Potential Safety Issues Surrounding the Use of Benzoate Preservatives
Abstract
:1. Introduction
2. The Potential of Benzoate to Generate Benzene
3. What Have We Learned from Patients on Prolonged Administration with High Levels of Benzoate?
4. Benzoate Has the Potential to Exert both Positive and Negative Effects on Brain Neurochemistry
5. Conclusions
Conflicts of Interest
References
- Nair, B. Final report on the safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate. Int. J. Toxicol. 2001, 20 (Suppl. S3), 23–50. [Google Scholar] [PubMed]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate. Int. J. Toxicol. 2017, 36 (Suppl. S3), 5S–30S. [Google Scholar] [CrossRef] [PubMed]
- Gatley, S.J.; Sherratt, H.S. The synthesis of hippurate from benzoate and glycine by rat liver mitochondria. Submitochondrial localization and kinetics. Biochem. J. 1977, 166, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Beyoglu, D.; Idle, J.R. The glycine deportation system and its pharmacological consequences. Pharmacol. Ther. 2012, 135, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.K.; Lawrence, G.D. Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition metal catalyst. J. Agric. Food Chem. 1993, 40, 693–695. [Google Scholar] [CrossRef]
- Falzone, L.; Marconi, A.; Loreto, C.; Franco, S.; Spandidos, D.A.; Libra, M. Occupational exposure to carcinogens: Benzene, pesticides and fibers (review). Mol. Med. Rep. 2016, 14, 4467–4474. [Google Scholar] [CrossRef] [PubMed]
- Lindner, D.; Smith, S.; Leroy, C.M.; Tricker, A.R. Comparison of exposure to selected cigarette smoke constituents in adult smokers and nonsmokers in a european, multicenter, observational study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Piper, J.D.; Piper, P.W. Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–880. [Google Scholar] [CrossRef]
- Husson, M.C.; Schiff, M.; Fouilhoux, A.; Cano, A.; Dobbelaere, D.; Brassier, A.; Mention, K.; Arnoux, J.B.; Feillet, F.; Chabrol, B.; et al. Efficacy and safety of i.V. Sodium benzoate in urea cycle disorders: A multicentre retrospective study. Orphanet J. Rare Dis. 2016, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, S.; Ohura, T.; Sakamoto, O.; Okuyama, T.; Tanaka, T.; Takayanagi, M.; Endo, F.; Matsubara, Y. Clinical trial of sodium phenylbutyrate in patients with urea cycle disorders in japan. Mol. Genet. Metab. 2009, 98, 145. [Google Scholar]
- Misel, M.L.; Gish, R.G.; Patton, H.; Mendler, M. Sodium benzoate for treatment of hepatic encephalopathy. Gastroenterol. Hepatol. 2013, 9, 219–227. [Google Scholar]
- Ferenci, P. Treatment options for hepatic encephalopathy: A review. Semin. Liver Dis. 2007, 27, 10–17. [Google Scholar] [CrossRef]
- Enns, G.M.; Berry, S.A.; Berry, G.T.; Rhead, W.J.; Brusilow, S.W.; Hamosh, A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N. Engl. J. Med. 2007, 356, 2282–2292. [Google Scholar] [CrossRef] [PubMed]
- NeSmith, M.; Ahn, J.; Flamm, S.L. Contemporary understanding and management of overt and covert hepatic encephalopathy. Gastroenterol. Hepatol. 2016, 12, 91–100. [Google Scholar]
- Kaboglu, A.; Aktac, T. A study of the effects of sodium benzoate on the mouse liver. Biologia 2002, 57, 375–382. [Google Scholar]
- Wolosker, H.; Blackshaw, S.; Snyder, S.H. Serine racemase: A glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc. Natl. Acad. Sci. USA 1999, 96, 13409–13414. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.E.; Na, K.S.; Cho, S.J.; Kang, S.G. Low d-serine levels in schizophrenia: A systematic review and meta-analysis. Neurosci. Lett. 2016, 634, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Uslaner, J.M.; Hutson, P.H. The therapeutic potential of d-amino acid oxidase (daao) inhibitors. Open Med. Chem. J. 2010, 4, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, S.; Rosini, E.; Pollegioni, L.; Molla, G. d-amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr. Pharm. Des. 2013, 19, 2499–2511. [Google Scholar] [CrossRef] [PubMed]
- Chue, P.; Lalonde, J.K. Addressing the unmet needs of patients with persistent negative symptoms of schizophrenia: Emerging pharmacological treatment options. Neuropsychiatr. Dis. Treat. 2014, 10, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K. Targeting of nmda receptors in new treatments for schizophrenia. Expert Opin. Ther. Targets 2014, 18, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Khasnavis, S.; Pahan, K. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective parkinson disease protein dj-1 in astrocytes and neurons. J. Neuroimmune Pharmacol. 2012, 7, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.Y.; Lin, C.H.; Green, M.F.; Hellemann, G.; Huang, C.C.; Chen, P.W.; Tun, R.; Chang, Y.C.; Tsai, G.E. Add-on treatment of benzoate for schizophrenia: A randomized, double-blind, placebo-controlled trial of d-amino acid oxidase inhibitor. JAMA Psychiatry 2013, 70, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.Y.; Lin, C.H. Glycine transporter-1 and d-amino acid oxidase based modulation of nmdar neurotransmission: Diagnostic and therapeutic implications. J. Neurochem. 2014, 130, 37. [Google Scholar]
- Lin, C.Y.; Liang, S.Y.; Chang, Y.C.; Ting, S.Y.; Kao, C.L.; Wu, Y.H.; Tsai, G.E.; Lane, H.Y. Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: A randomised, double-blind, placebo-controlled trial. World J. Biol. Psychiatry 2015, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Yang, H.T.; Chiu, C.C.; Lane, H.Y. Blood levels of d-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci. Rep. 2017, 7, 14849. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, P.K.; Chang, Y.C.; Chuo, L.J.; Chen, Y.S.; Tsai, G.E.; Lane, H.Y. Benzoate, a d-amino acid oxidase inhibitor, for the treatment of early-phase alzheimer disease: A randomized, double-blind, placebo-controlled trial. Biol. Psychiatry 2014, 75, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Modi, K.K.; Roy, A.; Brahmachari, S.; Rangasamy, S.B.; Pahan, K. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of alzheimer’s disease. PLoS ONE 2015, 10, e0130398. [Google Scholar] [CrossRef] [PubMed]
- Khasnavis, S.; Pahan, K. Cinnamon treatment upregulates neuroprotective proteins parkin and dj-1 and protects dopaminergic neurons in a mouse model of parkinson’s disease. J. Neuroimmune Pharmacol. 2014, 9, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, C.P.S.; Erasmus, E.; van der Sluis, R.; Nortje, C.; van Dijk, A.A. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab. Rev. 2014, 46, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Bugarski-Kirola, D.; Blaettler, T.; Arango, C.; Fleischhacker, W.W.; Garibaldi, G.; Wang, A.; Dixon, M.; Bressan, R.A.; Nasrallah, H.; Lawrie, S.; et al. Bitopertin in negative symptoms of schizophrenia-results from the phase iii flashlyte and daylyte studies. Biol. Psychiatry 2017, 82, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Rangan, C.; Barceloux, D.G. Food additives and sensitivities. Dis. Mon. 2009, 55, 292–311. [Google Scholar] [CrossRef] [PubMed]
- Rangan, C.; Barceloux, D.G. Food contamination. Dis. Mon. 2009, 55, 263–291. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Andjelkovic, M.; De Wil, M.; Vinkx, C.; Huybrechts, I.; Van Loco, J.; Van Oyen, H.; Goeyens, L. Estimate of intake of benzoic acid in the belgian adult population. Food Addit. Contam. 2009, 26, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Sieber, R.; Butikofer, U.; Bosset, J.O. Benzoic acid as a natural compound in cultured dairy products and cheese. Int. Dairy J. 1995, 5, 227–246. [Google Scholar] [CrossRef]
- Jana, A.; Modi, K.K.; Roy, A.; Anderson, J.A.; van Breemen, R.B.; Pahan, K. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: Therapeutic implications for neurodegenerative disorders. J. Neuroimmune Pharmacol. 2013, 8, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Khoshnoud, M.J.; Siavashpour, A.; Bakhshizadeh, M.; Rashedinia, M. Effects of sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. J. Biochem. Mol. Toxicol. 2018, 32. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, P.A.; Haenggeli, C.A. Food colourings, preservatives, and hyperactivity. Lancet 2007, 370, 1524–1525. [Google Scholar] [CrossRef]
- Petrus, M.; Bonaz, S.; Causse, E.; Rhabbour, M.; Moulie, N.; Netter, J.C.; Bildstein, G. Asthma induced by benzoate contained in some foods and antiallergic drugs. Arch. Pediatr. 1996, 3, 984–987. [Google Scholar] [CrossRef]
- Jacob, S.E.; Hill, H.; Lucero, H.; Nedorost, S. Benzoate allergy in children—From foods to personal hygiene products. Pediatr. Dermatol. 2016, 33, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Stratford, M.; Anslow, P.A. Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiol. Lett. 1996, 142, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Stratford, M.; Nebe-von-Caron, G.; Steels, H.; Novodvorska, M.; Ueckert, J.; Archer, D.B. Weak-acid preservatives: Ph and proton movements in the yeast Saccharomyces cerevisiae. Int. J. Food Microbiol. 2013, 161, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Piper, P.W. Yeast superoxide dismutase mutants reveal a prooxidant action of weak organic acid food preservatives. Free Radic. Biol. Med. 1999, 27, 1219–1227. [Google Scholar] [CrossRef]
- Raposa, B.; Ponusz, R.; Gerencser, G.; Budan, F.; Gyongyi, Z.; Tibold, A.; Hegyi, D.; Kiss, I.; Koller, A.; Varjas, T. Food additives: Sodium benzoate, potassium sorbate, azorubine, and tartrazine modify the expression of nf kappa b, gadd45 alpha, and mapk8 genes. Physiol. Int. 2016, 103, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Piper, P.W. Resistance of yeasts to weak organic acid food preservatives. Adv. Appl. Microbiol. 2011, 77, 97–113. [Google Scholar] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piper, P.W. Potential Safety Issues Surrounding the Use of Benzoate Preservatives. Beverages 2018, 4, 33. https://doi.org/10.3390/beverages4020033
Piper PW. Potential Safety Issues Surrounding the Use of Benzoate Preservatives. Beverages. 2018; 4(2):33. https://doi.org/10.3390/beverages4020033
Chicago/Turabian StylePiper, Peter W. 2018. "Potential Safety Issues Surrounding the Use of Benzoate Preservatives" Beverages 4, no. 2: 33. https://doi.org/10.3390/beverages4020033
APA StylePiper, P. W. (2018). Potential Safety Issues Surrounding the Use of Benzoate Preservatives. Beverages, 4(2), 33. https://doi.org/10.3390/beverages4020033