Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Storage
2.2. Volatile Analysis
2.3. GC Parameters
2.4. Identification of Volatiles
2.5. Gas Chromatography–Olfactometry
2.5.1. Gas Chromatography–Olfactometry Training Parameters
2.5.2. GC–O Parameters
2.5.3. Detection Frequency Method
2.6. Statistical Analysis
3. Results
3.1. GC–O
3.1.1. Acids
3.1.2. Sulfur (Methyl Sulfunyl Methane)
3.1.3. Fusel Alcohols (Higher Alcohols)
3.1.4. 2–3 Butanedione (Diacetyl)
3.1.5. Aldehydes
3.1.6. Esters
3.1.7. Phenols
3.2. SPME GC–MS
4. Discussion
GC–MS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Oevelen, D.; Delescaille, F.; Verachtert, H. Synthesis of aroma components during spontaneous fermentation of lambic and gueueze. J. Inst. Brew. 1976, 82, 322–326. [Google Scholar] [CrossRef]
- Van Oevelen, D.; Spaepen, M.; Timmermans, P.; Verachtert, H. Microbiological aspects of spontaneous wort fermentation in production of lambic and gueuze. J. Inst. Brew. 1977, 83, 356–360. [Google Scholar] [CrossRef]
- Sparrow, J. Wild Brews: Beer Beyond the Influence of Brewer’s Yeast; Brewers Publication: Boulder, CO, USA, 2005. [Google Scholar]
- Steen, J.v.d. Geuze & Kriek: The Secret of Lambic; Lannoo: Tielt, Belgium, 2011. [Google Scholar]
- Rayne, S.; Eggers, N. 4-ethylphenol and 4-ethylguaiacol concentrations in barreled red wines from the okanagan valley appellation, british columbia. Am. J. Enol. Vitic. 2008, 59, 92–97. [Google Scholar]
- Guinard, J.X. Lambic; Brewers Publications: Boulder, CO, USA, 1990; p. 159. [Google Scholar]
- Witrick, K.T.; Duncan, S.E.; Hurley, K.E.; O’Keefe, S.F. Acid and volatiles of commercially-available lambic beers. Beverages 2017, 3, 12. [Google Scholar]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The oenological potential of hanseniaspora uvarum in simultaneous and sequential co-fermentation with saccharomyces cerevisiae for industrial wine production. Front. Microbiol. 2016, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer—A review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Majcher, M.; Jelen, H.H. Comparison of suitability of spme, safe, and sde methods for isolation of flavor compounds from extruded potato snacks. J. Food Compos. Anal. 2009, 22, 606–612. [Google Scholar] [CrossRef]
- Rodrigues, F.; Caldeira, M.; Camara, J.S. Development of a dynamic headspace solid-phase microextraction procedure coupled to gc-qmsd for evaluation the chemical profile in alcoholic beverages. Anal. Chim. Acta 2008, 609, 82–104. [Google Scholar] [CrossRef]
- Thompson-Witrick, K.A.; Rouseff, R.L.; Cadawallader, K.R.; Duncan, S.E.; Eigel, W.N.; Tanko, J.M.; O’Keefe, S.F. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid–liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer. J. Food Sci. 2015, 80, C571–C576. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry of beer: Part i: Flavor interaction between principal volatiles. Tech. Quart. Master Brewers Ass. Am. 1975, 12, 107. [Google Scholar]
- De Keersmaecker, J. The mystery of lambic beer. Sci. Am. 1996, 275, 74. [Google Scholar] [CrossRef]
- Cantillon. Available online: http://www.cantillon.be/br/3_101 (accessed on 24 August 2012).
- Ferreira, V.; Pet’ka, J.; Aznar, M.; Cacho, J. Quantitative gas chromatography-olfactometry. Analytical characteristics of a panel of judges using a simple quantitative scale as gas chromatography detector. J. Chromatogr. A 2003, 1002, 169–178. [Google Scholar] [CrossRef]
- James, N.; Stahl, U. Amino acid permeases and their influence on flavour compounds in beer. Brew. Sci. 2014, 67, 120–127. [Google Scholar]
- Dawoud, E. Characteristics of Enterocateriaceae Involved in Lambic Brewing; Fakulteit der Landbouwwetenschappen, Katholieke Universiteit te Leuven: Leuven, Belgium, 1987. [Google Scholar]
- Meilgaard, M.C. Prediction of flavor differences between beers from their chemical-composition. J. Agric. Food Chem. 1982, 30, 1009–1017. [Google Scholar] [CrossRef]
- Van Oevelen, D.; Verachtert, H. Slim prouction by brewery strains of pediococccus. J. Am. Soc. Brew. Chem. 1979, 37, 34–37. [Google Scholar]
- Engan, S. Beer Composition: Volatile Substances; Academic Press: London, UK; New York, NY, USA, 1981; Volume 2. [Google Scholar]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- ASBC. ASBC Beer Flavor Database; American Society of Brewing Chemist: St. Paul, MN, USA, 2012. [Google Scholar]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonca, M.D.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Branen, A.L.; Keenan, T.W. Biosynthesis of alpha-acetolactate and its conversion to diacetyl and acetoin in cell-free extracts of lactobaccilus casei. Can. J. Microbiol. 1972, 18, 479–485. [Google Scholar] [CrossRef]
- Spaepen, M.; Vanoevelen, D.; Verachtert, H. Fatty-acids and esters produced during spontaneous fermentation of lambic and gueuze. J. Inst. Brew. 1978, 84, 278–282. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Williams, R.S.; Wagner, H.P. The isolation and identification of new staling related compounds from beer. J. Am. Soc. Brew. Chem. 1978, 36, 27–31. [Google Scholar] [CrossRef]
- Bohmann, J.J. Aging behavior of beer. 2. The behvior of some volatile compounds under heat-treatment. Monastsschrift Fur Brauwissenschaft 1985, 38, 79–85. [Google Scholar]
- Narziss, L.; Miedaner, H.; Graf, H.; Eichhorn, P.; Lustig, S. Technological approach to improve flavour stability. Tech. Q. Master Brew. Assoc. Am. 1993, 30, 48–53. [Google Scholar]
- Andrés-Iglesias, C.; Montero, O.; Sancho, D.; Blanco, C.A. New trends in beer flavour compound analysis. J. Sci. Food Agric. 2015, 95, 1571–1576. [Google Scholar] [CrossRef]
- Engan, S. Organoleptic threshold values of some organic-acids in beer. J. Inst. Brew. 1974, 80, 162–163. [Google Scholar] [CrossRef]
- Picket, J.A.; Coates, J.; Peppard, T.L.; Sharpe, F.R. Chemical characterization of differences between ales and lagers. J. Inst. Brew 1976, 82, 233–238. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Coghe, S.; Verstrepen, K.J.; Verachtert, H.; Derdelinckx, G. Evolution of chemical and sensory properties during aging of top-fermented beer. J. Agric. Food Chem. 2003, 51, 6782–6790. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Chai, X.S. Some recent developments in headspace gas chromatography. Curr. Anal. Chem. 2005, 1, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Neven, H.; Derdelinckx, G. Flavor evolution of top fermented beers. MBAA Tech. Q. 1997, 35, 115–118. [Google Scholar]
- Thorne, R.S.W. The contribution of yeast to beer flavor. Tech. Quart. Master Brewers Ass. Am. 1966, 3, 160. [Google Scholar]
- Williams, A.A. Flavour research and the cider industry. J. Inst. Brew 1974, 80, 455. [Google Scholar] [CrossRef]
- Heresztyn, T. Metabolism of volatile phenolic-compounds from hydroxycinnamic acids by brettanomyces yeast. Arch. Microbiol. 1986, 146, 96–98. [Google Scholar] [CrossRef]
- Romano, A.; Perello, M.C.; Lonvaud-Funel, A.; Sicard, G.; de Revel, G. Sensory and analytical re-evaluation of “brett character”. Food Chem. 2009, 114, 15–19. [Google Scholar] [CrossRef]
- Boulton, C.; Quain, D. Brewing Yeast and Fermentation; Blackwell Science; Iowa State University Press: Oxford, UK; Malden, MA, USA; Ames, IA, USA, 2001. [Google Scholar]
- Boulton, R.B. Principles and Practices of Winemaking; Aspen: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Etievant, P. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Gerbaux, V.; Vincent, B. Effects of volatile phenols on sensory quality of red wines from different cultivars. Revue des Enologues 2001, 99, 15–18. [Google Scholar]
- Harrison, G.A. Flavour of beer—A review. J. Inst. Brew. 1970, 76, 486–495. [Google Scholar] [CrossRef] [Green Version]
Age (Months) | ||||||||
---|---|---|---|---|---|---|---|---|
LRI | Compound | 3 | 6 | 9 | 12 | 28 | Approximate | Descriptor |
Frequency of Detection | Threshold ppm * | |||||||
506 | Dimethyl sulfide | ND | ND | ND | 2 | 1 | 0.01–0.15 | sulfur, rotten |
593 | Diacetyl | ND | ND | 1 | 1 | 2 | 0.008–0.6 | buttery |
587 | Ethyl acetate | ND | ND | 2 | 2 | 1 | 0.5–50 | fruity |
658 | Propanoic acid | 3 | 4 | ND | 2 | 1 | 100–150 | rancid |
727 | 2-methyl-1-butanol (active amyl aclohol) | ND | 2 | ND | 4 | 2 | 50–65 | burnt |
745 | Isoamyl alcohol | 4 | ND | 2 | 2 | 2 | 40–70 | malt |
790 | Ethyl butyrate | 1 | 2 | ND | 2 | 2 | 0.05–0.3 | apple |
833 | Furfural (2-furanal) | ND | ND | 3 | 2 | 2 | 15–25 | bread |
875 | Isovaleric acid | 2 | 2 | 1 | 2 | 2 | 0.3–2.0 | rancid |
880 | Hexanol | 1 | ND | 1 | ND | 1 | 4 | green |
902 | Heptanal | ND | 2 | ND | 1 | 2 | 0.07–0.08 | rancid |
946 | Ethyl isohexanoate | 5 | ND | ND | 3 | 2 | ND | fruit |
1010 | Ethyl lactate | ND | ND | 1 | ND | 2 | 25 | fruit |
1019 | Hexanoic acid | 2 | 1 | 3 | 3 | 1 | 8–10.7 | sweaty |
1065 | Octanol | 2 | 2 | 1 | 1 | 1 | 0.9 | chemical |
1098 | Ethyl heptanoate | ND | 2 | ND | 2 | 2 | 0.7 | fruit |
1166 | Ethyl benzoate | ND | 2 | ND | 1 | 2 | ND | fruity |
1168 | 4-Ethylphenol | ND | ND | 3 | 2 | 3 | 0.3 | musky |
1204 | Decanal | ND | ND | 4 | ND | 1 | 0.006 | orange peel |
1241 | Ethyl phenacetate | ND | ND | ND | 1 | 1 | ND | fruit |
1253 | β-Phenethyl acetate | ND | ND | ND | ND | 1 | 2.5 | rose, sweet |
Age (Months) | ||||||
---|---|---|---|---|---|---|
LRI | 3 | 6 | 9 | 12 | 28 | |
Esters * | ||||||
Ethyl acetate | 587 | X | X | X | X | X |
Ethyl lactate | 821 | X | ND | ND | X | X |
Ethyl isovalerate | 862 | ND | X | X | X | X |
Isoamyl acetate | 884 | X | X | X | X | X |
Amyl acetate | 917 | ND | X | X | X | ND |
Ethyl isohexanoate | 968 | X | ND | X | X | X |
Ethyl hexanoate | 1000 | X | X | X | X | X |
Isoamyl lactate | 1069 | X | X | X | X | X |
Ethyl heptanoate | 1097 | X | ND | ND | ND | X |
Ethyl octanoate | 1198 | X | X | X | X | X |
Ethyl phenylethanoate | 1245 | X | X | X | X | X |
β-Phenethyl acetate | 1255 | X | X | X | X | X |
Ethyl nonanoate | 1296 | X | X | X | X | X |
Ethyl decanoate | 1395 | X | X | X | X | X |
Isoamyl Octanoate | 1456 | X | X | ND | ND | X |
2-methylbutyl octanoate | 1460 | X | ND | ND | ND | X |
Ethyl undecanoate | 1494 | X | ND | X | X | X |
Ketones * | ||||||
2-heptanone | 894 | ND | X | X | X | X |
Acids * | ||||||
Isovaleric acid | 861 | X | ND | ND | ND | ND |
Hexanoic acid | 1000 | X | X | ND | ND | X |
2-ethylhexanoic acid | 1122 | ND | X | X | ND | X |
Octanoic acid | 1180 | X | ND | ND | ND | X |
Decanoic acid | 1366 | X | ND | ND | ND | X |
Alcohols | ||||||
Isopentyl alcohol | 700 | X | X | X | X | X |
2-methylbutanol | 744 | ND | X | X | X | X |
2-Heptanol | 905 | ND | X | X | X | X |
Heptanol | 965 | ND | ND | ND | X | X |
2-Ethylhexanol | 1031 | X | ND | ND | ND | ND |
2-Nonanol | 1102 | ND | X | X | X | X |
Phenylethyl alcohol | 1112 | X | X | X | X | X |
Nonanol | 1172 | X | ND | ND | ND | ND |
Decanol | 1272 | X | X | X | X | X |
Aldehydes * | ||||||
Nonanal | 1103 | X | ND | ND | X | ND |
Decanal | 1198 | X | X | X | X | X |
Furans * | ||||||
5,5-dimethyl-2(5H)-furanone | 954 | ND | ND | ND | ND | X |
2,5-Dimethyl-4-hydroxy-3(2H)-furanone | 1083 | X | ND | ND | ND | ND |
Monoterpene alcohol * | ||||||
Alpha.-Terpineol | 1190 | X | X | X | X | ND |
Phenols * | ||||||
4-ethylphenol | 1166 | X | X | X | X | X |
4-ethylguaiacol | 1279 | X | X | X | X | X |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witrick, K.; Pitts, E.R.; O’Keefe, S.F. Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO). Beverages 2020, 6, 31. https://doi.org/10.3390/beverages6020031
Witrick K, Pitts ER, O’Keefe SF. Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO). Beverages. 2020; 6(2):31. https://doi.org/10.3390/beverages6020031
Chicago/Turabian StyleWitrick, Katherine, Eric R. Pitts, and Sean F. O’Keefe. 2020. "Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO)" Beverages 6, no. 2: 31. https://doi.org/10.3390/beverages6020031
APA StyleWitrick, K., Pitts, E. R., & O’Keefe, S. F. (2020). Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO). Beverages, 6(2), 31. https://doi.org/10.3390/beverages6020031