Recent Trends in the Analysis of Chemical Contaminants in Beverages
Abstract
:1. Introduction
2. Chemical Contaminants
2.1. Inorganic Contaminants
Heavy Metals
2.2. Organic Contaminants in Beverages
2.2.1. Amines
2.2.2. Bisphenols
2.2.3. Phthalates
2.2.4. Pesticides
2.2.5. Non-Intentionally Added Substances (NIAS)
2.2.6. Other Contaminants in Beverages
3. Conclusions and Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakirhan, N.K.; Ozkan, S.A. The recent electrochemical studies on Bisphenol A detection in beverages. In Safety Issues in Beverage Production, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2020; Volume 18, pp. 309–333. [Google Scholar]
- Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction—A review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Carmona, K.; Jordan-Sinisterra, M.; Lanças, F. Current trends in fully automated on-line analytical techniques for beverage analysis. Beverages 2019, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Coskun, F. A traditional turkish fermented non-alcoholic beverage, “Shalgam”. Beverages 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Borah, H.; Dutta, U. Trends in beverage packaging. In Trends in Beverage Packaging, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 16, pp. 1–14. [Google Scholar]
- Silva, M.M.N.; Pereira, K.S.; Coelho, M.A.Z. Food additives used in non-alcoholic water-based beverages—A review. J. Nutr. Health Food Eng. 2019, 9, 212540717. [Google Scholar]
- Patra, S.; Choudhary, R.; Madhuri, R.; Sharma, P.K. Quality Control of Beverages for Health Safety: Starting from Laboratory to the Point-of-Care Detection Techniques. In Quality Control in the Beverage Industry, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 17, pp. 39–83. [Google Scholar]
- Gamero, A.; Ren, X.; Lamboni, Y.; de Jong, C.; Smid, E.J.; Linnemann, A.R. Development of a low-alcoholic fermented beverage employing cashew apple juice and non-conventional yeasts. Fermentation 2019, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Rochte, J.; Berglund, K. Preliminary studies on the use of reactive distillation in the production of beverage spirits. Beverages 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Chinnamma, M.; Bhasker, S.; Binitha Hari, M.; Sreekumar, D.; Madhav, H. Coconut Neera—A vital health beverage from coconut palms: Harvesting, processing and quality analysis. Beverages 2019, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, I. The Management of Food Safety in Beverage Industry. In Safety Issues in Beverage Production, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2020; Volume 18, pp. 1–38. [Google Scholar]
- Aadil, R.M.; Madni, G.M.; Roobab, U.; ur Rahman, U.; Zeng, X.-A. Quality Control in Beverage Production: An Overview. In Quality Control in the Beverage Industry, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 17, pp. 1–38. [Google Scholar]
- Chen, C.-Y.; Aggarwal, S.K.; Chung, C.-H.; You, C.-F. Advanced Mass Spectrometry for Beverage Safety and Forensic. In Safety Issues in Beverage Production, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2020; Volume 18, pp. 223–269. [Google Scholar]
- Ranadheera, C.S.; Prasanna, P.H.P.; Pimentel, T.C.; Azeredo, D.R.P.; Rocha, R.S.; Cruz, A.G.; Vidanarachchi, J.K.; Naumovski, N.; McConchie, R.; Ajlouni, S. Microbial Safety of Nonalcoholic Beverages. In Safety Issues in Beverage Production, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2020; Volume 18, pp. 187–221. [Google Scholar]
- Thompson, L.A.; Darwish, W.S. Environmental chemical contaminants in food: Review of a global problem. J. Toxicol. 2019, 244, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orecchio, S.; Amorello, D.; Barreca, S. Analysis of Contaminants in Beverages. In Quality Control in the Beverage Industry, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 17, pp. 225–258. [Google Scholar]
- Ramos, M.; Valdés, A.; Mellinas, A.; Garrigós, M. New Trends in Beverage Packaging Systems: A Review. Beverages 2015, 1, 248–272. [Google Scholar] [CrossRef]
- Geueke, B.; Groh, K.; Muncke, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 2018, 193, 491–505. [Google Scholar] [CrossRef]
- De Fátima Poças, M.; Hogg, T. Exposure assessment of chemicals from packaging materials in foods: A review. Trends Food Sci. Technol. 2007, 18, 219–230. [Google Scholar] [CrossRef]
- Lau, O.-W.; Wong, S.-K. Contamination in food from packaging material. J. Chromatogr. A 2000, 882, 255–270. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Abdel-Rahman, G.N.; Ahmed, M.B.M.; Sabry, B.A.; Ali, S.S.M. Heavy metals content in some non-alcoholic beverages (carbonated drinks, flavored yogurt drinks, and juice drinks) of the Egyptian markets. Toxicol. Rep. 2019, 6, 210–214. [Google Scholar] [CrossRef]
- Geueke, B. FPF Dossier: Non-Intentionally Added Substances (NIAS), 2nd ed.; CERN: Meyrin, Switzerland, 2018; Available online: https://www.foodpackagingforum.org/food-packaging-health/non-intentionally-added-substances-nias (accessed on 15 April 2020).
- Berman, T.; Goldsmith, R.; Göen, T.; Spungen, J.; Novack, L.; Levine, H.; Amitai, Y.; Shohat, T.; Grotto, I. Urinary concentrations of environmental contaminants and phytoestrogens in adults in Israel. Environ. Int. 2013, 59, 478–484. [Google Scholar] [CrossRef]
- García-Cañas, V.; Simó, C.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Present and future challenges in food analysis: Foodomics. Anal. Chem. 2012, 84, 10150–10159. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Tiwari, S.; Saxena, R. Determination of metal contaminants in beverages using solid phase extraction-based preconcentration and subsequent determination using spectro-analytical techniques. In Quality Control in the Beverage Industry, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 17, pp. 123–159. [Google Scholar]
- Commission Regulation (EC). No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; Official Journal of the European Union: Luxembourg, 2006. [Google Scholar]
- Preventing Disease through Healthy Environments. Available online: https://apps.who.int/iris/bitstream/handle/10665/329482/WHO-CED-PHE-EPE-19.4.1-eng.pdf (accessed on 28 February 2020).
- Gürkan, R.; Altunay, N. Determination of total Sn in some canned beverages by FAAS after separation and preconcentration. Food Chem. 2015, 177, 102–110. [Google Scholar] [CrossRef]
- Altunay, N.; Gürkan, R. A simple, inexpensive and convenient procedure for determination of inorganic Sb species in milk and beverage samples in PET containers by flame atomic absorption spectrometry. Anal. Methods 2015, 7, 9850–9860. [Google Scholar] [CrossRef]
- Gürkan, R.; Kır, U.; Altunay, N. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry. Food Chem. 2015, 180, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Mattiazzi, P.; Bohrer, D.; Viana, C.; Do Nascimento, P.C.; Veiga, M.; De Carvalho, L.M. Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry. J. AOAC Int. 2017, 100, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Uluozlu, O.D.; Tuzen, M. Carrier element-free coprecipitation and speciation of inorganic tin in beverage samples and total tin in food samples using N-Benzoyl-N,N-diisobutylthiourea and its determination by graphite furnace atomic absorption spectrometry. LWT Food Sci. Technol. 2015, 63, 1091–1096. [Google Scholar] [CrossRef]
- Talio, M.C.; Acosta, M.G.; Acosta, M.; Olsina, R.; Fernández, L.P. Novel method for determination of zinc traces in beverages and water samples by solid surface fluorescence using a conventional quartz cuvette. Food Chem. 2015, 175, 151–156. [Google Scholar] [CrossRef]
- Talio, M.C.; Feresin, V.; Muñoz, V.; Acosta, M.; FernÁndez, L.P. New analytical methodology for Sb(III) traces quantification as emergent contaminant in drinks packaged PET samples by solid surface fluorescence. Am. J. Anal. Chem. 2019, 10, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Wilschefski, S.C.; Baxter, M.R. Inductively coupled plasma mass Spectrometry: Introduction to analytical aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar]
- Korkmaz Görür, F.; Keser, R.; Akçay, N.; Dizman, S.; Okumuşoğlu, N.T. Radionuclides and heavy metals concentrations in Turkish market tea. Food Control 2011, 22, 2065–2070. [Google Scholar] [CrossRef]
- Fathabad, A.E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Mousavi Khaneghah, A. Determination of heavy metal content of processed fruit products from Tehran’s market using ICP-OES: A risk assessment study. Food Chem. Toxicol. 2018, 115, 436–446. [Google Scholar] [CrossRef]
- Biata, N.R.; Nyaba, L.; Ramontja, J.; Mketo, N.; Nomngongo, P.N. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction. Food Chem. 2017, 237, 904–911. [Google Scholar] [CrossRef]
- Whitt, M.; Vorst, K.; Brown, W.; Baker, S.; Gorman, L. Survey of heavy metal contamination in recycled polyethylene terephthalate used for food packaging. J. Plast. Film Sheeting 2013, 29, 163–173. [Google Scholar] [CrossRef]
- Whitt, M.; Brown, W.; Danes, J.E.; Vorst, K.L. Migration of heavy metals from recycled polyethylene terephthalate during storage and microwave heating. J. Plast. Film Sheeting 2016, 32, 189–207. [Google Scholar] [CrossRef]
- Dutra, C.; Freire, M.T.D.A.; Nerín, C.; Bentayeb, K.; Rodriguez-Lafuente, A.; Aznar, M.; Reyes, F.G.R. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE. J. Braz. Chem. Soc. 2014, 25, 686–696. [Google Scholar] [CrossRef]
- Mertoglu-Elmas, G. The effect of colorants on the content of heavy metals in recycled corrugated board papers. BioResources 2017, 12, 2690–2698. [Google Scholar] [CrossRef] [Green Version]
- Mandlate, J.S.; Soares, B.M.; Seeger, T.S.; Vecchia, P.D.; Mello, P.A.; Flores, E.M.M.; Duarte, F.A. Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Food Chem. 2017, 221, 907–912. [Google Scholar] [CrossRef]
- Fernández-López, L.; Gómez-Nieto, B.; Gismera, M.J.; Sevilla, M.T.; Procopio, J.R. Direct determination of copper and zinc in alcoholic and non-alcoholic drinks using high-resolution continuum source flame atomic absorption spectrometry and internal standardization. Spectrochim. Acta Part B At. Spectrosc. 2018, 147, 21–27. [Google Scholar] [CrossRef]
- Stojanovic, Z.; Kos, J. Detection of metabolites of microbial origin in beverages with harmful effect on human health—Biogenic amines and mycotoxins. In Safety Issues in Beverage Production, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Gerhard Wolff, Andre: Duxford, UK, 2020; Volume 18, pp. 39–51. [Google Scholar]
- Ladero, V.; Calles-Enriquez, M.; Fernandez, M.; Alvarez, M.A. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Preti, R.; Antonelli, M.L.; Bernacchia, R.; Vinci, G. Fast determination of biogenic amines in beverages by a core-shell particle column. Food Chem. 2015, 187, 555–562. [Google Scholar] [CrossRef]
- Martuscelli, M.; Arfelli, G.; Manetta, A.C.; Suzzi, G. Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chem. 2013, 140, 590–597. [Google Scholar] [CrossRef]
- Mattarozzi, M.; Lambertini, F.; Suman, M.; Careri, M. Liquid chromatography-full scan-high resolution mass spectrometry-based method towards the comprehensive analysis of migration of primary aromatic amines from food packaging. J. Chromatogr. A 2013, 1320, 96–102. [Google Scholar] [CrossRef]
- Sanchis, Y.; Yusà, V.; Coscollà, C. Analytical strategies for organic food packaging contaminants. J. Chromatogr. A 2017, 1490, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Brede, C.; Skjevrak, I.; Herikstad, H. Determination of primary aromatic amines in water food simulant using solid-phase analytical derivatization followed by gas chromatography coupled with mass spectrometry. J. Chromatogr. A 2003, 983, 35–42. [Google Scholar] [CrossRef]
- Donthuan, J.; Yunchalard, S.; Srijaranai, S. Vortex-assisted surfactant-enhanced-emulsification liquid liquid microextraction of biogenic amines in fermented foods before their simultaneous analysis by high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 3164–3173. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Fan, W.; Jia, X.; Li, J.; Bi, Y.; Liu, W. Development of a recombinant N-Gp5c fusion protein-based ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus. J. Virol. Methods 2013, 189, 213–220. [Google Scholar] [CrossRef]
- García-Villar, N.; Hernández-Cassou, S.; Saurina, J. Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 2009, 1216, 6387–6393. [Google Scholar] [CrossRef]
- Peña-Gallego, A.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. Biogenic amine determination in wines using solid-phase extraction: A comparative study. J. Chromatogr. A 2009, 1216, 3398–3401. [Google Scholar] [CrossRef]
- Jastrzebska, A.; Piasta, A.; Kowalska, S.; Krzemiński, M.; Szłyk, E. A new derivatization reagent for determination of biogenic amines in wines. J. Food Compos. Anal. 2016, 48, 111–119. [Google Scholar] [CrossRef]
- Heo, J.-J.; Lee, J.-W.; Kim, S.-K.; Oh, J.-E. Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea. J. Hazard. Mater. 2014, 279, 402–409. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Troncoso, A.M.; García-Parrilla, M.D.C.; Callejón, R.M. Recent trends in the determination of biogenic amines in fermented beverages—A review. Anal. Chim. Acta 2016, 939, 10–25. [Google Scholar] [CrossRef]
- Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R.J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144. [Google Scholar] [CrossRef]
- Henao-Escobar, W.; Del Torno-De Román, L.; Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem. 2016, 190, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Nalazek-Rudnicka, K.; Wasik, A. Development and validation of an LC-MS/MS method for the determination of biogenic amines in wines and beers. Mon. Chem. Chem. Mon. 2017, 148, 1685–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Gupta, M.; Verma, K.K. Salting-out assisted liquid-liquid extraction for the determination of biogenic amines in fruit juices and alcoholic beverages after derivatization with 1-naphthylisothiocyanate and high performance liquid chromatography. J. Chromatogr. A 2015, 1422, 60–72. [Google Scholar] [CrossRef]
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Picci, N. Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chem. 2015, 175, 143–150. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.H.; Lim, N.; Ahn, M.Y.; Chae, H. Study on the difference of BIS/BAS scale between Sasang types. Evid.-Based Complement. Altern. Med. 2015, 2015, 805819. [Google Scholar] [CrossRef] [Green Version]
- Gallo, P.; Di Marco Pisciottano, I.; Esposito, F.; Fasano, E.; Scognamiglio, G.; Mita, G.D.; Cirillo, T. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem. 2017, 220, 406–412. [Google Scholar] [CrossRef]
- Moreira Fernandez, M.A.; Coelho André, L.; de Lourdes Cardeal, Z. Hollow fiber liquid-phase microextraction-gas chromatography-mass spectrometry method to analyze bisphenol A and other plasticizer metabolites. J. Chromatogr. A 2017, 1481, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Commission Directive 2004/19/EC of 1 March 2004 Amending Directive 2002/72/EC Relating to Plastic Materials and Articles Intended to Come into Contact with Foodstuffs; Official Journal of the European Union: Luxembourg, 2004.
- Commission Directive 2011/8/EU of 28 January 2011 Amending Directive 2002/72/EC as Regards the Restriction of Use of Bisphenol A in Plastic Infant Feeding Bottles; Official Journal of the European Union: Luxembourg, 2011.
- Commission Regulation (EC) No 1895/2005 of 18 November 2005 on the Restriction of use of Certain Epoxy Derivatives in Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union: Luxembourg, 2005.
- Fasano, E.; Esposito, F.; Scognamiglio, G.; Di Francesco, F.; Montuori, P.; Amodio Cocchieri, R.; Cirillo, T. Bisphenol A contamination in soft drinks as a risk for children’s health in Italy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1207–1214. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.; Barbato, F.; Grumetto, L. Development and validation of a LC-FD Method for the simultaneous determination of eight bisphenols in soft drinks. Food Anal. Methods 2016, 9, 2732–2740. [Google Scholar] [CrossRef]
- Bolat, G.; Yaman, Y.T.; Abaci, S. Highly sensitive electrochemical assay for bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes. Sens. Actuators B Chem. 2018, 255, 140–148. [Google Scholar] [CrossRef]
- Shi, R.; Liang, J.; Zhao, Z.; Liu, A.; Tian, Y. An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode. Talanta 2017, 169, 37–43. [Google Scholar] [CrossRef]
- Masikini, M.; Ghica, M.E.; Baker, P.G.L.; Iwuoha, E.I.; Brett, C.M.A. Electrochemical sensor based on multi-walled carbon nanotube/gold nanoparticle modified glassy carbon electrode for detection of estradiol in environmental samples. Electroanalysis 2019, 31, 1925–1933. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Núñez, O.; Lucci, P. Recent advances in LC-MS analysis of food-packaging contaminants. TrAC Trends Anal. Chem. 2013, 42, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Bai, H.; Ma, X.; Li, J.; Ren, Y.; Ouyang, Z.; Ma, Q. Online coupling of an electrochemically fabricated solid-phase microextraction probe and a miniature mass spectrometer for enrichment and analysis of chemical contaminants in infant drinks. Anal. Chim. Acta 2020, 1098, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Regueiro, J.; Wenzl, T. Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1422, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xu, S. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. Biosens. Bioelectron. 2017, 92, 147–153. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Li, S.; Dang, Y. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens. Actuators B Chem. 2017, 245, 238–246. [Google Scholar] [CrossRef]
- Cosio, M.S.; Pellicanò, A.; Brunetti, B.; Fuenmayor, C.A. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sens. Actuators B Chem. 2017, 246, 673–679. [Google Scholar] [CrossRef]
- Li, G.; Zhong, Q.; Wang, D.; Zhang, X.; Gao, H.; Shen, S. Determination and formation of Ethyl Carbamate in Chinese spirits. Food Control 2015, 56, 169–176. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, J.; Li, H. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens. Bioelectron. 2017, 92, 21–25. [Google Scholar] [CrossRef]
- Wang, J.Y.; Su, Y.L.; Wu, B.H.; Cheng, S.H. Reusable electrochemical sensor for bisphenol A based on ionic liquid functionalized conducting polymer platform. Talanta 2016, 147, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhai, X.; Liu, X.; Wang, L.; Liu, H.; Wang, H. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 2016, 148, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Nikahd, B.; Khalilzadeh, M.A. Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J. Mol. Liq. 2016, 215, 253–257. [Google Scholar] [CrossRef]
- Zhan, T.; Song, Y.; Li, X.; Hou, W. Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Mater. Sci. Eng. C 2016, 64, 354–361. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Huang, C.; Jia, N. MWCNTs-PEI composites-based electrochemical sensor for sensitive detection of bisphenol A. Sens. Actuators B Chem. 2016, 235, 408–413. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Liu, J.; Tong, J.; Su, X. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system. Food Chem. 2015, 185, 233–238. [Google Scholar] [CrossRef]
- Pan, D.; Gu, Y.; Lan, H.; Sun, Y.; Gao, H. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal. Chim. Acta 2015, 853, 297–302. [Google Scholar] [CrossRef]
- Jing, P.; Zhang, X.; Wu, Z.; Bao, L.; Xu, Y.; Liang, C.; Cao, W. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta 2015, 141, 41–46. [Google Scholar] [CrossRef]
- Kochana, J.; Wapiennik, K.; Kozak, J.; Knihnicki, P.; Pollap, A.; Woźniakiewicz, M.; Nowak, J.; Kościelniak, P. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Talanta 2015, 144, 163–170. [Google Scholar] [CrossRef]
- Huang, K.J.; Liu, Y.J.; Liu, Y.M.; Wang, L.L. Molybdenum disulfide nanoflower-chitosan-au nanoparticles composites based electrochemical sensing platform for bisphenol a determination. J. Hazard. Mater. 2014, 276, 207–215. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Kuang, Y. Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan-graphene composite film modified electrode. Food Chem. 2014, 157, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan i using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem. 2014, 158, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z.; Tian, C. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC–MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem. 2019, 276, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, L.; Zhou, J.; Zhang, X.; Chen, J. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J. Electroanal. Chem. 2015, 742, 97–103. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Sakhi, A.K.; Lillegaard, I.T.L.; Voorspoels, S.; Carlsen, M.H.; Løken, E.B.; Brantsæter, A.L.; Haugen, M.; Meltzer, H.M.; Thomsen, C. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ. Int. 2014, 73, 259–269. [Google Scholar] [CrossRef]
- Yan, H.; Cheng, X.; Liu, B. Simultaneous determination of six phthalate esters in bottled milks using ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2507–2512. [Google Scholar] [CrossRef]
- Hayasaka, Y. Analysis of phthalates in wine using liquid chromatography tandem mass spectrometry combined with a hold-back column: Chromatographic strategy to avoid the influence of pre-existing phthalate contamination in a liquid chromatography system. J. Chromatogr. A 2014, 1372, 120–127. [Google Scholar] [CrossRef]
- Fierens, T.; Servaes, K.; Van Holderbeke, M.; Geerts, L.; De Henauw, S.; Sioen, I.; Vanermen, G. Analysis of phthalates in food products and packaging materials sold on the Belgian market. Food Chem. Toxicol. 2012, 50, 2575–2583. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union: Luxembourg, 2011.
- Pellegrino Vidal, R.B.; Ibañez, G.A.; Escandar, G.M. A green method for the quantification of plastics-derived endocrine disruptors in beverages by chemometrics-assisted liquid chromatography with simultaneous diode array and fluorescent detection. Talanta 2016, 159, 336–343. [Google Scholar] [CrossRef]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem. 2014, 146, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Oliveira, W.; de Souza, T.C.L.; Padula, M.; Godoy, H.T. Development of an extraction method using mixture design for the evaluation of migration of non-target compounds and dibutyl phthalate from baby bottles. Food Anal. Methods 2017, 10, 2619–2628. [Google Scholar] [CrossRef]
- He, J.; Lv, R.; Zhu, J.; Lu, K. Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers. Anal. Chim. Acta 2010, 661, 215–221. [Google Scholar] [CrossRef]
- Lou, C.; Guo, D.; Zhang, K.; Wu, C.; Zhang, P.; Zhu, Y. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography. Anal. Chim. Acta 2018, 1007, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Urkude, R.; Dhurvey, V.; Kochhar, S. Pesticide residues in beverages. In Quality Control in the Beverage Industry, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Duxford, UK, 2019; Volume 17, pp. 529–560. [Google Scholar]
- Cladière, M.; Delaporte, G.; Le Roux, E.; Camel, V. Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. Food Chem. 2018, 242, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, P.P.; Romero-González, R.; Frenich, A.G.; Vidal, J.L.M. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2008, 1208, 16–24. [Google Scholar] [CrossRef]
- Dias, J.V.; da Graça P. Nunes, M.; Pizzutti, I.R.; Reichert, B.; Jung, A.A.; Cardoso, C.D. Simultaneous determination of pesticides and mycotoxins in wine by direct injection and liquid chromatography-tandem mass spectrometry analysis. Food Chem. 2019, 293, 83–91. [Google Scholar] [CrossRef]
- Pérez-Ortega, P.; Gilbert-López, B.; García-Reyes, J.F.; Ramos-Martos, N.; Molina-Díaz, A. Generic sample treatment method for simultaneous determination of multiclass pesticides and mycotoxins in wines by liquid chromatography–mass spectrometry. J. Chromatogr. A 2012, 1249, 32–40. [Google Scholar] [CrossRef]
- Ferrer, C.; Martínez-Bueno, M.J.; Lozano, A.; Fernández-Alba, A.R. Pesticide residue analysis of fruit juices by LC–MS/MS direct injection. One year pilot survey. Talanta 2011, 83, 1552–1561. [Google Scholar] [CrossRef]
- Durak, B.Y.; Chormey, D.S.; Firat, M.; Bakirdere, S. Validation of ultrasonic-assisted switchable solvent liquid phase microextraction for trace determination of hormones and organochlorine pesticides by GC–MS and combination with QuEChERS. Food Chem. 2020, 305, 125487. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, J.P.; de Andrade, J.B. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchem. J. 2014, 112, 119–126. [Google Scholar] [CrossRef]
- Mohebbi, A.; Farajzadeh, M.A.; Mahmoudzadeh, A.; Etemady, A. Combination of poly (ε–caprolactone) grafted graphene quantum dots—Based dispersive solid phase extraction followed by dispersive liquid–liquid microextraction for extraction of some pesticides from fruit juices prior to their quantification by gas chroma. Microchem. J. 2020, 153, 104328. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef]
- Lozano, A.; Rajski, Ł.; Belmonte-Valles, N.; Uclés, A.; Uclés, S.; Mezcua, M.; Fernández-Alba, A.R. Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. J. Chromatogr. A 2012, 1268, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Omote, M.; Harayama, K.; Sasaki, T.; Mochizuki, N.; Yamashita, H. Analysis of simultaneous screening for 277 pesticides in malt and beer by liquid chromatography with tandem mass spectrometry. J. Am. Soc. Brew. Chem. 2006, 64, 139–150. [Google Scholar] [CrossRef]
- Dušek, M.; Jandovská, V.; Olšovská, J. Tracking, behavior and fate of 58 pesticides originated from hops during beer brewing. J. Agric. Food Chem. 2018, 66, 10113–10121. [Google Scholar] [CrossRef] [PubMed]
- Hengel, M.J.; Miller, D.; Jordan, R. Development and validation of a method for the determination of pesticide residues in beer by liquid chromatography-mass spectrometry. J. Am. Soc. Brew. Chem. 2016, 74, 49–52. [Google Scholar] [CrossRef]
- Nagatomi, Y.; Yoshioka, T.; Yanagisawa, M.; Uyama, A.; Mochizuki, N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci. Biotechnol. Biochem. 2013, 77, 2218–2221. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Nagatomi, Y.; Suga, K.; Uyama, A.; Mochizuki, N. Fate of pesticides during beer brewing. J. Agric. Food Chem. 2011, 59, 3857–3868. [Google Scholar] [CrossRef]
- Gilbert-López, B.; Jaén-Martos, L.; García-Reyes, J.F.; Villar-Pulido, M.; Polgar, L.; Ramos-Martos, N.; Molina-Díaz, A. Study on the occurrence of pesticide residues in fruit-based soft drinks from the EU market and morocco using liquid chromatography–mass spectrometry. Food Control 2012, 26, 341–346. [Google Scholar] [CrossRef]
- Gilbert-López, B.; García-Reyes, J.F.; Mezcua, M.; Ramos-Martos, N.; Fernández-Alba, A.R.; Molina-Díaz, A. Multi-residue determination of pesticides in fruit-based soft drinks by fast liquid chromatography time-of-flight mass spectrometry. Talanta 2010, 81, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Gómez Ramos, M.J.; Lozano, A.; Fernández-Alba, A.R. High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta 2019, 191, 180–192. [Google Scholar] [CrossRef]
- Nerin, C.; Alfaro, P.; Aznar, M.; Domeño, C. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Anal. Chim. Acta 2013, 775, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Koster, S.; Bani-Estivals, M.H.; Bonuomo, M.; Bradley, E.; Chagnon, M.C. Guidance on Best Practices on the Risk Assessment of Non Intentionally Added Substances (NIAS) in Food Contact Materials and Articles. Available online: http://www.annualreviews.org/doi/10.1146/annurev.phyto.40.120301.093728 (accessed on 15 April 2020).
- Poças, F. Migration From Packaging and Food Contact Materials Into Foods. Ref. Modul. Food Sci. 2018. [Google Scholar] [CrossRef]
- Portesi, C.; Visentin, D.; Durbiano, F.; Abete, M.C.; Rizzi, M.; Maurino, V.; Rossi, A.M. Development of a rapid micro-Raman spectroscopy approach for detection of NIAS in LDPE pellets and extruded films for food packaging applications. Polym. Test. 2019, 80, 106098. [Google Scholar] [CrossRef]
- Athenstädt, B.; Fünfrocken, M.; Schmidt, T.C. Migrating components in a polyurethane laminating adhesive identified using gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1810–1816. [Google Scholar] [CrossRef]
- Félix, J.S.; Isella, F.; Bosetti, O.; Nerín, C. Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants. Anal. Bioanal. Chem. 2012, 403, 2869–2882. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Nerín, C.; Dreolin, N.; Goshawk, J. Ion mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans. J. Chromatogr. A 2019, 1616, 460778. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Jesús, F.; Gómez Ramos, M.J.; Lozano, A.; Fernández-Alba, A.R. Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chem. 2019, 295, 274–288. [Google Scholar] [CrossRef]
- Martínez-Bueno, M.J.; Hernando, M.D.; Uclés, S.; Rajski, L.; Cimmino, S.; Fernández-Alba, A.R. Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry. Talanta 2017, 172, 68–77. [Google Scholar] [CrossRef]
- Osorio, J.; Dreolin, N.; Aznar, M.; Nerín, C.; Hancock, P. Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J. Chromatogr. A 2019, 1599, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf Life 2019, 21, 100325. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerín, C. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 2018, 188, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, F.; Verzera, A.; Tripodi, G.; Condurso, C. Non-intentionally added substances in PET bottled mineral water during the shelf-life. Eur. Food Res. Technol. 2018, 244, 433–439. [Google Scholar] [CrossRef]
- Guerranti, C.; Perra, G.; Corsolini, S.; Focardi, S.E. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy. Food Chem. 2013, 140, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, I.; Bizkarguenaga, E.; Bilbao, D.; Etxebarria, N.; Prieto, A.; Zuloaga, O. Fast and simple determination of perfluorinated compounds and their potential precursors in different packaging materials. Talanta 2016, 152, 353–363. [Google Scholar] [CrossRef]
- Healy, A.; Hardy, A.; Kleiner, J.; Robinson, T.; Verhagen, H. Editorial: Review of authorship principles. EFSA J. 2016, 14, e14091. [Google Scholar] [CrossRef] [Green Version]
- Haug, L.S.; Salihovic, S.; Jogsten, I.E.; Thomsen, C.; van Bavel, B.; Lindström, G.; Becher, G. Levels in food and beverages and daily intake of perfluorinated compounds in Norway. Chemosphere 2010, 80, 1137–1143. [Google Scholar] [CrossRef]
- Aznar, M.; Domeño, C.; Nerín, C.; Bosetti, O. Set-off of non volatile compounds from printing inks in food packaging materials and the role of lacquers to avoid migration. Dye. Pigment. 2015, 114, 85–92. [Google Scholar] [CrossRef]
- Silva, A.S.; García, R.S. Photoinitiators in printed food packaging: Migration and food safety concerns. Ref. Modul. Food Sci. 2017. [Google Scholar] [CrossRef]
- Blanco-Zubiaguirre, L.; Zabaleta, I.; Usobiaga, A.; Prieto, A.; Olivares, M.; Zuloaga, O.; Elizalde, M.P. Target and suspect screening of substances liable to migrate from food contact paper and cardboard materials using liquid chromatography-high resolution tandem mass spectrometry. Talanta 2020, 208, 120394. [Google Scholar] [CrossRef]
- Chang, H.-C.; Chen, Y.-J.; Chang, M.-H.; Liao, C.-D.; Kao, Y.-M.; Wang, D.-Y.; Cheng, H.-F. Novel multi-analyte method for detection of thirty photoinitiators in breakfast cereal and packaged juice. J. Chromatogr. B 2019, 1130–1131, 121788. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Ayala, H.; Núñez, O.; Moyano, E.; Galceran, M.T. Analysis of UV ink photoinitiators in packaged food by fast liquid chromatography at sub-ambient temperature coupled to tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Du, Z.; Xia, X.; Guo, Q.; Wu, H.; Yu, W. Evaluation of the migration of UV-ink photoinitiators from polyethylene food packaging by supercritical fluid chromatography combined with photodiode array detector and tandem mass spectrometry. Polym. Test. 2016, 53, 276–282. [Google Scholar] [CrossRef]
- Vavrouš, A.; Vápenka, L.; Sosnovcová, J.; Kejlová, K.; Vrbík, K.; Jírová, D. Method for analysis of 68 organic contaminants in food contact paper using gas and liquid chromatography coupled with tandem mass spectrometry. Food Control 2016, 60, 221–229. [Google Scholar] [CrossRef]
- Ryu, D.; Choi, B.; Kim, E.; Park, S.; Paeng, H.; Kim, C.I.; Lee, J.Y.; Yoon, H.J.; Koh, E. Determination of ethyl carbamate in alcoholic beverages and fermented foods sold in Korea. Toxicol. Res. 2015, 31, 289–297. [Google Scholar] [CrossRef]
- Zhao, X.; Du, G.; Zou, H.; Fu, J.; Zhou, J.; Chen, J. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci. Technol. 2013, 32, 97–107. [Google Scholar] [CrossRef]
- Weber, J.V.; Sharypov, V.I. Ethyl carbamate in foods and beverages: A review. Environ. Chem. Lett. 2009, 7, 233–247. [Google Scholar] [CrossRef]
- Gowd, V.; Su, H.; Karlovsky, P.; Chen, W. Ethyl carbamate: An emerging food and environmental toxicant. Food Chem. 2018, 248, 312–321. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, E.; Li, J.; Long, J.; Jiao, A.; Jin, Z. Highly sensitive determination of ethyl carbamate in alcoholic beverages by surface-enhanced Raman spectroscopy combined with a molecular imprinting polymer. RSC Adv. 2016, 6, 109442–109452. [Google Scholar] [CrossRef]
Chemical Contaminant | Packaging Material | Beverage | Sample Treatment/ | Analytical Method | Ref. |
---|---|---|---|---|---|
Fe, Mn, Cd, Pb, Ni, Cr, Cu | Plastics, cans | Carbonated drinks, flavored yogurt, juice | DA | ICP/OES | [25] |
Sn | Cans | Non-alcoholic, alcoholic beverages | CPE | FAAS | [32] |
As | - | Drinking water, soft drinks, alcoholic beverages | CPE | UV–Vis | [34] |
Fe, Mn, Zn, Cu, Pb | - | Black and green tea | Acid digestion | ICP/OES | [40] |
Sb | PET | Mineral water and juice flavors | - | HR/CS/AAS | [35] |
Sb, Zn | PET | Mineral water, flavored water and beverages | SPE | SSF | [23,24] |
Sb, Sn | PET, cans | Beverages | UA/IL/DLLME | ICP/OES | [42] |
Cd, Hg, Sn, Al, Pb, As | Glass | Fruit juices | MW/acid digestion | ICP/OES | [41] |
Sn | - | Mineral water and fruit juices | Co-precipitation | GFAAS | [36] |
Sb | PET | Non-alcoholic, alcoholic beverages | CPE | FAAS | [33] |
Cd, Cr, Ni, Sb, Pb | rPET | - | MW-acid digestion | ICP/OES | [28,29] |
As, Al, Ba, Cr, Fe, Mn, Mo, Ni, Pb, Se | rPET, rHDPE, rHDPE multi-layer | - | - | ICP/MS | [45] |
Pb, Cd, Zn, Ni, Cu | rBoard | - | Acid digestion | ICP/OES | [46] |
Cd, Pb | - | Soft drinks | DLLME | GFAAS | [47] |
Zn, Cu | - | Alcoholic and non-alcoholic beverages | - | HR/CS/FAAS | [48] |
Chemical Contaminant | Beverage | Pre-Treatment/Derivatization | Analytical Method | Ref. |
---|---|---|---|---|
Put, Cad, Try, Phe, Spr, Spm, His, Tyr and 1,3-diaminopropane | Grape wine. Rice wine Beer | LLE | HPLC/DAD | [57] |
His, Tyr, Try, Phe | White and red wines | Precolumn. 1-fluoro-2-nitro-4-(trifluoromethyl) benzene | HPLC/DAD | [60] |
Put, His, Try, Cad, Agm, Spr, Spm, Phe | Wine. Beer | Precolumn Tosyl chloride | HPLC/MS/MS | [65] |
Cad, Try, Tyr, His, Spm | Wine. Beer | Precolumn Fluorenylmethyl | HPLC/DAD | [56] |
Tyr, Put, Try, Phe, Spm, Cysteamine, Metylamine | Fruit juices Beer | Precolumn 1-naphthylisothiocianate | HPLC/DAD | [66] |
Put, Cad, Spm, Tyr, Phe, His | Wines | - | HPLC/FLD | [66] |
Put, Spm, His, Tyr, Cad, Spm, Phe, Serotonin | Coffee | Precolumn. Dansyl chloride | HPLC/DAD | [67] |
Tyr, Phe, Put, Cad, His, Tyr, Spr, Spm | - | - | UHPLC/MS/MS | [68] |
22 PAAs | Food simulant | Trifluoroacetic anhydride | HPLC/MS/MS | [54] |
8 PAAs | - | Trifluoroacetic anhydride derivatization | GC/MS | [54] |
Chemical Contaminant | Packaging Material | Beverage | Sample Treatment/Extraction Process | Analytical Method | Ref. |
---|---|---|---|---|---|
BPA | Nursing bottle | - | - | Amperometry Electrode: Tyr/Au@PDA-RGO-Chit/GCE LOD = 0.10 nM | [82] |
BPA | - | Milk | - | DPV Electrode: Na-doped WO3/CPE LOD = 0.028 μM | [83] |
BPA | Baby bottles Drinking bottles | - | - | FIA Electrode: MWCNTs-OH/GCE LOD = 0.18 μM | [84] |
BPA | Milk bag Plastic juice box | - | - | DPV Electrode: ILs@HPS-Ni/CdFe2O4/GCE LOD: 4.55 nM | [85] |
BPA | - | Milk | - | EIS Electrode: MCH/Aptamers/Au-NPs/BDD LOD = 1 fM | [86] |
BPA | Plastic bottles | Water samples | - | FIA Electrode: SPCE/PEDOT/BMIMBr LOD: 0.02 μM | [87] |
BPA | PC drinking bottle | - | - | LSV Electrode: CMK-3/nano-CILPE LOD: 0.05 μM | [88] |
BPA | Water bottle | - | - | SWV Electrode: NiO/CNT/IL/CPE LOD: 0.04 μM | [89] |
BPA | - | Water | - | DPV Electrode: ILs-LDH/GCE LOD: 4.6 nM | [90] |
BPA | PC drinking bottles | - | LSV Electrode: MWNTs/Au/paper electrode LOD: 0.13 μM | [88] | |
BPA | - | Milk | - | DPV Electrode: MWCNTs-PEI/GCE LOD: 3.3 nM | [91] |
BPA | - | Milk | - | DPV Electrode: rGO-Fc-NH2/AuNPs/GCE LOD: 2 nM | [92] |
BPA | - | Milk carton samples | - | DPV Electrode: GR/Au-Tyr-CS/GCE LOD: 1 nM | [93] |
BPA | - | Soda Milk | - | LSV Electrode: Gr-IL/GCE LOD: 8.0 nM | [94] |
BPA | Plastic feeding bottles | - | - | CV Transducer: TYR/TiO2/MWCNTs/PDDA LOD: 1 μM | [95] |
BPA | Mineral water bottle | - | - | DPV Transducer: β-CD/ILCPE LOD: 4.16 nM | [95] |
BPA | Polycarbonate drinking bottle | - | - | CV Transducer: AuNPs/MoS2/GCE LOD: 0.005 μM | [96] |
BPA | Plastic bottled drinking water | Canned beverages | - | Derivative voltammetry Transducer: MIP-GR/ABPE LOD: 6.0 nM | [97] |
BPA | Water bottle | - | SVW Transducer: ZnO/CNTs/IL/CPE LOD: 9.0 nM | [98] | |
BPA | - | Milk Mineralized water samples | - | DPV Transducer: ERGO-MN202/CS/GCE LOD: 1.02 nM | [83] |
BPA | - | Milk | - | CV Transducer: GNPs/GR/GCE LOD: 5 nM | [83] |
BPA | Drink bottle | - | - | CV Transducer: CTAB/CPE LOD: 0.1 μM | [99] |
BPA | - | Mineral water | - | CV Transducer: f-SWCNT/PC4/GCE LOD: 0.032 μM | [100] |
BPA | - | Milk | - | DPV Transducer: Bi2WO6-CPE LOD: 20 nM | [101] |
5 bisphenols | - | 40 canned energy drinks | MIPs | UPLC/FLD LOQ: Down to 0.50 ng mL−1 | [69] |
8 bisphenols | - | Soft drinks | - | HPLC/FLD LOD: 5.52–21.37 ng mL−1 | [75] |
BPA | - | Infant drinks | SPME | Ion/MS/MS | [80] |
12 bisphenols | - | Alcoholic and non-alcoholic beverages | Mixed-mode solid-phase extraction and stable-isotope dilution | HPLC/MS/MS LOD: 1.6–27.9 ng L−1 | [81] |
BPA | Cardboard box Plastic canned Plastic Cardboard box with plastic cap and metal | Milk Soft drinks Bottle water Juice | LLE with acetonitrile, n-hexane, isopropanol, acetone:heptane mixtures | UPLC/MS/MS | [102] |
Chemical Contaminant | Packaging Material | Beverage | Analytical Method | Ref. |
---|---|---|---|---|
Dimethyl phthalate Diethyl phthalate | Plastics, paperboard | Hydroalcoholic beverages | GC/FID GC/MS | [105] |
Diisopropyl phthalate | Plastics, paperboard | Soybean milk Wine | SPE/MIP US/LLME/GC | [103,104] |
Dibutyl phthalate | Paper | Bottled milk | GC/MS | [103,108] |
Diisobutyl phthalate | Paper, plastics, paperboard | Soybean milk Hydroalcoholic beverages | SPE/MIP GC/FID GC/MS | [108] |
Benzylbutyl phthalate | Plastic | Bottled milk Wine | US/LLME/GC | [103,105,108] |
Dipentyl phthalate | Plastics, cardboard | Hydroalcoholic beverages | GC | [108] |
Dicyclohexyl phthalate | Plastics, cardboard | Wine | GC | [108] |
Dihexyl phthalate | paper | Wine | GC | [108] |
Dioctyl phthalate, bis(2-ethylhexyl) phthalate | Paper, plastics, cardboard | Bottled milk | GC | [108] |
PHAs | Wine coffee | GC/MS | [19] | |
6 phthalates | Bottled milk | GC/FID LOD: 0.64–0.79 ng g−1 | [102] | |
8 phthalates | Wines | HPLC/MS/MS LOQ: 1.6–9.8 μg L−1 | [104] | |
3 phthalates | Polypropylene Baby Bottles | Milk simulants | FTIR GC/MS | [109] |
5 phthalates | - | Soybean milk | GC/MS | [110] |
8 phthalates | Tetra brick® | Beer, soft drinks, juices, soup, milk | GC/EI/MS GC/MS | [105] |
11 phthalates | - | Bottled beverages | SFC/UV LOD = 1.5–3.0 ng mL−1 | [111] |
Chemical Contaminant | Beverage | Sample Treatment/Extraction Process | Analytical Method | Ref. |
---|---|---|---|---|
21 pesticides | Tea | LLE | UHPLC/MS/ToF | [113] |
21 pesticides | Tea | HF/LPME | UHPLC/MS/MS | [114] |
185 pesticides | Red wine | - | UHPLC/MS/MS | [115] |
60 pesticides | Wine | SPE | HPLC/MS/ToF | [116] |
53 pesticides | Fruit juices | - | HPLC/MS/MS | [117] |
5 pesticides | Tea | SS/LPME | GC/MS | [118] |
19 pesticides | Coconut water | SDME | GC/MS | [119] |
9 pesticides | Fruit juices | DSPE DLLME | GC/FID | [120] |
131 pesticides | Tea | DSPE | GC/MS/MS | [99] |
102 pesticides | Tea | DSPE | HPLC/MS/MS | [121] |
86 pesticides | Tea | DSPE | HPLC/MS/MS GC/MS/MS | [122] |
277 pesticides | Beer | LLE, SLE | HPLC/MS/MS | [123] |
58 pesticides | Beer | QuEChERS | HPLC/MS/MS | [124] |
72 pesticides | Beer | LLE | HPLC/MS/MS | [125] |
5 pesticides | Beer, Barley Tea | SPE | HPLC/MS/MS | [126] |
300 pesticides | Beer | QuEChERS | HPLC/MS/MS | [127] |
30 pesticides | Fruit-based soft drinks | SPE | HPLC/MS/ToF | [128] |
33 pesticides | Fruit-based soft drinks | SPE | HPLC/MS/ToF | [129] |
Chemical Contaminant | Packaging Material | Beverage | Sample Treatment/Extraction Process | Analytical Method | Ref. |
---|---|---|---|---|---|
26 potential migrants | LDPE+ nylon, PE based material | - | Migration test | HPLC/Q/TOF/MS/MS | [130] |
13 potential migrants | PU | - | Migration test | GC/MS HPLC/MS | [135] |
63 potential migrants | PU and films of different plastics | - | Migration test | HSSPME/GC/MS | [136] |
7 potential migrants | Soda can sealers | - | Migration test | UHPLC/IMS/QTOF/MS | [137] |
42 potential migrants | Multilayer packaging PET/Al/PE | - | Migration test | HPLC/Q/TOF/MS | [138] |
7 potential migrants | Monolayer film PLA/PL/ZnO NPs | - | Migration test | GC/MS HPLC/MS | [139] |
7 potential migrants | Biopolymers based on starch and PLA | - | Migration test | GC/MS | [140] |
100 potential migrants | Different plastic films | - | Migration test | GC/MS | [141] |
76 potential migrants | PP films | - | Migration test | UHPLC/Q/TOF/MS | [142] |
17 potential migrants | LDPE | - | - | Raman spectroscopy | [134] |
26 potential migrants | PET bottles | - | - | HSSPME/GC/MS | [143] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelegrín, C.J.; Flores, Y.; Jiménez, A.; Garrigós, M.C. Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages 2020, 6, 32. https://doi.org/10.3390/beverages6020032
Pelegrín CJ, Flores Y, Jiménez A, Garrigós MC. Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages. 2020; 6(2):32. https://doi.org/10.3390/beverages6020032
Chicago/Turabian StylePelegrín, Carlos Javier, Yaiza Flores, Alfonso Jiménez, and María Carmen Garrigós. 2020. "Recent Trends in the Analysis of Chemical Contaminants in Beverages" Beverages 6, no. 2: 32. https://doi.org/10.3390/beverages6020032
APA StylePelegrín, C. J., Flores, Y., Jiménez, A., & Garrigós, M. C. (2020). Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages, 6(2), 32. https://doi.org/10.3390/beverages6020032