Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Proteomics Description
2.2.1. Sample Preparation
2.2.2. Mass Spectrometry
2.2.3. Proteomics Data Analysis
2.3. Physical Parameters (Color, Foam, and Bubbles)—RoboBEER
2.4. Near-Infrared Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Measurements (Proteomics, RoboBEER, and NIR)
3.2. Machine Learning Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective; Elsevier Science: Burlington, MA, USA, 2011. [Google Scholar]
- Zayas, J.F. Functionality of Proteins in Food; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Badui, S. Química de los Alimentos; Pearson Education: Ciudad de México, México, 2006. [Google Scholar]
- Campbell, G.M.; Mougeot, E. Creation and characterisation of aerated food products. Trends Food Sci. Technol. 1999, 10, 283–296. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Vulin, Z.; Mastanjević, K. Beer–The Importance of colloidal stability (non-biological haze). Fermentation 2018, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Shinagawa, K.; Hashimoto, N. Characterization of haze-forming proteins of beer and their roles in chill haze formation. J. Am. Soc. Brew. Chem. 1982, 40, 147–154. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Goswami, H.; Howitt, C.A.; Tanner, G.J. Proteomics as a tool to understand the complexity of beer. Food Res. Int. 2013, 54, 1001–1012. [Google Scholar] [CrossRef]
- Iimure, T.; Takoi, K.; Kaneko, T.; Kihara, M.; Hayashi, K.; Ito, K.; Sato, K.; Takeda, K. Novel prediction method of beer foam stability using protein Z, barley dimeric α-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin. J. Agric. Food Chem. 2008, 56, 8664–8671. [Google Scholar] [CrossRef]
- Berner, T.S.; Jacobsen, S.; Arneborg, N. The impact of different ale brewer’s yeast strains on the proteome of immature beer. BMC Microbiol. 2013, 13, 215. [Google Scholar] [CrossRef] [Green Version]
- Picariello, G.; Mamone, G.; Cutignano, A.; Fontana, A.; Zurlo, L.; Addeo, F.; Ferranti, P. Proteomics, Peptidomics, and Immunogenic Potential of Wheat Beer (Weissbier). J. Agric. Food Chem. 2015, 63, 3579–3586. [Google Scholar] [CrossRef]
- Picariello, G.; Bonomi, F.; Iametti, S.; Rasmussen, P.; Pepe, C.; Lilla, S.; Ferranti, P. Proteomic and peptidomic characterisation of beer: Immunological and technological implications. Food Chem. 2011, 124, 1718–1726. [Google Scholar] [CrossRef]
- Wu, M.J.; Rogers, P.J.; Clarke, F.M. 125th Anniversary Review: The role of proteins in beer redox stability. J. Inst. Brew. 2012, 118, 1–11. [Google Scholar] [CrossRef]
- Grochalová, M.; Konečná, H.; Stejskal, K.; Potěšil, D.; Fridrichová, D.; Srbová, E.; Ornerová, K.; Zdráhal, Z. Deep coverage of the beer proteome. J. Proteom. 2017, 162, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Condé, B.C.; Fuentes, S.; Caron, M.; Xiao, D.; Collmann, R.; Howell, K.S. Development of a robotic and computer vision method to assess foam quality in sparkling wines. Food Control 2017, 71, 383–392. [Google Scholar] [CrossRef]
- Men, H.; Shi, Y.; Jiao, Y.; Gong, F.; Liu, J. Electronic nose sensors data feature mining: A synergetic strategy for the classification of beer. Anal. Methods 2018, 10, 2016–2025. [Google Scholar] [CrossRef]
- Voss, H.G.J.; Mendes Júnior, J.J.A.; Farinelli, M.E.; Stevan, S.L. A Prototype to Detect the Alcohol Content of Beers Based on an Electronic Nose. Sensors 2019, 19, 2646. [Google Scholar] [CrossRef] [Green Version]
- Kerr, E.D.; Caboche, C.H.; Schulz, B.L. Post-translational modifications drive protein stability to control the dynamic beer brewing proteome. Mol. Cell. Proteom. 2019, 18, 1721–1731. [Google Scholar] [CrossRef]
- Xu, Y.; Bailey, U.M.; Schulz, B.L. Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS. Proteomics 2015, 15, 2177–2186. [Google Scholar] [CrossRef]
- Zacchi, L.F.; Schulz, B.L. SWATH-MS glycoproteomics reveals consequences of defects in the glycosylation machinery. Mol. Cell. Proteom. 2016, 15, 2435–2447. [Google Scholar] [CrossRef] [Green Version]
- Kerr, E.D.; Phung, T.K.; Caboche, C.H.; Fox, G.P.; Platz, G.J.; Schulz, B.L. The intrinsic and regulated proteomes of barley seeds in response to fungal infection. Anal. Biochem. 2019, 580, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F. Robotics and computer vision techniques combined with non-invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial intelligence applications. Food Control 2018, 92, 72–79. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B: Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Hao, J.; Li, Q.; Dong, J.; Yu, J.; Gu, G.; Fan, W.; Chen, J. Identification of the major proteins in beer foam by mass spectrometry following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Am. Soc. Brew. Chem. 2006, 64, 166–174. [Google Scholar] [CrossRef]
- Iimure, T.; Nankaku, N.; Hirota, N.; Tiansu, Z.; Hoki, T.; Kihara, M.; Hayashi, K.; Ito, K.; Sato, K. Construction of a novel beer proteome map and its use in beer quality control. Food Chem. 2010, 118, 566–574. [Google Scholar] [CrossRef]
- Rantanen, J.; Räsänen, E.; Antikainen, O.; Mannermaa, J.-P.; Yliruusi, J. In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: An evaluation of process-related variables and a development of non-linear calibration model. Chemom. Intell. Lab. Syst. 2001, 56, 51–58. [Google Scholar] [CrossRef]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Blasco, L.; Viñas, M.; Villa, T.G. Proteins influencing foam formation in wine and beer: The role of yeast. Int. Microbiol. 2011, 14, 61–71. [Google Scholar]
- Bamforth, C. 125th Anniversary Review: The Non-Biological Instability of Beer. J. Inst. Brew. 2011, 117, 488–497. [Google Scholar] [CrossRef]
- Bamforth, C. The foaming properties of beer. J. Inst. Brew. 1985, 91, 370–383. [Google Scholar] [CrossRef]
- Lusk, L.T.; Goldstein, H.; Ryder, D. Independent role of beer proteins, melanoidins and polysaccharides in foam formation. J. Am. Soc. Brew. Chem. 1995, 53, 93–103. [Google Scholar] [CrossRef]
- Evans, D.E.; Sheehan, M.; Stewart, D. The impact of malt derived proteins on beer foam quality. Part II: The influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. J. Inst. Brew. 1999, 105, 171–178. [Google Scholar] [CrossRef]
- Evans; Sheehan, M.C. Don’t be fobbed off: The substance of beer foam—A review. J. Am. Soc. Brew. Chem. 2002, 60, 47–57. [Google Scholar] [CrossRef]
- Optics, O. NIR Analysis of Fat and Protein Content in Milk. Available online: https://oceanoptics.com/nir-analysis-of-fat-and-protein-content-in-milk/ (accessed on 19 November 2019).
- Schönbrodt, T.; Mohl, S.; Winter, G.; Reich, G. NIR spectroscopy—a non-destructive analytical tool for protein quantification within lipid implants. J. Control. Release 2006, 114, 261–267. [Google Scholar] [CrossRef]
- Ingle, P.D.; Christian, R.; Purohit, P.; Zarraga, V.; Handley, E.; Freel, K.; Abdo, S. Determination of protein content by NIR spectroscopy in protein powder mix products. J. Aoac Int. 2016, 99, 360–363. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Feng, S.; Sun, D.-W. Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. J. Food Eng. 2008, 84, 124–131. [Google Scholar] [CrossRef]
- Fuentes, S.; Hernández-Montes, E.; Escalona, J.; Bota, J.; Viejo, C.G.; Poblete-Echeverría, C.; Tongson, E.; Medrano, H. Automated grapevine cultivar classification based on machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared spectroscopy parameters. Comput. Electron. Agric. 2018, 151, 311–318. [Google Scholar] [CrossRef]
- Fuentes, S.; Chacon, G.; Torrico, D.D.; Zarate, A.; Gonzalez Viejo, C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors 2019, 19, 3054. [Google Scholar] [CrossRef] [Green Version]
Beer Style | Country | Fermentation | Label |
---|---|---|---|
Abbey Ale | Belgium | Top | L |
India Pale Ale | Australia | Top | WIP |
Blonde Ale | Australia | Top | WB |
Porter | Poland | Top | Z |
Kolsch | Australia | Top | P |
Red Ale | USA | Top | RT |
Steam Ale | Australia | Top | SA |
Aged Ale | Scotland | Top | IG |
Sparkling Ale | Australia | Top | CS |
Saison | Australia | Top | LS |
Pale Lager | Mexico | Bottom | C |
Pale Lager | Mexico | Bottom | XX |
Vienna Lager | USA | Bottom | BL |
Pale Lager | Netherlands | Bottom | H |
Pale Lager | Czech Republic | Bottom | BC |
German Pilsner | Czech Republic | Bottom | PU |
Lambic Cassis | Belgium | Spontaneous | LC |
Lambic Framboise | Belgium | Spontaneous | LF |
Lambic Gueuze | Belgium | Spontaneous | LG |
Lambic Kriek | Belgium | Spontaneous | LK |
Lambic Kriek | Belgium | Spontaneous | OK |
Lambic Gueuze | Belgium | Spontaneous | OG |
Lambic Gueuze | Belgium | Spontaneous | OT |
Wild Saison | Australia | Spontaneous | LW |
Protein | MW (kDa) | Protein Name |
---|---|---|
NLTP1_HORVU | 12.3 | Non-specific lipid-transfer protein 1 (LTP 1) |
IAAE_HORVU | 16.1 | Trypsin inhibitor CMe |
NLTP2_HORVU | 10.4 | Probable non-specific lipid-transfer protein (LTP) |
HOG3_HORVU | 33.1 | Gamma-hordein-3 |
AVLA3_WHEAT | 19.3 | Avenin-like a3 |
IAAD_HORVU | 18.5 | Alpha-amylase/trypsin inhibitor CMd |
GLT3_WHEAT | 70.9 | Glutenin subunit 12 |
G3P1_YEAST | 35.8 | Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH 1) |
IAAA_HORVU | 15.5 | Alpha-amylase/trypsin inhibitor CMa |
HOG1_HORVU | 34.7 | Gamma-hordein-1 |
G3P1_CANGA | 35.9 | Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH 1) |
HOR1_HORVU | 33.4 | B1-hordein |
NLT2P_WHEAT | 7.0 | Non-specific lipid-transfer protein 2P (LTP2P) |
PAU5_YEAST | 12.8 | Seripauperin-5 |
ENO2_YEAST | 46.9 | Enolase 2 |
HINB1_HORVU | 16.1 | Hordoindoline-B1 (Puroindoline-B) |
BARW_HORVU | 13.7 | Barwin |
AMYB_HORVS | 59.6 | Beta-amylase |
AVLA4_WHEAT | 18.9 | Avenin-like a4 |
YGP1_YEAST | 37.3 | Protein YGP1 (GP38) |
HS16B_WHEAT | 16.9 | 16.9 kDa class I heat shock protein 2 |
EF1A_MAIZE | 49.2 | Elongation factor 1-alpha (EF-1-alpha) |
PGK_YEAST | 44.7 | Phosphoglycerate kinase |
PDC1_YEAST | 61.5 | Pyruvate decarboxylase isozyme 1 |
NLT2G_WHEAT | 9.8 | Non-specific lipid-transfer protein 2G (LTP2G) |
ICIC_HORVU | 8.3 | Subtilisin-chymotrypsin inhibitor CI-1C |
KPYK1_YEAST | 54.5 | Pyruvate kinase 1 (PK 1) |
HINA_HORVU | 16.5 | Hordoindoline-A |
TPIS_YEAST | 26.8 | Triosephosphate isomerase (TIM) |
LEA1_HORVU | 21.8 | ABA-inducible protein PHV A1 |
LAS1_ARATH | 86.5 | Lanosterol synthase |
ACT2_SCHCO | 41.8 | Actin-2 |
CIS3_YEAST | 23.2 | Cell wall mannoprotein CIS3 |
GDA7_WHEAT | 36.1 | Alpha/beta-gliadin clone PW8142 (Prolamin) |
PST1_YEAST | 45.8 | Cell wall mannoprotein PST1 (Haze protective factor 2) |
TRX2_YEAST | 11.2 | Thioredoxin-2 (Thioredoxin II) |
NDK1_SACOF | 16.6 | Nucleoside diphosphate kinase 1 |
HINB2_HORVU | 16.1 | Hordoindoline-B2 (Puroindoline-B) |
PR13_HORVU | 17.7 | Pathogenesis-related protein PRB1-3 |
ENO1_YEAST | 46.8 | Enolase 1 |
AWA1_YEASK | 166.9 | Cell wall protein AWA1 |
PDI_HORVU | 56.5 | Protein disulfide-isomerase (PDI) |
G3PC2_ARATH | 36.9 | Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic |
ENO_YARLI | 47.3 | Enolase |
RLA2_PSEMZ | 1.0 | 60S acidic ribosomal protein P2 (Fragment) |
HS17A_ORYSJ | 17.9 | 17.9 kDa class I heat shock protein |
RL8B_YEAST | 28.1 | 60S ribosomal protein L8-B (L4) |
ENO_ASHGO | 46.6 | Enolase |
RS19B_YEAST | 15.9 | 40S ribosomal protein S19-B |
EXG1_YEAST | 51.3 | Glucan 1,3-beta-glucosidase I/II |
MY119_ARATH | 48.5 | Transcription factor MYB119 |
ALF_YEAST | 39.6 | Fructose-bisphosphate aldolase |
RIP1_HORVU | 30.0 | Protein synthesis inhibitor I |
ACBP_YEAST | 10.1 | Acyl-CoA-binding protein (ACBP) |
Stage | Samples | Observations (Samples × Targets) | r | Slope | Performance (MSE) |
---|---|---|---|---|---|
Model 1: Near-infrared inputs | |||||
Training | 50 | 2700 | 0.97 | 0.93 | 0.02 |
Testing | 22 | 1188 | 0.68 | 0.56 | 0.20 |
Overall | 72 | 3888 | 0.89 | 0.81 | -- |
Model 2: RoboBEER inputs | |||||
Training | 50 | 2700 | 0.96 | 0.90 | 0.02 |
Testing | 22 | 1188 | 0.90 | 0.85 | 0.07 |
Overall | 72 | 3888 | 0.93 | 0.88 | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Caboche, C.H.; Kerr, E.D.; Pegg, C.L.; Schulz, B.L.; Howell, K.; Fuentes, S. Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling. Beverages 2020, 6, 28. https://doi.org/10.3390/beverages6020028
Gonzalez Viejo C, Caboche CH, Kerr ED, Pegg CL, Schulz BL, Howell K, Fuentes S. Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling. Beverages. 2020; 6(2):28. https://doi.org/10.3390/beverages6020028
Chicago/Turabian StyleGonzalez Viejo, Claudia, Christopher H. Caboche, Edward D. Kerr, Cassandra L. Pegg, Benjamin L. Schulz, Kate Howell, and Sigfredo Fuentes. 2020. "Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling" Beverages 6, no. 2: 28. https://doi.org/10.3390/beverages6020028
APA StyleGonzalez Viejo, C., Caboche, C. H., Kerr, E. D., Pegg, C. L., Schulz, B. L., Howell, K., & Fuentes, S. (2020). Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling. Beverages, 6(2), 28. https://doi.org/10.3390/beverages6020028