The Gushing Experience—A Quick Overview
Abstract
:1. Introduction
2. Types and Causes of Beer Gushing
2.1. A Short Overview of Hydrophobins and Gushing Mechanism
2.2. Primary Gushing
2.3. Secondary Gushing
2.3.1. Proteins
2.3.2. Metal Ions and Oxalic Acid
2.3.3. Hops Constituents
2.3.4. Storage Temperature
2.3.5. Bottle Conditioning
3. Methods Concerning the Prevention of Beer Gushing
3.1. Biological Methods
3.2. Physical Methods
3.2.1. Storage Time
3.2.2. Mixing of Different Batches
3.2.3. Membrane Filtration and Pasteurization
3.2.4. Radiation
3.2.5. Magnetic Field Application
3.2.6. Ultrasonic Vibrations
3.3. Addition of Different Compounds
3.3.1. Chemicals
3.3.2. Enzyme Addition
3.3.3. Hop Compounds
3.3.4. Polar and Non-Polar Molecules
4. Gushing Potential Evaluation Methods
- Carlsberg test—developed by Vaag et al. in 1993 [71], it is relatively simple to perform: 100 g of malt and 400 mL of water is subjected to mixing in a blender. Fifty milliliters of this extract is then added to a bottle of commercial beer, pasteurized, weighed, and closed. The bottle is then attached to a shaker and left for 3 days. After 3 days, the bottle is opened, and the quantity of beer escaped from it is measured by weighing. However, standard deviations can be quite high, and according to Garbe et al. [50], the type of used beer has a significant influence on the results.
- Modified Carlsberg test (MTC)—in order to set a more uniform test material, Radau et al. [72] introduced an aqueous extract of coarse-ground malt to bottled carbonated water (7 g/L CO2) instead of beer. The bottles are shaken for 3 days and then opened. The quantity of beer loss from the bottles is measured by weighing Radau et al. [72]: 0–5 g qualifies as no gushing; 5–50 g is described as possible gushing, and >50 g is indicative of gushing. This test was accepted by MEBAK®, but as it turns out, this test also has a high potential for false negative results.
- Doubly modified Carlsberg test (M2TC)—Garbe et al. [73] modified the original Carlsberg test by introducing the preparation of congress wort, which was then added to carbonated water as a test agent. This modification contributed to a much greater gushing expression.
- Enzyme-linked immunosorbent assay (ELISA)—a method implemented by Sarlin et al. in 2005 [3] and patented by Haikara et al. in 2006 [74]. This method is used for the screening and detection of hydrophobins in barley and malt. The downside of this test is that it has a limit of 100 µg/mL, and beyond this number, the distinction between hydrophobins concentration is not detectable (Sarlin et al.) [3]. Before ELISA analysis, samples can be diluted.
- Combined method of particle size analysis and charge titration test—this method was originally developed for beer colloidal stability analysis [75]. Based on the intensity of light going through dispersed protein particles in beer (particles size of 1–2 nm), it turned out that the detected stray light is significantly higher for samples prone to gushing than for non-gushing samples. In order to confirm the gushing samples, the particle charge titration method was used, and the results showed that samples prone to gushing needed higher titrated volumes in order to neutralize the charge [76].
- Tracers test—this method is based on the detection of a particular molecule present in a gushing material, linked with gushing potential. For example, alkaline foam protein A (AfpA) is a fungispumin produced by Fusarium sp. that can be found in infected malt, and contributes to beer gushing. According to Zapf et al. [17], AfpA may be used as a gushing marker.
- Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) test—according to Neuhof et al. [77], this method can be used to asses hydrophobins, with mandatory purification of hydrophobins prior to analysis. The non-specific lipid transfer proteins (ns-LTP) interfere with hydrophobins, having similar molecular weight and four disulfide bridges, and should be eliminated before analysis.
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Pellaud, J. Gushing: State of the art. Cerevisia 2002, 27, 189–205. [Google Scholar]
- Titze, J. Qualitätssiegel oder Medaille?—Güte und Sicherheit von Produkten richtig kommunizieren. Getränkeindustrie 2010, 64, 52–55. [Google Scholar]
- Sarlin, T.; Nakari-Setälä, T.; Linder, M.; Penttilä, M.; Haikara, A. Fungal hydrophobins as predictors of the gushing activity of malt. J. Inst. Brew. 2005, 111, 105–111. [Google Scholar] [CrossRef]
- Lutterschmid, G.; Stübner, M.; Vogel, R.F.; Niessen, L. Induction of gushing with recombinant class II hydrophobin FcHyd5p from Fusarium culmorum and the impact of hop compounds on its gushing potential. J. Inst. Brew. 2010, 116, 339–347. [Google Scholar] [CrossRef]
- Stübner, M.; Lutterschmid, G.; Vogel, R.F.; Niessen, L. Heterologous expression of the hydrophobin FcHyd5p from Fusarium culmorum in Pichia pastoris and evaluation of its surface activity and contribution to gushing of carbonated beverages. Int. J. Food Microbiol. 2010, 141, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Titze, J.; Ilberg, V.; Jacob, F. Novel perspectives in gushing analysis: A review. J. Inst. Brew. 2011, 117, 295–313. [Google Scholar] [CrossRef]
- Gjertsen, P.; Trolle, B.; Andersen, K. Weath- microflora of possible importance to malting and ered barley as a contributory of gushing in beer. In Proceedings of the European Brewery Convention Congress, Brussels, Belgium, 1963; pp. 320–341. [Google Scholar]
- Gjertsen, P. Gushing in beer; its nature, cause and prevention. Brew. Digest. 1967, 42, 80–84. [Google Scholar]
- Havlova, P.; Lancova, K.; Váňová, M.; Havel, J.; Hajšlová, J. The effect of fungicidal treatment on selected quality parameters of barley and malt. J. Agric. Food Chem. 2006, 54, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Sarlin, T.; Kivioja, T.; Kalkkinen, N.; Linder, M.B.; Nakari-Setälä, T. Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species. J. Basic Microb. 2012, 52, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Hanke, S.; Kern, M.; Herrmann, M.; Back, W.; Becker, T.; Krottenthaler, M. Suppression of gushing by hop constituents. Brew. Sci. 2009, 62, 181–186. [Google Scholar]
- Haikara, A. Relationship between malt and beer. In Proceedings of the European Brewery Convention, Monograph VI, Helsinki, Finland, 1980; pp. 251–258. [Google Scholar]
- Sarlin, T.; Laitila, A.; Pekkarinen, A.; Haikara, A. Effects of three Fusarium species on the quality of barley and malt. J. Am. Soc. Brew. Chem. 2005, 63, 43–49. [Google Scholar] [CrossRef]
- Sarlin, T.; Vilpola, A.; Kotaviita, E.; Olkku, J.; Haikara, A. Fungal hydrophobins in the barley-to-beer chain. J. Inst. Brew. 2007, 113, 147–153. [Google Scholar] [CrossRef]
- Lowe, P.D.; Arendt, E.K. The use and effects of lactic acid bacteria in malting and brewing with their relationship to antifungal activity, mycotoxins and gushing: A review. J. Inst. Brew. 2004, 110, 163–180. [Google Scholar] [CrossRef]
- Zapf, M.W.; Theisen, S.; Vogel, R.F.; Niessen, L. Cloning of wheat LTP1500 and two Fusarium culmorum hydrophobins in Saccharomyces cerevisiae and assessment of their gushing inducing potential in experimental wort fermentation. J. Inst. Brew. 2006, 112, 237–245. [Google Scholar] [CrossRef]
- Zapf, M.W.; Theisen, S.; Rohde, S.; Rabenstein, F.; Vogel, R.F.; Niessen, L. Characterization of AfpA, an alkaline foam protein from cultures of Fusarium culmorum and its identification in infected malt. J. Appl. Microbiol. 2007, 103, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Gorjanović, S. A Review: The role of barley seed pathogenesis-related proteins (PRs) in beer production. J. Inst. Brew. 2010, 116, 111–124. [Google Scholar] [CrossRef]
- Schwarz, P.B.; Beattie, S.; Casper, H.H. Relationshio between Fusariun infestation of barley and the gushing potential of malt. J. Inst. Brew. 1996, 102, 93–96. [Google Scholar] [CrossRef]
- Aastrup, S.; Legind-Hansen, P.; Nielsen, H.; Jørgensen, A. Enzymatischer Abbau der Gushing-Neigung im Bier. Brauwelt 1995, 135, 1385–1387. [Google Scholar]
- Bellmer, H.-G. Forschungsprojekt “Gushing”. Brauwelt 1995, 135, 1167–1170. [Google Scholar]
- Kunert, M.; Sacher, B.; Back, W. Ergebnisse einer Umfrage in deutschen Brauereien zum Thema “Gushing”. Brauwelt 2001, 141, 350–362. [Google Scholar]
- Scholtmeijer, K.; Wessels, J.G.H.; Wösten, H.A.B. Fungal hydrophobins in medical and technical applications. Appl. Microbiol. Biotechnol. 2001, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wessels, J.G.; de Vries, O.M.; Asgeirsdottir, S.A.; Schuren, F.H. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 1991, 3, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Wösten, H.A.B.; Wessels, J.G.H. Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 1997, 38, 363–374. [Google Scholar] [CrossRef]
- Wessels, J.G.H. Developmental regulation of fungal cell-wall formation. Annu. Rev. Phytopathol. 1994, 32, 413–437. [Google Scholar] [CrossRef]
- Hektor, H.J.; Scholtmeijer, K. Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 2005, 16, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Lumsdon, S.O.; Green, J.; Stieglitz, B. Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids Surf. B Biointerf. 2005, 44, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.B.; Szilvay, G.R.; Nakari-Setälä, T.; Penttila, M.E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005, 29, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Kisko, K. Characterization of Hydrophobin Proteins at Interfaces and in Solutions Using X-rays. Ph.D. Dissertation, University of Helsinki, Faculty of Science, Department of Physics, Helsinki, Fenland, 2008. [Google Scholar]
- Linder, M.B. Hydrophobins: Proteins that self-assemble at interfaces. Curr. Opin. Colloid Interface Sci. 2009, 14, 356–363. [Google Scholar] [CrossRef]
- Szilvay, G.R.; Nakari-Setälä, T.; Linder, M.B. Behavior of Trichoderma reesei hydrophobins in solution: Interactions, dynamics, and multimer formation. Biochemistry 2006, 45, 8590–8598. [Google Scholar] [CrossRef] [PubMed]
- Shokribousjein, Z.; Deckers, S.M.; Gebruers, K.; Lorgouilloux, Y.; Baggerman, G.; Verachtert, H.; Delcour, J.A.; Etienne, P.; Rock, J.-M.; Michiels, C.; et al. Hydrophobins, beer foaming and gushing. Cerevisia Belg. J. Brew. Biotechnol. 2011, 35, 85–101. [Google Scholar] [CrossRef]
- Deckers, S.M.; Venken, T.; Khalesi, M.; Gebruers, K.; Baggerman, G.; Lorgouilloux, Y.; Shokribousjein, Z.; Ilberg, V.; Schönberger, C.; Titze, J.; et al. Combined modeling and biophysical characterisation of CO2 interaction with class II hydrophobins: New insight into the mechanism underpinning primary gushing. J. Am. Soc. Brew. Chem. 2012, 70, 249–256. [Google Scholar] [CrossRef]
- Shokribousjein, Z.; Philippaerts, A.; Riveros, D.; Deckers, S.; Khalesi, M.; Michiels, C.; Delcour, J.A.; Gebruers, K.; Verachtert, H.; Derdelinckx, G.; et al. Effect of mashing process on performance of hop extract antifoam regards primary gushing. Cerevisia Belg. J. Brew. Biotechnol. 2013, 38, 71–76. [Google Scholar] [CrossRef]
- Sahu, K.K.; Hazama, Y.; Ishihara, K.N. Gushing in canned beer: The effect of ultrasonic vibration. J. Colloid Interface Sci. 2006, 302, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Shokribousjein, Z.; Riveros Galan, D.; Michiels, C.; Gebruers, K.; Verachtert, H.; Martens, J.; Peeters, C.; Derdelinckx, G. Effect of a magnetic field on dispersion of a hop extract and the influence on gushing of beer. J. Food Eng. 2015, 145, 10–18. [Google Scholar] [CrossRef]
- Deckers, S.M.; Gebruers, K.; Baggerman, G.; Lorgouilloux, Y.; Delcour, J.A.; Michiels, C.; Derdelinckx, G.; Martens, J.; Neven, H. CO2-hydrophobin structures acting as nanobombs in beer. Brew. Sci. 2010, 63, 54–61. [Google Scholar]
- Rath, F. Gushing in 2008—Trialling the “Modified Carlsberg test”. Brauwelt Int. 2009, 27, 26–29. [Google Scholar]
- Kleemola, T.; Nakari-Setälä, T.; Linder, M.; Penttilä, M.; Kotaviita, E.; Olkku, J.; Haikara, A. Characterisation and detection of the gushing factors produced by fungi. In Proceedings of the European Brewery Convention Congress, Budapest, Hungary, 12–17 May 2001; Fachverlag Hans Carl: Nürnberg, Germany, 2001; pp. 129–138. [Google Scholar]
- Yli-Mattila, T.; Paavanen-Huhtala, S.; Jestoi, M.; Parikka, P.; Hietaniemi, V.; Gagkaeva, T.; Sarlin, T.; Haikara, A.; Laaksonen, S.; Rizzo, A. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Prot. 2008, 41, 243–260. [Google Scholar] [CrossRef]
- Stenglein, A.A. Fusarium poae: A pathogen that needs more attention. J. Plant Pathol. 2009, 91, 25–36. [Google Scholar] [CrossRef]
- Yli-Mattila, T. Ecology and evolution of toxigenic Fusarium species in cereals in Northern Europe and Asia. J. Plant Pathol. 2010, 92, 7–18. [Google Scholar] [CrossRef]
- Siranidou, E.; Kang, Z.; Buchenauer, H. Studies on symptom development, phenolic compounds and morphological defence response in wheat cultivars differing in resistance to Fusarium head blight. J. Phytopathol. 2001, 150, 200–208. [Google Scholar] [CrossRef]
- Španic, V.; Drezner, G.; Horvat, D. Changes of agronomic and quality traits in Fusarium-inoculated wheat genotypes. Croat. J. Food Technol. Biotechnol. Nutr. 2012, 7, 85–89. [Google Scholar]
- Wösten, H.A.; de Vocht, M.L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta Rev. Biomembr. 2000, 1469, 79–86. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanović, V.; Velić, N.; Šantek, B.; Novak, M.; Slačanac, V. Gushing potential of wheat malt infected with Fusarium culmorum. J. Hyg. Eng. Des. 2014, 6, 166–170. [Google Scholar]
- Deckers, S.M.; Lorgouilloux, Y.; Gebruers, K.; Baggerman, G.; Michiels, C.; Neven, H.; Derdelinckx, G.; Delcour, J.A.; Martens, J. Dynamic light scattering (DLS) as a tool to detect CO2-hydrophobin structures and study the primary gushing potential of beer. J. Am. Soc. Brew. Chem. 2011, 69, 144–149. [Google Scholar] [CrossRef]
- Garbe, L.A.; Schwarz, P.; Ehmer, A. Beer Gushing. In Handbook of Alcoholic Beverages Series, Beer: A Quality Perspective; Bamforth, C.W., Russell, I., Stewart, G., Eds.; Elsevier Ltd.: San Diego, CA, USA, 2009; Chapter 6. [Google Scholar]
- Christian, M.; Illberg, V.; Aydin, A.A.; Titze, J.; Jacob, F.; Parlar, H. New gushing mechanism proposed by applying particle size analysis and several surfactants. Brew. Sci. 2009, 62, 100–107. [Google Scholar]
- Christian, M.; Titze, J.; Ilberg, V.; Jacob, F. New cognitions on gushing in the wort production process and in quantifying the gushing potential of malt. Cerevisia 2010, 35, 35–37. [Google Scholar] [CrossRef]
- Müller, V.; Besier, A.; Pätz, R.; Fröhlich, J. Method for the Treatment of the Phenomenon Gushing in Beer and Malt Beverages. Available online: www.erbsloeh.com/downloads/en/130128_Method%20for%20the%20treatment%20of%20the%20phenomenon%20gushing%20in%20beer%20and%20malt%20beverages.pdf (accessed on 10 June 2017).
- Jacob, F. Calcium oxalsäure: Technologische relevanz. Brauwelt 1998, 138, 1286–1287. [Google Scholar]
- Zepf, M.; Geiger, E. Gushing problems with calcium oxalate I. Brauwelt 1999, 139, 2302–2304. [Google Scholar]
- Zepf, M.; Geiger, E. Gushing problems with calcium oxalate II. Brauwelt 2000, 140, 222–223. [Google Scholar]
- Aron, P.M.; Shellhammer, T.H. A discussion of polyphenols in beer physical and flavour stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Šavel, J.; Košin, P.; Brož, A. Spontaneous liberation of carbon dioxide from beer and gushing. Kvasny Prum. 2013, 59, 33–40. [Google Scholar] [CrossRef]
- Boivin, P.; Malanda, M. Improvement of malt quality and safety by adding starter culture during the malting process. MBAA Tech. Q. 1997, 34, 96–101. [Google Scholar]
- El-Nezami, H.S.; Chrevatids, A.; Auriola, S.; Salminen, S.; Mykkanen, H. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 2002, 19, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.N. Biocontrol of fungal soilborne pathogens by Pythium oligandrum. U.S. Patent WO 1,998,016,110 A1, 10 May 1999. [Google Scholar]
- Rezanina, J. Application of Pythium Oligandrum as Biofungicide in Malting. Unpublished Diploma Thesis, V SCHT Praha, Praha, Czech, 2014. (In Czech). [Google Scholar]
- Laitila, A.; Alakomi, H.-L.; Raaska, L.; Mattila-Sandholm, T.; Haikara, A. Anti-fungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 2002, 93, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Laitila, A.; Sarlin, T.; Kotaviita, E.; Huttunen, T.; Home, S.; Wilhelmson, A. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J. Ind. Microbiol. Biotechnol. 2007, 34, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, B.; Wolf-Hall, C.E.; Schwarz, P.; Schwarz, J.; Gillespie, J. Evaluation of hot water and electron beam irradiation for reducing Fusarium infection in malting barley. J. Food Prot. 2003, 66, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, B.; Wolf-Hall, C.E.; Schwarz, P. Evaluation of gaseous ozone and hydrogen peroxide treatments for reducing Fusarium survival in malting barley. J. Food Prot. 2005, 68, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.G.; Vegi, A.; Vashisht, A.; Tobias, D.; Schwarz, P.; Wolf-Hall, C.E. Effect of ozone treatment on the safety and quality of malting barley. J. Food Prot. 2011, 74, 2134–2141. [Google Scholar] [CrossRef] [PubMed]
- Postulkova, M.; Riveros-Galan, D.; Cordova-Agiular, K.; Zitkova, K.; Verachtert, H.; Derdelinckx, G.; Dostalek, P.; Ruzicka, C.M.; Branyik, T. Technological possibilities to prevent and suppress primary gushing of beer. Trends Food Sci. Tech. 2016, 49, 64–73. [Google Scholar] [CrossRef]
- Shokribousjein, Z.; Philippaerts, A.; Riveros, D.; Titze, J.; Deckers, S.M.; Khalesi, M.; Delcour, J.A.; Gebruers, K.; Verachtert, H.; Ilberg, V.; et al. A curative method for primary gushing of beer and carbonated beverages: Characterization and application of antifoam based on hop oils. J. Am. Soc. Brew. Chem. 2014, 72, 12–21. [Google Scholar] [CrossRef]
- Gardner, R.J. The mechanism of gushing: A review. J. Inst. Brew. 1973, 79, 275–283. [Google Scholar] [CrossRef]
- Laibl, B.; Geiger, E. Primary gushing and polar lipids—An important addition to gushing research. In Proceedings of the European Brewery Convention Congress, Dublin, Germany, 17–22 May 2003; Fachverlag Hans Carl: Nürnberg, Germany, 2013; pp. 915–922. [Google Scholar]
- Vaag, P.; Riis, P.; Knudsen, A.D.; Pedersen, S.; Meiling, E. A simple and rapid test for gushing tendency in brewing materials. J. Inst. Brew. 1993, 99, 209. [Google Scholar]
- Radau, B.; Linemann, A.; Krüger, E. Modifizierter Carlsberg—Test (MCT). Brauerei Forum 1995, 10, 377–378. [Google Scholar]
- Garbe, L.A.; Nagel, R.; Rauschmann, M.; Lamers, M.; Khmer, A.; Tresek, R. Correlation of DON, hydrophobins and gushing. In Proceedings of the European Brewery Convention Congress, Venice, Italy, 6‗10 May 2007; pp. 6–10. [Google Scholar]
- Haikara, A.; Kleemola, T.; Nakari-Setälä, T.; Pentillä, M. Method for Determining a Gushing Factor for a Beverage. U.S. Patent US 7,041,464 B2, 9 May 2006. [Google Scholar]
- Poštulková, M.; Vitoušová, K.; Novák, P.; Fiala, F.; Růžička, R.; Brányik, T. History and New Trends of Research Into Over-foaming of Beer. Kvasny Prum. 2013, 59, 317–320. [Google Scholar] [CrossRef]
- Christian, M.; Titze, J.; Ilberg, V.; Jacob, F. Combined particle analysis as a new tool to predict gushing shown with alcohol-free beverage products. Brew. Sci. 2010, 63, 72–79. [Google Scholar]
- Neuhof, T.; Dieckmann, R.; Druzhinina, I.S.; Kubicek, C.P.; Nakari-Setälä, T.; Penttilä, M.; Döhren, H. Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J. 2007, 274, 841–852. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastanjević, K.; Mastanjević, K.; Krstanović, V. The Gushing Experience—A Quick Overview. Beverages 2017, 3, 25. https://doi.org/10.3390/beverages3020025
Mastanjević K, Mastanjević K, Krstanović V. The Gushing Experience—A Quick Overview. Beverages. 2017; 3(2):25. https://doi.org/10.3390/beverages3020025
Chicago/Turabian StyleMastanjević, Kristina, Krešimir Mastanjević, and Vinko Krstanović. 2017. "The Gushing Experience—A Quick Overview" Beverages 3, no. 2: 25. https://doi.org/10.3390/beverages3020025
APA StyleMastanjević, K., Mastanjević, K., & Krstanović, V. (2017). The Gushing Experience—A Quick Overview. Beverages, 3(2), 25. https://doi.org/10.3390/beverages3020025