed on 30 April 2021).
- Cocuzza, S.; Mitter, W. Dry Hopping—A Study of Various Parameters Consequences of the Applied Dosing Method. Brew. Beverage Ind. Int. 2013, 4, 70–74. [Google Scholar]
- Collin, S.; Jerkovic, V.; Bröhan, M.; Callemien, D. Polyphenols and Beer Quality Natural Products; Springer: Heidelberg, Germany, 2013; pp. 2333–2359. [Google Scholar]
- Drewnowski, A.; Gomez-Carneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr, 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- Kielhorn, S.; Thorngate, J.H. Oral sensations associated with the flavan-3-ols (+)-catechin and (-)-epicatechin. Food Qual. Prefer. 1999, 10, 109–116. [Google Scholar] [CrossRef]
- Robichaud, J.L.; Noble, A.C. Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 1990, 53, 343–353. [Google Scholar] [CrossRef]
- Guinard, J.-X.; Pangborn, R.-M.; Lewis, M.J. Preliminary studies on acidity-astringency interactions in model solutions and solutions. J. Sci. Food Agric. 1986, 37, 811–817. [Google Scholar] [CrossRef]
- Siebert, K.J.; Chassy, A.W. An alternate mechanism for the astringent sensation of acids. Food Qual. Prefer. 2003, 15, 13–18. [Google Scholar] [CrossRef]
- Noble, A.C. Astringency and Bitterness of Flavonoid Phenols. In Chemistry of Taste: Mechanisms, Behavior and Mimics; Given, P., Paredes, D., Eds.; ACS Symposium Series; ACS publisher: New York, NY, USA, 2002; pp. 192–201. [Google Scholar]
- Delcour, J.A.; Vandenberghe, M.M.; Corten, P.F.; Dondeyne, P. Flavour thresholds of polyphenolics in water. Am. J. Enol. Viticult. 1984, 35, 134–136. [Google Scholar]
- Dadic, M.; Belleau, G. Polyphenols and beer flavour. Proc. Am. Soc. Brew. Chem. 1973, 107–114. [Google Scholar] [CrossRef]
- Kageyama, N.; Tada, N.; Inui, T.; Komura, H.; Nakahara, K.; Oka, K.; Isoe, A. Studies on astringent substances in malt. Proc. Congr. Eur. Brew. Conv. 2007, 31, 185–196. [Google Scholar]
- Tada, N.; Inui, T.; Kageyama, N.; Takaoka, S.; Kawasaki, Y. The influence of malt acrospires on beer taste and foam quality. Tech. Q. Master Brew. Assoc. Am. 2004, 41, 305–309. [Google Scholar]
- Inui, T.; Tada, N.; Kageyama, N.; Takaoka, S.; Kawasaki, Y. The breakthrough technology in brewing: The capture and retention of fresh beer flavor. Brauwelt 2004, 144, 1488–1498. [Google Scholar]
- Meilgaard, M. Hop analysis, Cohumulone Factor and the Bitterness of Beer: Review and Critical Evaluation. J. Inst. Brew. 1960, 66, 35–50. [Google Scholar] [CrossRef]
- Carr, N. 18 Common “Off” Flavors In Beer (And How They Are Caused). Available online: https://learn.kegerator.com/off-flavors-in-beer/ (accessed on 1 May 2021).
- “Off” Flavors In Beer Their Causes & How To Avoid Them. Available online: https://www.cicerone.org/sites/default/files/resources/off_flavor.pdf (accessed on 1 May 2021).
- Common Homebrew Off-Flavors & How to Fix Them. Available online: https://www.homebrewery.com/image/data/Beer%20Information%20documents/Common%20Homebrew%20Off%20Flavors.pdf (accessed on 1 May 2021).
Compound | Concentration (mg/L) | Description |
---|---|---|
2-Methylpropanoic | 0.1–2 | Sweet, bitter, sour |
Caffeic | 1–10 | Bitter, harsh, sour, diacetyl |
Chlorogenic | 1–10 | Bitter, harsh, bitter-sweet, astringent |
p-Courmaric | 0.1–0.2 | Sour, dry, bitter, astringent, medicinal |
Gallic | 1–5 | Bitter, harsh, astringent, dry, sour, sweet |
Hydroxybenzoic | 0.13 | Bitter, harsh, astringent, acidic, vinegar |
Sinapic | 1–10 | Bitter, astringent, harsh, sour, dry |
Syringic | 1–10 | Bitter, harsh, astringent, winey, malty |
Vanillic | 1–10 | Harsh, bitter–sweet, sour, astringent, peppery, medicinal |
Hexanal | 0.003–0.07 | Bitter, vinous |
trans-2-Hexenal | 0.005–0.01 | Bitter, astringent |
Heptanal | 0.002 | Aldehyde, bitter |
Octanal | 0.001–0.02 | Orange peel, bitter |
Nonanal | 0.001–0.011 | Astringent, bitter |
Decanal | 0.0–0.003 | Bitter, orange peel |
Tyrosol | 3–40 | Bitter, chemical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages 2021, 7, 38. https://doi.org/10.3390/beverages7020038
Habschied K, Košir IJ, Krstanović V, Kumrić G, Mastanjević K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages. 2021; 7(2):38. https://doi.org/10.3390/beverages7020038
Chicago/Turabian StyleHabschied, Kristina, Iztok Jože Košir, Vinko Krstanović, Goran Kumrić, and Krešimir Mastanjević. 2021. "Beer Polyphenols—Bitterness, Astringency, and Off-Flavors" Beverages 7, no. 2: 38. https://doi.org/10.3390/beverages7020038