Comparative Study of Phenolic Profile and Content in Infusions and Concentrated Infusions of Buddleja Scordioides Treated by High-Intensity Pulsed Electric Fields (HiPEF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Salvilla Infusion and Concentrates
2.2.2. HiPEF Treatment
2.2.3. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Assay
2.2.4. Inhibition of Nitric Oxide
2.2.5. Analysis of Phenolic Compounds by UPLC-ESI-MS/MS
2.3. Statistical Analysis
3. Results
3.1. Physicochemical Parameters
3.2. Concentration Effects on Polyphenol Content
3.3. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Whitehead, J. Functional drinks containing herbal extracts. In Chemistry and Technology of Soft Drinks and Fruit Juices; John Wiley & Sons Ltd.: Now York, NY, USA, 2016; pp. 225–257. [Google Scholar]
- Rodrigues, M.J.; Neves, V.; Martins, A.; Rauter, A.P.; Neng, N.R.; Nogueira, J.M.; Custódio, L. In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chem. 2016, 200, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Atoui, A.K.; Mansouri, A.; Boskou, G.; Kefalas, P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem. 2005, 89, 27–36. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crop. Prod. 2015, 65, 247–258. [Google Scholar] [CrossRef]
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Arrieta-Baez, D.; de Esparza, R.R.; Jiménez-Estrada, M. Mexican plants used in the salmonellosis treatment. In Salmonella-A Diversified Superbug; Kumar, Y., Ed.; InTech Open: London, UK, 2012; Available online: http://www.intechopen.com/books/salmonella-a-diversifiedsuperbug/mexican-plants-used-in-the-salmonellosis-treatment (accessed on 20 July 2018).
- Avila-Acevedo, J.; Castañeda, C.M.C.; Benitez, F.J.C.; Durán, D.A.; Barroso, V.R.; Martínez, C.G.; de Vivar, A.R. Photoprotective activity of Buddleja scordioides. Fitoterapia 2005, 76, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Hylands, P.J.; Mensah, A.Y.; Hensel, A.; Deters, A.M. In vitro tests and ethnopharmacological investigations: wound healing as an example. J. Ethnopharmacol. 2005, 100, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.R.; Delgadillo, A.J.; Hurtado, M.; Domínguez-Ramírez, A.M.; Medina, J.R.; Aoki, K. The antispasmodic activity of Buddleja scordioides and Buddleja perfoliata on isolated intestinal preparations. Biol. Pharm. Bull. 2006, 29, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Plaza, L.; Elez-Martínez, P.; De Ancos, B.; Martín-Belloso, O.; Cano, M.P. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J. Agric. Food Chem. 2005, 53, 4403–4409. [Google Scholar] [CrossRef] [PubMed]
- Charles-Rodríguez, A.V.; Nevárez-Moorillón, G.V.; Zhang, Q.H.; Ortega-Rivas, E. Comparison of thermal processing and pulsed electric fields treatment in pasteurization of apple juice. Food Bioprod. Process. 2007, 85, 93–97. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frigola, A. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J. Agric. Food Chem. 2010, 58, 10070–10075. [Google Scholar] [CrossRef] [PubMed]
- Arancibia-Avila, P.; Namiesnik, J.; Toledo, F.; Werner, E.; Martinez-Ayala, A.L.; Rocha-Guzmán, N.E.; Gorinstein, S. The influence of different time durations of thermal processing on berries quality. Food Control 2012, 26, 587–593. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Isoflavones and antioxidant capacity of Peruvian and Brazilian lupin cultivars. J. Food Comp. Anal. 2009, 22, 397–404. [Google Scholar] [CrossRef]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Matoba, T. Change in the radical-scavenging activity of quercetin and epigallocatechin gallate during heat treatment. J. Home Econ. Jpn. 2004, 55, 213–217. [Google Scholar]
- Buchner, N.; Krumbein, A.; Rohn, S.; Kroh, L.W. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Comm. Mass. Spec. 2006, 20, 3229–3235. [Google Scholar] [CrossRef] [PubMed]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Gimeno-Añó, V.; Martín-Belloso, O. Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J. Food Eng. 2008, 89, 210–216. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Arthur, H.; Joubert, E.; De Beer, D.; Malherbe, C.J.; Witthuhn, R.C. Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurisation of plant material. Food Chem. 2011, 127, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Gancel, A.L.; Feneuil, A.; Acosta, O.; Pérez, A.M.; Vaillant, F. Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Res. Intl. 2011, 44, 2243–2251. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V.; Knorr, D. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Proc. Process. Intensification 2007, 46, 537–546. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V. Pulsed electric field assisted extraction—A case study. In Nonthermal Processing Technologies for Food; Blackwell Pub.: New York, NY, USA, 2011; pp. 190–200. [Google Scholar]
- MacGregor, S.J.; Farish, O.; Fouracre, R.; Rowan, N.J.; Anderson, J.G. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Trans. Plasma Sci. 2000, 28, 144–149. [Google Scholar] [CrossRef]
- Raso, J.; Calderón, M.L.; Góngora, M.; Barbosa-Cánovas, G.V.; Swanson, B.G. Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. J. Food Sci. 1998, 63, 1042–1044. [Google Scholar] [CrossRef]
- Raso, J.; Calderón, M.L.; Góngora, M.; Barbosa-Cánovas, G.; Swanson, B.G. Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields. LWT-Food Sci. Technol. 1998, 31, 668–672. [Google Scholar] [CrossRef]
- Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Van der Plancken, I.; Matser, A.M. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innov. Food Sci. Emegr. Technol. 2011, 12, 235–243. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, R.; Lu, R.; Wang, M.; Qian, P.; Yang, W. Effect of PEF on microbial inactivation and physical–chemical properties of green tea extracts. LWT-Food Sci. Technol. 2008, 41, 425–431. [Google Scholar] [CrossRef]
- Vazquez-Cabral, D.; Valdez-Fragoso, A.; Rocha-Guzman, N.E.; Moreno-Jimenez, M.R.; Gonzalez-Laredo, R.F.; Morales-Martinez, P.S.; Gallegos-Infante, J.A. Effect of pulsed electric field (PEF)-treated kombucha analogues from Quercus obtusata infusions on bioactives and microorganisms. Innov. Food Sci. Emerg. Technol. 2016, 34, 171–179. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Garcia-Gasca, T.; Lujan-García, B.A. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009, 115, 1320–1325. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Panda, A.B.; Raj, N.R.; Shrivastava, A.; Prathani, R. The evaluation of nitric oxide scavenging activity of Acalypha indica Linn root. Asian J. Res. Chem. 2009, 2, 148–150. [Google Scholar]
- Meneses, N.; Jaeger, H.; Knorr, D. pH-changes during pulsed electric field treatments—Numerical simulation and in situ impact on polyphenoloxidase inactivation. Innov. Food Sci. Emerg. Technol. 2011, 12, 499–504. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martin-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem. 2012, 60, 9667–9672. [Google Scholar] [CrossRef] [PubMed]
- Makila, L.; Laaksonen, O.; Alanne, A.L.; Kortesniemi, M.; Kallio, H.; Yang, B. Stability of hydroxycinnamic acid derivatives, flavonol glycosides and anthocyanins in black currant juice. J. Agric. Food Chem. 2016, 64, 4584–4598. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Shahidi, F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. J. Funct. Foods 2017, 38, 716–722. [Google Scholar] [CrossRef]
- Makris, D.P.; Rossiter, J.T. Quercetin and rutin (quercetin 3-O-rhamnosylglucoside) thermal degradation in aqueous media under alkaline conditions. Spec. Publ.-R. Soc. Chem. 2000, 248, 216–238. [Google Scholar]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Miller, D.J.; Hawthorne, S.B.; Gizir, A.M.; Clifford, A. Solubility of polycyclic aromatic hydrocarbons in subcritical water from 298 K to 498 K. J. Chem. Eng. Data 1998, 43, 1043–1047. [Google Scholar] [CrossRef]
- Lee, J.H.; Ko, M.J.; Chung, M.S. Subcritical water extraction of bioactive components from red ginseng (Panax ginseng CA Meyer). J. Supercrit. Fluids 2018, 133, 177–183. [Google Scholar] [CrossRef]
- Bi, X.; Liu, F.; Rao, L.; Li, J.; Liu, B.; Liao, X.; Wu, J. Effects of electric field strength and pulse rise time on physicochemical and sensory properties of apple juice by pulsed electric field. Innov. Food Sci. Emerg. Technol. 2013, 17, 85–92. [Google Scholar] [CrossRef]
- Sánchez-Vega, R.; Elez-Martínez, P.; Martín-Belloso, O. Effects of high-intensity pulsed electric fields processing parameters on the chlorophyll content and its degradation compounds in broccoli juice. Food Bioprocess Technol. 2014, 7, 1137–1148. [Google Scholar] [CrossRef]
Experimental Run | % pulse | Time (µs) | Frequency (Hz) |
---|---|---|---|
1 | 90 | 4 | 100 |
2 | 25 | 20 | 300 |
3 | 25 | 20 | 400 |
Parameter | Product | ||||
---|---|---|---|---|---|
Infusion | Concentrate | HiPEF (800 kJ/kg) | HiPEF (1000 kJ/kg) | HiPEF (1100 kJ/kg) | |
Solid content | 216 ± 0.4 | 802 ± 7.0 | 777 ± 17 | 771 ± 14 | 769 ± 18 |
pH | 6.7 ± 0.1 | 6.0 ± 0.00 | 6.5 ± 0.0 | 6.5 ± 0.0 | 6.5 ± 0.0 |
No. | Chemical Compound | Retention Time (PDA) | Transitions | Infusion | Concentrate | HiPEF 800 kJ/kg | HiPEF 1000 kJ/kg | HiPEF 1100 kJ/kg |
---|---|---|---|---|---|---|---|---|
1. | Quinic acid | 1.66 | 191.20 > 85.06 | 0.94 ± 0.32 a | 1.41 ± 0.31 a | 2.71 ± 0.12 b | 3.29 ± 0.59 b | 2.14 ± 0.06 c |
2. | Shikimic acid | 1.69 | 173.18 > 111.07 | 0.66 ± 0.12 a | 1.65 ± 0.93 ab | 1.05 ± 0.06 b | 0.93 ± 0.34 b | 0.43 ± 0.01 c |
3. | Protocatechuic acid | 5.91 | 153.15 > 109.05 | Nd | 0.54 ± 0.05 a | Nd | Nd | Nd |
4. | Chlorogenic acid | 7.49 | 353.34 > 191.06 | Nd | Nd | 3.945 ± 0.61 a | Nd | Nd |
5. | 4-Hydroxybenzoic acid | 7.88 | 137.04 > 93.05 | 0.18 ± 0.01 a | 0.11 ± 0.01 b | Nd | Nd | Nd |
6. | Vanillic acid | 8.78 | 167.18 > 123.09 | Nd | 0.02 ± 0.02 a | Nd | Nd | Nd |
7. | Caffeic acid | 8.91 | 179.19 > 135.08 | Nd | 0.21 ± 0.03 a | Nd | Nd | Nd |
8. | Coumaric acid | 10.76 | 163.24 > 119.08 | 0.007 ± 0.00 a | 0.039 ± 0.01 b | Nd | Nd | Nd |
9. | Ellagic acid | 11.11 | 301.00 > 229.00 | Nd | Nd | 0.35 ± 0.07 a | 1.06 ± 0.07 b | 0.60 ± 0.01 c |
10. | Ferulic acid | 11.37 | 193.24 > 134.04 | Nd | 0.06 ± 0.01 a | Nd | Nd | Nd |
11. | Rosmarinic acid | 12.52 | 359.28 > 161.04 | 0.001 ± 0.00 a | 0.02 ± 0.00 b | 0.001 ± 0.00 a | 0.001 ± 0.00 a | 0.001 ± 0.00 a |
12. | Benzoic acid | 12.84 | 121.10 > 77.06 | 0.062 ± 0.00 a | 0.05 ± 0.00 b | 0.03 ± 0.00 c | 0.03 ± 0.00 c | 0.03 ± 0.00 c |
Total content | 1.85 ± 0.43 a | 4.12 ± 1.34 bd | 8.09 ± 0.87 c | 5.32 ± 0.86 d | 3.2 ± 0.09 b |
No. | Chemical Compound | Rt (PDA) min | λmax nm | Transitions | Infusion | Concentrate | HiPEF 800 kJ/kg | HiPEF 1000 kJ/kg | HiPEF 1100 kJ/kg |
---|---|---|---|---|---|---|---|---|---|
1. | Rutin | 10.34 | 353.5 | 609.40 > 301.15 | tr | 0.060 ± 0.02 a | 0.01 ± 0.00 b | 0.003 ± 0.0 c | 0.003 ± 0.0 c |
2. | Quercetin-3-O-β-glucuronide | 11.05 | 353.5 | 477.26 > 300.42 | tr | 0.036 ± 0.00 a | tr | 0.025 ± 0.0 b | 0.025 ± 0.0 b |
3. | Isoquercitrin | 11.09 | 353.5 | 463.36 > 300.42 | tr | 0.204 ± 0.02 a | 0.24 ± 0.01 a | 0.19 ± 0.01 b | 0.22 ± 0.00 a |
4. | Naringin | 11.88 | 282.5 | 579.32 > 151.02 | tr | tr | tr | tr | Nd |
5. | Neohesperidin | 12.34 | 352.5 | 609.40 > 301.15 | tr | tr | tr | tr | Tr |
6. | Luteolin | 14.93 | 347.5 | 285.21 > 133.04 | tr | 0.34 ± 0.04 a | tr | tr | Tr |
7. | Quercetin | 15.14 | 370.5 | 301.20 > 151.02 | tr | 0.86 ± 0.18 a | 0.007 ± 0.0 b | 0.004 ± 0.0 b | 0.008 ± 0.0 b |
8. | Acacetin | 15.20 | 333.5 | 283.23 > 268.10 | tr | 0.15 ± 0.04 b | tr | tr | Tr |
9. | Naringenin | 16.34 | 288.5 | 271.28 > 119.06 | tr | 0.02 ± 0.01 a | 0.02 ± 0.02 a | 0.005 ± 0.0 b | 0.002 ± 0.0 b |
10. | Apigenin | 16.45 | 335.5 | 269.27 > 117.04 | tr | 0.07 ± 0.02 b | tr | tr | Nd |
11. | Kaempferol | 16.93 | 363.5 | 285.22 > 151.02 | tr | 0.005 ± 0.00 a | tr | tr | 0.002 ± 0.0 b |
Total content | tr | 1.74 ± 0.27 a | 0.28 ± 0.03 b | 0.23 ± 0.02 b | 0.27 ± 0.00 b |
Experimental Sample | DPPH (%) | % Inhibition of NO |
---|---|---|
Control NO | 3.1 ± 0.01 | |
Control DPPH | 28.5 ± 3.2 | |
Infusion | 73.2 ± 0.1 a | 38.48 ± 7.9 a |
Concentrates | 74.8 ± 0.9 b | 27.85 ± 3.6 ac |
Concentrates treated by HiPEF 800 | 65.6 ± 0.3 c | 23.10 ± 0.4 b |
Concentrates 1000 | 71.4 ± 0.3 d | 26.89 ± 1.7 c |
Concentrates 1100 | 63.8 ± 0.2 e | 24.21 ± 0.1 d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Rivas, J.O.; Gallegos-Infante, J.A.; Valdez-Fragoso, A.; Rocha-Guzmán, N.E.; González-Laredo, R.F.; Rodríguez-Ramírez, A.; Gamboa-Gómez, C.I.; Moreno-Jiménez, M.R. Comparative Study of Phenolic Profile and Content in Infusions and Concentrated Infusions of Buddleja Scordioides Treated by High-Intensity Pulsed Electric Fields (HiPEF). Beverages 2018, 4, 81. https://doi.org/10.3390/beverages4040081
Díaz-Rivas JO, Gallegos-Infante JA, Valdez-Fragoso A, Rocha-Guzmán NE, González-Laredo RF, Rodríguez-Ramírez A, Gamboa-Gómez CI, Moreno-Jiménez MR. Comparative Study of Phenolic Profile and Content in Infusions and Concentrated Infusions of Buddleja Scordioides Treated by High-Intensity Pulsed Electric Fields (HiPEF). Beverages. 2018; 4(4):81. https://doi.org/10.3390/beverages4040081
Chicago/Turabian StyleDíaz-Rivas, Jesús Omar, José Alberto Gallegos-Infante, Aurora Valdez-Fragoso, Nuria Elizabeth Rocha-Guzmán, Rubén Francisco González-Laredo, Alfredo Rodríguez-Ramírez, Claudia Ivette Gamboa-Gómez, and Martha Rocío Moreno-Jiménez. 2018. "Comparative Study of Phenolic Profile and Content in Infusions and Concentrated Infusions of Buddleja Scordioides Treated by High-Intensity Pulsed Electric Fields (HiPEF)" Beverages 4, no. 4: 81. https://doi.org/10.3390/beverages4040081
APA StyleDíaz-Rivas, J. O., Gallegos-Infante, J. A., Valdez-Fragoso, A., Rocha-Guzmán, N. E., González-Laredo, R. F., Rodríguez-Ramírez, A., Gamboa-Gómez, C. I., & Moreno-Jiménez, M. R. (2018). Comparative Study of Phenolic Profile and Content in Infusions and Concentrated Infusions of Buddleja Scordioides Treated by High-Intensity Pulsed Electric Fields (HiPEF). Beverages, 4(4), 81. https://doi.org/10.3390/beverages4040081