Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees
Highlights
- The two yeast strains showed markedly different secondary fermentation kinetics but resulted in comparable basic enological parameters after refermentation and lees aging.
- Aging time was the main driver of aroma variability, outweighing yeast strain effects on volatile composition.
- Glucanase enzymes affected aroma composition in a strain- and time-dependent manner.
- β-glucanase-based enzyme treatments enhanced varietal compounds, but most aroma changes remained below sensory perception thresholds.
Abstract
1. Introduction
2. Materials and Methods
2.1. Winemaking Treatments
2.2. Basic Parameter Analysis
2.3. Major Volatile Compounds Analysis
2.4. Terpene and Norisoprenoid Analysis
2.5. Statistical Analysis
3. Results
3.1. Fermentation Conditions and Yeast Strain Effect
3.2. Glucanase Effect on Aroma Profile of Prosecco Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. 2024. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20241230-1 (accessed on 3 November 2025).
- Luchian, C.E.; Grosaru, D.; Scutarașu, E.C.; Colibaba, L.C.; Scutarașu, A.; Cotea, V.V. Advancing Sparkling Wine in the 21st Century: From Traditional Methods to Modern Innovations and Market Trends. Fermentation 2025, 11, 174. [Google Scholar] [CrossRef]
- Zimmerman, L.B. Champagne vs. Sparkling—The Shrinking Gap. Wine Business Monthly. 2018. Available online: https://www.winebusiness.com/wbm/article/193495 (accessed on 3 November 2025).
- Rossetto, L.; Gastaldello, G. The Loyalty Structure of Sparkling Wine Brands in Italy. J. Wine Econ. 2018, 13, 409–418. [Google Scholar] [CrossRef]
- Tomasi, D.; Gaiotti, F.; Jones, G.V. The Power of the Terroir: The Case Study of Prosecco; Wine Springer: Basel, Switzerland, 2013. [Google Scholar]
- Slaghenaufi, D.; Luzzini, G.; Borgato, M.; Boscaini, A.; Dal Cin, A.; Zandonà, V.; Ugliano, M. Characterization of the Aroma Profile of Commercial Prosecco Sparkling Wines. Appl. Sci. 2023, 13, 3609. [Google Scholar] [CrossRef]
- Martínez-García, R.; García-Martínez, T.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem. 2017, 237, 1030–1040. [Google Scholar] [CrossRef]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Charpentier, C.; Feuillat, M. Yeast autolysis. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993; pp. 225–242. [Google Scholar]
- Alexandre, H.; Guilloux-Benatier, M. Yeast autolysis in sparkling wine—A review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Vincenzi, S.; Crapisi, A.; Curioni, A. Foamability of Prosecco wine: Cooperative effects of high molecular weight glycocompounds and wine PR-proteins. Food Hydrocoll. 2014, 34, 202–207. [Google Scholar] [CrossRef]
- Le Menn, N.; Marchand, S.; de Revel, G.; Demarville, D.; Laborde, D.; Marchal, R. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. J. Agric. Food Chem. 2017, 65, 2345–2356. [Google Scholar] [CrossRef]
- Sun, N.; Zhao, L.; Liu, A.; Su, L.; Shi, K.; Zhao, H.; Liu, S. Role of amino acids in flavor profiles and foam characteristics of sparkling wines during aging. J. Food Compos. Anal. 2024, 126, 105903. [Google Scholar] [CrossRef]
- Wang, Q.J.; Spence, C. Is complexity worth paying for? Investigating the perception of wine complexity for single varietal and blended wines in consumers and experts. Aust. J. Grape Wine Res. 2018, 25, 243–251. [Google Scholar] [CrossRef]
- Fedrizzi, B.; Magno, F.; Finato, F.; Versini, G. Variation of Some Fermentative Sulfur Compounds in Italian “Millesimè” Classic Sparkling Wines during Aging and Storage on Lees. J. Agric. Food Chem. 2010, 58, 9716–9722. [Google Scholar] [CrossRef]
- Pinheiro, S.S.; Campos, F.; Cabrita, M.J.; da Silva, M.G. Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies. Molecules 2025, 30, 2825. [Google Scholar] [CrossRef]
- Gnoinski, G.B.; Schmidt, S.A.; Close, D.C.; Goemann, K.; Pinfold, T.L.; Kerslake, F.L. Novel Methods to Manipulate Autolysis in Sparkling Wine: Effects on Yeast. Molecules 2021, 26, 387. [Google Scholar] [CrossRef] [PubMed]
- Dubourdieu, D.; Villetaz, J.C.; Desplanques, C.; Ribéreau Gayon, P. Dégradation enzymatique du glucane de Botrytis cinerea. Application à l’amélioration de la clarification des vins issus de raisins pourris. J. Int. Sci. Vigne Vin. 1981, 15, 161–177. [Google Scholar] [CrossRef]
- Torresi, S.; Frangipane, M.T.; Garzillo, A.M.V.; Massantini, R.; Contini, M. Effects of a β-glucanase enzymatic preparation on yeast lysis during aging of traditional sparkling wines. Food Res. Int. 2014, 55, 82–92. [Google Scholar] [CrossRef]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2016, 97, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- Liger-Belair, G.; Religieux, J.-B.; Fohanno, S.; Vialatte, M.-A.; Jeandet, P.; Polidori, G. Visualization of Mixing Flow Phenomena in Champagne Glasses under Various Glass-Shape and Engravement Conditions. J. Agric. Food Chem. 2007, 55, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Slaghenaufi, D.; Guardini, S.; Tedeschi, R.; Ugliano, M. Volatile terpenoids, norisoprenoids and benzenoids as markers of fine scale vineyard segmentation for Corvina grapes and wines. Food Res. Int. 2019, 125, 108507. [Google Scholar] [CrossRef]
- Cisilotto, B.; Scariot, F.J.; Schwarz, L.V.; Mattos Rocha, R.K.; Longaray Delamare, A.P.; Echeverrigaray, S. Differences in yeast behaviour during ageing of sparkling wines made with Charmat and Traditional methods. Food Microbiol. 2023, 110, 104171. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the Establishment of a Database of French Wines. Am. J. Enol. Vitic. 2014, 65, 293–304. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Schneider, R.; Baumes, R. Formation Pathways of Ethyl Esters of Branched Short-Chain Fatty Acids during Wine Aging. J. Agric. Food Chem. 2005, 53, 3503–3509. [Google Scholar] [CrossRef]
- Luzzini, G.; Slaghenaufi, D.; Ugliano, M. Approaches to the classification of wine aroma ageing potential. Applications to the case of terpenoids in Valpolicella red wines. OENO One 2022, 56, 221–232. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Ugliano, M. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine. Front. Chem. 2018, 6, 66. [Google Scholar] [CrossRef]
- Francioli, S.; Torrens, J.; Riu-Aumatell, M.; López-Tamames, E.; Buxaderas, S. Volatile Compounds by SPME-GC as Age Markers of Sparkling Wines. Am. J. Enol. Vitic. 2003, 54, 158–162. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J.M. Multivariate optimization of headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of terpenoids in sparkling wines. Talanta 2020, 208, 120483. [Google Scholar] [CrossRef] [PubMed]
- Luzzini, G.; Bicego, R.; Slaghenaufi, D.; Ugliano, M. Variations in sensorially-relevant metabolites and indices in PDO wines of common ampelographic background: A case study on commercial Lambrusco wines. J. Food Compos. Anal. 2025, 140, 107300. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Spagna, G.; Palmeri, R.; Restuccia, C.; Giudici, P. Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzym. Microb. Technol. 2004, 35, 58–66. [Google Scholar] [CrossRef]
- Bertazzoli, G.; Pelizza, E.; Luzzini, G.; Felis, G.E.; Ugliano, M.; Torriani, S. Influence of Fermentation Temperature and Metschnikowia pulcherrima/Saccharomyces cerevisiae Multi-Starter Cultures on the Volatile Compounds of Lugana Wine. Foods 2025, 14, 3538. [Google Scholar] [CrossRef]
- Luzzini, G.; Slaghenaufi, D.; Pasetto, F.; Ugliano, M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT 2021, 143, 111120. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Sarry, J.; Gunata, Z. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Yuan, T.T.; Chen, Q.Q.; Zhao, P.J.; Zeng, Y.; Liu, X.Z.; Lu, S. Identification of enzymes responsible for the reduction of geraniol to citronellol. Nat. Prod. Bioprospect. 2011, 1, 108–111. [Google Scholar] [CrossRef]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef]
- Kinzurik, M.; Deed, R.C.; Herbst-Johnstone, M.; Slaghenaufi, D.; Guzzon, R.; Gardner, R.C.; Larcher, R.; Fedrizzi, B. Addition of volatile sulfur compounds to yeast at the early stages of fermentation reveals distinct biological and chemical pathways for aroma formation. Food Microbiol. 2020, 89, 103435. [Google Scholar] [CrossRef]
- Ailer, Š.; Jakabová, S.; Benešová, L.; Ivanova-Petropulos, V. Wine faults: State of knowledge in reductive aromas, oxidation and atypical aging, prevention, and correction methods. Molecules 2022, 27, 3535. [Google Scholar] [CrossRef]
- Spedding, D.; Raut, P. The influence of dimethyl sulphide and carbon disulphide in the bouquet of wines. VITIS—J. Grapevine Res. 1982, 21, 240–246. [Google Scholar]
- Francis, L.; Newton, J. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Mestres, M.; Busto, O.; Guasch, J. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A 2000, 881, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Goniak, O.J.; Noble, A.C. Sensory study of selected volatile sulfur compounds in white wine. Am. J. Enol. Vitic. 1987, 38, 223–227. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Trujillo, M.; García Ruiz, A.; González Viñas, M.A. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef]
- Etiévant, P.X. Volatile compounds in foods and beverages. In Wine; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography−Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Morenio, J.; Medina, M. Analytical study of aromatic series in Sherry wines subjected to biological aging. J. Agric. Food Chem. 2002, 50, 7356–7361. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the aroma of grapes and wines: A review. S. Afr. J. Enol. Vitic. 1983, 4, 49–58. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Lytra, G.; Cameleyre, M.; Tempere, S.; Barbe, J.C. Distribution and organoleptic impact of ethyl 3-hydroxybutanoate enantiomers in wine. J. Agric. Food Chem. 2015, 63, 10484–10491. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Xia, Y.; Tomasino, E. Investigation of a quantitative method for the analysis of chiral monoterpenes in white wine by HS-SPME-MDGC-MS of different wine matrices. Molecules 2015, 20, 7359–7378. [Google Scholar] [CrossRef]
- Antalick, G.; Tempère, S.; Suklje, K.; Blackman, J.; Deloire, A.; De Revel, G.; Schmidtke, L.M. Investigation and sensory characterization of 1,4-cineole: A potential aromatic marker of Australian Cabernet Sauvignon wine. J. Agric. Food Chem. 2015, 63, 9103–9111. [Google Scholar] [CrossRef]
- Versini, G.; Schneider, R.; Carlin, S.; Depentori, D.; Nicolini, G.; Dalla Serra, A. Characterisation of Some Northern Italian Passiti-Wines through Aroma and Stable Isotope Analysis. In Proceedings of the 12th International Oenological Symposium, Montreal, QC, Canada, 29 May–2 June 1999; Lemperle, E., Ed.; International Association for Enology, Management and Wine Marketing: Breisach, Germany, 1999; pp. 544–571. [Google Scholar]
- Janusz, A.; Capone, D.L.; Puglisi, C.J.; Perkins, M.; Elsey, G.M.; Sefton, M.A. (E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene: A potent grape-derived odorant in wine. J. Agric. Food Chem. 2003, 51, 7759–7763. [Google Scholar] [CrossRef]
- Sacks, G.L.; Gates, J.M.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory Threshold of 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) and Concentrations in Young Riesling and Non-Riesling Wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Vrhovsek, U.; Lonardi, A.; Landi, L.; Mattivi, F. Aromatic complexity in Verdicchio wines. A case study. OENO One 2019, 53, 597–610. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef] [PubMed]


| Yeast | Base Wine | CGC62 | SP665 | CGC62 | SP665 |
|---|---|---|---|---|---|
| Time | T0 | T1 | T1 | T2 | T2 |
| Alcohol (%vol) | 9.02 ± 0.02 a | 11.45 ± 0.02 b | 11.46 ± 0.03 b | 11.49 ± 0.01 b | 11.29 ± 0.26 b |
| Sugar (g/L) | 45.0 ± 0.3 a | 0.38 ± 0.11 b | 0.73 ± 0.18 b | 0.30 ± 0.08 b | 1.98 ± 2.83 b |
| Total acidity (g/L) | 6.4 ± 0.11 a | 5.56 ± 0.35 a | 6.14 ± 0.02 a | 6.2 ± 0.01 a | 5.75 ± 1.05 a |
| pH | 3.13 ± 0.01 a | 3.29 ± 0.04 b | 3.23 ± 0.01 b | 3.21 ± 0.03 b | 3.27 ± 0.09 b |
| Volatile acidity (g/L) | 0.1 ± 0.02 a | 0.18 ± 0 a | 0.18 ± 0.01 a | 0.2 ± 0.02 a | 0.27 ± 0.06 a |
| T1 | T2 | |||||
|---|---|---|---|---|---|---|
| SP665 | CGC62 | p-Value | SP665 | CGC62 | p-Value | |
| Methanethiol | <LOQ | <LOQ | 2.73 ± 0.92 | 5.23 ± 0.66 | 0.019 | |
| Carbon disulfide | 3.05 ± 0.15 | 8.09 ± 0.49 | <0.0001 | 5.59 ± 0.19 | 1.00 ± 0.05 | <0.0001 |
| DMS | 1.34 ± 0.09 | 1.69 ± 0.04 | 0.003 | 3.42 ± 0.17 | 4.45 ± 0.24 | 0.004 |
| DES | 0.10 ± 0.01 | 0.35 ± 0.04 | 0.0004 | 0.73 ± 0.09 | 0.37 ± 0.04 | 0.003 |
| DMDS | <LOQ | <LOQ | <LOQ | <LOQ | ||
| Sum of VSC | 4.49 ± 0.21 | 10.2 ± 0.51 | <0.0001 | 12.5 ± 0.72 | 11.1 ± 0.95 | 0.109 |
| 1-Butanol | 39.4 ± 2.16 | 33.1 ± 0.70 | 0.009 | 64.6 ± 4.52 | 53.6 ± 2.79 | 0.023 |
| 1-Pentanol | 145 ± 59.9 | 174 ± 34.7 | 0.517 | 531 ± 55.4 | 540 ± 61.6 | 0.857 |
| Isoamyl alcohol | 184,684 ± 6213 | 178,453 ± 190 | 0.157 | 72,667 ± 3105 | 61,337 ± 5997 | 0.044 |
| Methionol | 166 ± 9.38 | 129 ± 5.44 | 0.004 | 177 ± 18.9 | 158 ± 14.2 | 0.227 |
| Phenylethyl Alcohol | 17,206 ± 1636 | 17,532 ± 212 | 0.749 | 7208 ± 632 | 7054 ± 390 | 0.737 |
| Benzyl Alcohol | 38.9 ± 1.75 | 38.2 ± 2.68 | 0.724 | 54.5 ± 2.53 | 219 ± 9.92 | <0.0001 |
| Sum of higher alcohol | 202,279 ± 7755 | 196,358 ± 365 | 0.257 | 80,703 ± 3730 | 69,362 ± 6456 | 0.058 |
| 1-Hexanol | 384 ± 4.54 | 360 ± 1.83 | 0.001 | 499 ± 17.8 | 515 ± 40.5 | 0.558 |
| cis-3-Hexen-1-ol | 7.75 ± 0.24 | 7.41 ± 0.11 | 0.096 | 8.21 ± 0.98 | 8.57 ± 0.65 | 0.628 |
| trans-3-Hexen-1-ol | 121 ± 2.17 | 112 ± 1.21 | 0.004 | 124 ± 13.0 | 146 ± 12.0 | 0.096 |
| cis-2-hexen-1-ol | 4.72 ± 0.24 | 4.47 ± 0.60 | 0.531 | 13.4 ± 1.30 | 12.4 ± 0.82 | 0.355 |
| Sum of C6 alcohols | 517 ± 6.53 | 483 ± 3.62 | 0.001 | 644 ± 32.7 | 682 ± 53.7 | 0.356 |
| Isoamyl acetate | 2255 ± 137 | 1963 ± 104 | 0.042 | 1598 ± 115 | 1596 ± 113 | 0.984 |
| n-Hexyl acetate | 52.4 ± 10.3 | 47.6 ± 8.31 | 0.566 | 40.2 ± 3.79 | 43.9 ± 5.94 | 0.422 |
| 2-Phenethyl acetate | 258 ± 31.8 | 219 ± 23.2 | 0.162 | 168 ± 12.8 | 168 ± 15.4 | 0.956 |
| Sum of acetates | 2564 ± 179 | 2229 ± 135 | 0.061 | 1807 ± 128 | 1808 ± 132 | 0.993 |
| Ethyl butanoate | 225 ± 3.22 | 211 ± 1.78 | 0.002 | 243 ± 9.74 | 118 ± 6.49 | <0.0001 |
| Ethyl hexanoate | 684 ± 135 | 677 ± 122 | 0.951 | 679 ± 61.6 | 686 ± 74.0 | 0.897 |
| Ethyl octanoate | 500 ± 159 | 514 ± 165 | 0.923 | 355 ± 48.1 | 514 ± 42.9 | 0.013 |
| Ethyl decanoate | 65.0 ± 15.9 | 107 ± 28.0 | 0.087 | 34.4 ± 4.00 | 82.6 ± 4.78 | 0.0001 |
| Sum of ethyl esters of straight-chain fatty acids | 1474 ± 308 | 1508 ± 317 | 0.900 | 1312 ± 123 | 1401 ± 128 | 0.433 |
| Ethyl-2-methylbutanoate | 2.80 ± 0.18 | 2.91 ± 0.11 | 0.407 | 5.33 ± 0.52 | 4.47 ± 0.38 | 0.082 |
| Ethyl 3-methylbutanoate | 4.11 ± 0.71 | 5.67 ± 1.48 | 0.176 | 10.5 ± 1.32 | 11.1 ± 0.94 | 0.555 |
| Ethyl 3-hydroxybutyrate | 65.9 ± 2.79 | 56.4 ± 2.00 | 0.009 | 64.3 ± 4.83 | 58.2 ± 2.24 | 0.119 |
| Ethyl di-2-hydroxyhexanoate | 0.48 ± 0.01 | 0.48 ± 0.01 | 0.643 | 0.97 ± 0.09 | 0.93 ± 0.05 | 0.520 |
| Sum of ethyl esters of branched fatty acids | 73.3 ± 2.94 | 65.5 ± 1.73 | 0.017 | 81.1 ± 6.57 | 74.7 ± 3.54 | 0.213 |
| 3-Methylbutanoic acid | 196 ± 4.66 | 183 ± 5.26 | 0.035 | 266 ± 22.2 | 261 ± 33.9 | 0.840 |
| Hexanoic acid | 5922 ± 434 | 5621 ± 313 | 0.385 | 4547 ± 318 | 4047 ± 372 | 0.152 |
| Octanoic acid | 10,317 ± 645 | 10,537 ± 441 | 0.651 | 7282 ± 442 | 7238 ± 567 | 0.921 |
| Sum of fatty acids | 16,435 ± 1077 | 16,342 ± 757 | 0.908 | 12,095 ± 781 | 11,547 ± 964 | 0.487 |
| α-Phellandrene | 0.02 ± 0.00 | 0.06 ± 0.01 | 0.0003 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.374 |
| α-Terpinene | <LOQ | <LOQ | <LOQ | <LOQ | ||
| γ-Terpinene | <LOQ | 0.11 ± 0.00 | <LOQ | 0.12 ± 0.01 | ||
| β-Pinene | 0.00 ± 0.00 | 0.02 ± 0.01 | 0.047 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.643 |
| 3-Carene | <LOQ | <LOQ | <LOQ | <LOQ | ||
| β-Myrcene | 0.07 ± 0.01 | 0.17 ± 0.01 | 0.0001 | 0.10 ± 0.03 | 0.28 ± 0.02 | 0.001 |
| Limonene | 0.34 ± 0.01 | 0.38 ± 0.01 | 0.008 | 0.34 ± 0.00 | 0.40 ± 0.01 | <0.0001 |
| 1,4-Cineole | 0.02 ± 0.01 | <LOQ | 0.10 ± 0.01 | <LOQ | ||
| 1,8-Cineole | 0.01 ± 0.01 | <LOQ | <LOQ | <LOQ | ||
| p-Cymene | <LOQ | <LOQ | <LOQ | <LOQ | ||
| Terpinolene | 0.07 ± 0.03 | <LOQ | 0.05 ± 0.01 | <LOQ | ||
| Linalool | 2.63 ± 0.42 | 1.92 ± 0.04 | 0.042 | 2.36 ± 0.09 | 3.43 ± 0.33 | 0.006 |
| Terpinen-4-ol | 0.19 ± 0.04 | 0.16 ± 0.01 | 0.665 | 0.30 ± 0.02 | 0.33 ± 0.02 | 0.067 |
| α-Terpineol | 1.13 ± 0.26 | 0.72 ± 0.09 | 0.459 | 1.55 ± 0.28 | 1.95 ± 0.26 | 0.146 |
| β-Citronellol | 1.24 ± 0.36 | 1.04 ± 0.06 | 0.677 | 1.48 ± 0.96 | 0.79 ± 0.10 | 0.287 |
| Nerol | 0.19 ± 0.07 | 0.24 ± 0.03 | 0.725 | 0.46 ± 0.04 | 1.96 ± 0.28 | 0.110 |
| Geraniol | 2.01 ± 0.10 | 0.09 ± 0.01 | <0.0001 | 0.92 ± 0.20 | 3.82 ± 0.42 | 0.004 |
| Linalyl acetate | 0.16 ± 0.06 | 4.51 ± 0.83 | 0.021 | 0.18 ± 0.01 | 2.57 ± 0.78 | 0.212 |
| Geranyl acetate | 0.07 ± 0.04 | 0.07 ± 0.02 | 1.00 | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.001 |
| Geranyl acetone | 0.91 ± 0.02 | 0.05 ± 0.02 | 0.055 | 0.10 ± 0.03 | 0.28 ± 0.07 | 0.016 |
| Sum of monoterpenoids | 9.14 ± 1.27 | 9.54 ± 3.24 | 0.787 | 8.00 ± 1.13 | 16.1 ± 2.82 | 0.009 |
| β-Damascenone | 1.39 ± 0.34 | 1.13 ± 0.04 | 0.251 | 1.21 ± 0.02 | 1.92 ± 0.12 | 0.001 |
| α-Ionol | <LOQ | <LOQ | <LOQ | <LOQ | ||
| 4-Oxoisophorone | 5.21 ± 1.79 | 3.22 ± 0.92 | 0.161 | 0.44 ± 0.05 | 0.57 ± 0.08 | 0.468 |
| Vitispirane 1 | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.927 | 24.6 ± 3.75 | 39.1 ± 1.70 | 0.004 |
| Vitispirane 2 | 0.08 ± 0.00 | 0.07 ± 0.01 | 0.043 | 24.7 ± 5.05 | 32.6 ± 5.74 | 0.148 |
| * TPB | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.128 | 1.87 ± 0.11 | 3.10 ± 0.11 | 0.0001 |
| * TDN | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.286 | 29.9 ± 9.12 | 36.1 ± 2.44 | 0.316 |
| 3-hydroxy-β-damascone | 0.00 ± 0.00 | 0.15 ± 0.01 | <0.0001 | 0.00 ± 0.00 | 0.31 ± 0.01 | <0.0001 |
| Sum of norisoprenoids | 6.82 ± 2.12 | 4.71 ± 0.92 | 0.189 | 82.7 ± 17.2 | 114 ± 8.13 | 0.047 |
| Farnesol 1 | 0.47 ± 0.09 a | 0.27 ± 0.01 a | 0.305 | 0.25 ± 0.10 a | 0.66 ± 0.04 ab | 0.266 |
| Nerolidol 1 | 0.02 ± 0.01 a | 1.86 ± 0.38 ab | 0.001 | 1.78 ± 0.16 a | 3.81 ± 0.67 ab | 0.007 |
| Bisabolol | <LOQ | <LOQ | <LOQ | <LOQ | ||
| Sum of sesquiterpenes | 0.49 ± 0.29 a | 2.13 ± 0.42 ab | 0.005 | 2.03 ± 0.07 a | 4.50 ± 0.51 a | 0.001 |
| Methyl salicylate | 2.08 ± 0.27 | 1.85 ± 0.09 | 0.237 | 1.69 ± 0.05 | 19.7 ± 2.56 | 0.002 |
| Benzaldehyde | 1.70 ± 0.16 | 1.10 ± 0.11 | 0.005 | 1.47 ± 0.04 | 2.25 ± 0.23 | 0.005 |
| 2,6-Dimethoxyphenol | 3.88 ± 0.73 | 3.99 ± 0.23 | 0.821 | 2.96 ± 0.12 | 2.89 ± 0.24 | 0.671 |
| Vanillin | 34.5 ± 0.91 | 32.8 ± 0.85 | 0.077 | 22.2 ± 0.81 | 24.7 ± 0.80 | 0.020 |
| Eugenol | 2.02 ± 0.08 | 1.92 ± 0.08 | 0.197 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.983 |
| Ethyl cinnamate | 0.19 ± 0.03 | 0.12 ± 0.01 | 0.018 | 0.12 ± 0.02 | 0.16 ± 0.03 | 0.094 |
| Sum of benzenoids | 44.4 ± 0.64 | 41.8 ± 0.70 | 0.009 | 28.7 ± 1.02 | 49.9 ± 3.27 | 0.0004 |
| T1 | T2 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | A | B | C | D | Control | A | B | C | D | |
| Methanethiol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 5.23 ± 0.66 a | 5.17 ± 0.31 a | 4.98 ± 0.49 a | 5.95 ± 1.15 a | 4.72 ± 1.03 a |
| Carbon disulfide | 8.09 ± 0.49 b | 4.9 ± 1.07 ab | 5.56 ± 1.77 ab | 4.61 ± 0.93 a | 6.32 ± 0.50 ab | 1.00 ± 0.05 a | 0.94 ± 0.12 a | 1.05 ± 0.05 a | 0.97 ± 0.16 a | 0.83 ± 0.24 a |
| DMS | 1.69 ± 0.04 ab | 2.21 ± 0.22 b | 1.45 ± 0.22 a | 1.84 ± 0.46 ab | 1.79 ± 0.16 ab | 4.45 ± 0.24 ab | 4.46 ± 0.13 ab | 4.48 ± 0.17 ab | 4.60 ± 0.21 b | 3.36 ± 0.72 a |
| DES | 0.35 ± 0.04 b | 0.33 ± 0.00 ab | 0.18 ± 0.06 a | 0.29 ± 0.04 ab | 0.28 ± 0.02 ab | 0.37 ± 0.04 b | 0.25 ± 0.03 ab | 0.34 ± 0.01 ab | 0.34 ± 0.09 ab | 0.17 ± 0.09 a |
| DMDS | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| Sum of VSC | 10.2 ± 0.51 b | 8.02 ± 2.3 ab | 7.19 ± 1.83 ab | 6.74 ± 1.43 a | 8.39 ± 0.60 ab | 11.1 ± 0.95 a | 10.8 ± 0.50 a | 10.9 ± 0.48 a | 11.9 ± 1.39 a | 9.08 ± 1.84 a |
| 1-Butanol | 33.1 ± 0.70 a | 29.9 ± 4.39 a | 30.0 ± 5.86 a | 24.2 ± 5.69 a | 29.6 ± 0.59 a | 53.6 ± 2.79 ab | 23.8 ± 1.31 a | 62.5 ± 2.23 b | 62.9 ± 1.91 b | 61.4 ± 5.24 ab |
| 1-Pentanol | 174 ± 34.7 a | 109 ± 41.6 a | 160 ± 48.4 a | 140 ± 67.5 a | 137 ± 70.7 a | 540 ± 61.6 b | 274 ± 28.7 a | 372 ± 40.1 ab | 302 ± 21.1 a | 389 ± 35.2 ab |
| Isoamyl alcohol | 178,453 ± 190 ab | 181,291 ± 4985 b | 173,692 ± 4473 ab | 154,754 ± 12,989 a | 169,087 ± 4919 ab | 61,337 ± 5997 ab | 46,363 ± 4209 a | 65,239 ± 6180 ab | 61,739 ± 4078 ab | 67,160 ± 3966 b |
| Methionol | 129 ± 5.44 a | 134 ± 3.92 a | 127 ± 16.2 a | 139 ± 6.13 a | 140 ± 11.1 a | 158 ± 14.2 ab | 17.6 ± 1.29 a | 156 ± 21.8 ab | 147 ± 7.92 ab | 162 ± 13.0 b |
| Phenylethyl Alcohol | 17,532 ± 212 b | 17,688 ± 1218 b | 16,299 ± 864 ab | 15,369 ± 1473 a | 16,286 ± 391 ab | 7054 ± 390 ab | 9747 ± 1018 b | 7213 ± 655 ab | 6803 ± 434 a | 7412 ± 627 ab |
| Benzyl Alcohol | 38.2 ± 2.68 ab | 58.7 ± 2.02 b | 36.9 ± 1.57 a | 37.3 ± 0.10 ab | 48.9 ± 6.56 ab | 219 ± 9.92 ab | 85.7 ± 10.3 a | 248 ± 16.5 ab | 165 ± 15.2 ab | 298 ± 27.0 b |
| Sum of higher alcohol | 196,358 ± 365 b | 199,311 ± 5120 b | 190,343 ± 4799 ab | 170,463 ± 12,108 a | 185,729 ± 4578 ab | 69,362 ± 6456 ab | 56,511 ± 5243 a | 73,291 ± 6858 ab | 69,219 ± 4553 ab | 75,482 ± 4481 b |
| 1-Hexanol | 360 ± 1.83 a | 388 ± 10.4 a | 367 ± 8.28 a | 364 ± 13.3 a | 341 ± 56.7 a | 515 ± 40.5 b | 396 ± 39.6 a | 4745 ± 41.6 ab | 472 ± 44.7 ab | 496 ± 29.7 ab |
| cis-3-Hexen-1-ol | 7.41 ± 0.11 a | 7.77 ± 0.28 a | 7.56 ± 0.22 a | 7.22 ± 0.25 a | 6.63 ± 1.69 a | 8.57 ± 0.65 b | 6.01 ± 0.39 a | 8.14 ± 1.03 ab | 7.19 ± 0.56 ab | 7.76 ± 0.59 ab |
| trans-3-Hexen-1-ol | 112 ± 1.21 a | 122 ± 3.76 a | 113 ± 2.97 a | 110 ± 3.34 a | 103 ± 23.5 a | 146 ± 12.0 ab | 90.0 ± 8.42 a | 141 ± 18.3 ab | 131 ± 5.59 ab | 151 ± 12.1 b |
| cis-2-hexen-1-ol | 4.47 ± 0.60 a | 4.85 ± 0.32 a | 4.37 ± 0.22 a | 4.54 ± 0.27 a | 4.16 ± 0.75 a | 12.4 ± 0.82 a | 13.0 ± 0.86 a | 14.2 ± 1.67 a | 13.0 ± 0.13 a | 13.7 ± 1.13 a |
| Sum of C6 alcohols | 483 ± 3.62 a | 523 ± 14.6 a | 492 ± 11.7 a | 486 ± 17.1 a | 455 ± 82.6 a | 682 ± 53.7 b | 505 ± 48.5 a | 638 ± 60.9 ab | 623 ± 50.6 ab | 669 ± 43.0 ab |
| Isoamyl acetate | 1963 ± 104 a | 1762 ± 147 a | 2125 ± 123 a | 1941 ± 318 a | 1947 ± 26.5 a | 1596 ± 113 b | 859 ± 114 a | 1463 ± 139 ab | 1439 ± 74.8 ab | 1585 ± 139 ab |
| n-Hexyl acetate | 47.6 ± 8.31 ab | 33.7 ± 7.09 a | 56.2 ± 2.86 b | 47.9 ± 13.7 ab | 38.4 ± 2.5 ab | 43.9 ± 5.94 b | 27.0 ± 2.62 a | 38 ± 4.01 ab | 42.8 ± 2.62 | 44.2 ± 3.37 b |
| 2-Phenethyl acetate | 219 ± 23.2 a | 182 ± 20.2 a | 247 ± 5.7 a | 222 ± 41.8 a | 243 ± 35.4 a | 168 ± 15.4 a | 165 ± 14.0 a | 154 ± 8.59 a | 155 ± 15.8 a | 166 ± 13.9 a |
| Sum of acetates | 2229 ± 135 a | 1978 ± 170 a | 2429 ± 131 a | 2211 ± 371 a | 2228 ± 28.7 a | 1808 ± 132 b | 1051 ± 130 a | 1655 ± 151 ab | 1637 ± 92.9 ab | 1795 ± 154 ab |
| Ethyl butanoate | 211 ± 1.78 a | 215 ± 9.47 a | 211 ± 3.76 a | 202 ± 24.0 a | 213 ± 6.17 a | 118 ± 6.49 ab | 95.0 ± 6.83 a | 220 ± 22.5 ab | 220 ± 11.1 ab | 228 ± 24.1 b |
| Ethyl hexanoate | 677 ± 122 ab | 491 ± 108 a | 774 ± 44.5 b | 666 ± 180 ab | 534 ± 50.2 ab | 686 ± 74.0 ab | 531 ± 13.4 a | 704 ± 56.8 b | 682 ± 48.2 ab | 666 ± 58.4 ab |
| Ethyl octanoate | 514 ± 165 ab | 293 ± 83.5 a | 573 ± 32.7 ab | 556 ± 157 ab | 645 ± 132 b | 514 ± 42.9 a | 602 ± 48.1 a | 581 ± 56.8 a | 507 ± 63.7 a | 574 ± 71.1 a |
| Ethyl decanoate | 107 ± 28.0 ab | 66.2 ± 16.8 a | 100 ± 15.5 ab | 114 ± 40.1 ab | 155 ± 43.8 b | 82.6 ± 4.78 a | 105 ± 9.84 ab | 107 ± 14.6 b | 81.1 ± 7.26 a | 101 ± 7.87 ab |
| Sum of ethyl esters of straight-chain fatty acids | 1508 ± 317 ab | 1065 ± 198 a | 1659 ± 31.0 b | 1538 ± 457 ab | 1547 ± 353 ab | 1401 ± 128 ab | 1332 ± 77.3 a | 1612 ± 151 b | 1490 ± 128 ab | 1570 ± 156 ab |
| Ethyl-2-methylbutanoate | 2.91 ± 0.11 a | 2.91 ± 0.21 a | 3.06 ± 0.10 a | 2.81 ± 0.32 a | 2.73 ± 0.38 a | 4.47 ± 0.38 ab | 3.32 ± 0.35 a | 5.20 ± 0.48 b | 4.88 ± 0.47 ab | 4.85 ± 0.34 ab |
| Ethyl 3-methylbutanoate | 5.67 ± 1.48 b | 5.20 ± 1.17 ab | 4.79 ± 0.81 ab | 3.76 ± 0.45 a | 5.09 ± 1.13 ab | 11.1 ± 0.94 ab | 6.95 ± 0.81 a | 8.99 ± 0.91 ab | 11.7 ± 0.47 ab | 12.4 ± 0.62 b |
| Ethyl 3-hydroxybutyrate | 56.4 ± 2.00 a | 60.2 ± 1.77 a | 56.2 ± 5.25 a | 60.2 ± 4.15 a | 59.0 ± 0.48 a | 58.2 ± 2.24 a | 55.7 ± 6.22 a | 59.9 ± 4.91 a | 56.8 ± 3.69 a | 57.0 ± 7.93 a |
| Ethyl di-2-hydroxyhexanoate | 0.48 ± 0.01 ab | 0.50 ± 0.02 b | 0.49 ± 0.01 ab | 0.47 ± 0.02 a | 0.50 ± 0.02 b | 0.93 ± 0.05 a | 0.86 ± 0.06 a | 1.04 ± 0.09 a | 0.89 ± 0.08 a | 0.97 ± 0.07 a |
| Sum of ethyl esters of branched fatty acids | 65.5 ± 1.73 a | 68.8 ± 2.53 a | 64.5 ± 5.32 a | 67.2 ± 4.37 a | 67.3 ± 0.28 a | 74.7 ± 3.54 a | 66.9 ± 7.41 a | 75.2 ± 6.37 a | 74.3 ± 4.64 a | 75.3 ± 8.96 a |
| 3-Methylbutanoic acid | 183 ± 5.26 a | 191 ± 8.20 a | 190 ± 7.06 a | 185 ± 7.03 a | 197 ± 13.2 a | 261 ± 33.9 a | 250 ± 25.1 a | 256 ± 29.3 a | 254 ± 14.5 a | 257 ± 30.7 a |
| Hexanoic acid | 5621 ± 313 a | 6067 ± 135 a | 5978 ± 31.0 a | 5824 ± 135 a | 6550 ± 1309 a | 4047 ± 372 a | 6149 ± 401 b | 4849 ± 440 ab | 4479 ± 274 ab | 4776 ± 475 ab |
| Octanoic acid | 10,537 ± 441 a | 10,888 ± 144 a | 11,020 ± 32.7 a | 10,556 ± 139 a | 11,759 ± 1520 a | 7238 ± 567 a | 9490 ± 569 b | 7996 ± 912 ab | 7537 ± 754 ab | 8045 ± 1078 ab |
| Sum of fatty acids | 16,342 ± 757 a | 17,146 ± 273 a | 17,189 ± 52.7 a | 16,565 ± 273 a | 18,506 ± 2841 a | 11,547 ± 964 a | 15,888 ± 994 b | 13,100 ± 1373 ab | 12,270 ± 1034 ab | 13,078 ± 1583 ab |
| α-Phellandrene | 0.06 ± 0.01 a | 0.04 ± 0.00 a | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.06 ± 0.00 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a |
| α-Terpinene | <LOQ | <LOQ | <LOQ | 0.04 ± 0.02 | 0.03 ± 0.01 | <LOQ | 0.03 ± 0.01 | <LOQ | <LOQ | <LOQ |
| γ-Terpinene | 0.11 ± 0.00 ab | 0.16 ± 0.02 b | 0.12 ± 0.01 ab | 0.10 ± 0.03 ab | 0.08 ± 0.01 a | 0.12 ± 0.01 b | 0.07 ± 0.00 ab | 0.10 ± 0.03 ab | 0.09 ± 0.00 ab | 0.05 ± 0.00 a |
| β-Pinene | 0.02 ± 0.01 a | 0.04 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a |
| 3-Carene | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| β-Myrcene | 0.17 ± 0.01 a | 0.27 ± 0.02 b | 0.22 ± 0.02 ab | 0.22 ± 0.03 ab | 0.16 ± 0.02 ab | 0.28 ± 0.02 b | 0.24 ± 0.06 ab | 0.27 ± 0.06 b | 0.29 ± 0.03 b | 0.16 ± 0.01 a |
| Limonene | 0.38 ± 0.01 a | 0.41 ± 0.01 a | 0.39 ± 0.01 a | 0.39 ± 0.03 a | 0.39 ± 0.02 a | 0.40 ± 0.01 b | 0.35 ± 0.01 ab | 0.39 ± 0.01 ab | 0.40 ± 0.01 ab | 0.34 ± 0.01 a |
| 1,4-Cineole | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| 1,8-Cineole | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| p-Cymene | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| Terpinolene | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| Linalool | 1.92 ± 0.04 a | 2.30 ± 0.36 a | 2.07 ± 0.15 a | 2.25 ± 0.27 a | 1.93 ± 0.16 a | 3.43 ± 0.33 ab | 2.85 ± 0.10 ab | 3.23 ± 0.46 ab | 3.83 ± 0.20 b | 2.43 ± 0.11 a |
| Terpinen-4-ol | 0.16 ± 0.01 a | 0.17 ± 0.02 a | 0.18 ± 0.01 a | 0.18 ± 0.03 a | 0.16 ± 0.01 a | 0.33 ± 0.02 ab | 0.26 ± 0.01 a | 0.34 ± 0.03 ab | 0.37 ± 0.02 b | 0.28 ± 0.00 ab |
| α-Terpineol | 0.72 ± 0.09 a | 0.60 ± 0.08 a | 0.73 ± 0.01 a | 0.67 ± 0.08 a | 0.63 ± 0.08 a | 1.95 ± 0.26 ab | 1.08 ± 0.03 ab | 1.70 ± 0.24 ab | 2.02 ± 0.17 b | 1.03 ± 0.03 a |
| β-Citronellol | 1.04 ± 0.06 a | 0.90 ± 0.19 a | 0.72 ± 0.25 a | 0.65 ± 0.19 a | 0.67 ± 0.11 a | 0.79 ± 0.10 ab | 0.70 ± 0.02 ab | 0.74 ± 0.04 ab | 2.02 ± 0.02 b | 0.51 ± 0.03 a |
| Nerol | 0.24 ± 0.03 a | 0.40 ± 0.02 ab | 0.28 ± 0.05 a | 0.57 ± 0.03 b | 0.44 ± 0.03 ab | 1.96 ± 0.28 ab | 0.29 ± 0.03 a | 1.88 ± 0.63 ab | 2.50 ± 0.84 b | 0.95 ± 0.13 ab |
| Geraniol | 0.09 ± 0.01 a | 0.70 ± 0.15 ab | 0.64 ± 0.15 ab | 0.86 ± 0.21 ab | 2.29 ± 0.50 b | 3.82 ± 0.42 ab | 2.24 ± 0.06 ab | 2.50 ± 0.43 ab | 4.23 ± 0.85 b | 1.23 ± 0.17 a |
| Linalyl acetate | 4.51 ± 0.83 ab | 5.77 ± 1.79 ab | 4.63 ± 0.68 ab | 6.92 ± 1.06 b | 1.82 ± 0.68 a | 2.57 ± 0.78 ab | 1.98 ± 0.41 ab | 3.48 ± 0.42 b | 1.06 ± 0.05 ab | 0.33 ± 0.02 a |
| Geranyl acetate | 0.07 ± 0.02 ab | 0.07 ± 0.01 a | 0.08 ± 0.02 ab | 0.14 ± 0.04 b | 0.08 ± 0.02 ab | 0.12 ± 0.01 ab | 0.09 ± 0.01 ab | 0.60 ± 0.04 b | 0.13 ± 0.01 ab | 0.08 ± 0.01 a |
| Geranyl acetone | 0.05 ± 0.02 a | 0.12 ± 0.03 ab | 0.18 ± 0.03 b | 0.10 ± 0.00 ab | 0.08 ± 0.00 ab | 0.28 ± 0.07 ab | 0.22 ± 0.05 ab | 0.78 ± 0.07 b | 0.17 ± 0.06 a | 0.27 ± 0.04 ab |
| Sum of monoterpenoids | 9.54 ± 3.24 a | 12.0 ± 0.96 a | 10.3 ± 3.74 a | 13.2 ± 2.79 a | 9.00 ± 3.45 a | 16.1 ± 2.82 ab | 10.4 ± 1.58 ab | 16.0 ± 2.19 ab | 17.1 ± 1.25 b | 7.69 ± 0.55 a |
| β-Damascenone | 1.13 ± 0.04 a | 1.36 ± 0.09 a | 1.34 ± 0.18 a | 1.35 ± 0.11 a | 1.35 ± 0.11 a | 1.92 ± 0.12 b | 1.38 ± 0.07 ab | 1.98 ± 0.18 b | 1.62 ± 0.60 ab | 1.26 ± 0.14 a |
| α-Ionol | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.04 ± 0.00 a | 0.01 ± 0.00 ab | 0.03 ± 0.01 b | 0.01 ± 0.01 ab | 0.02 ± 0.00 ab | 0.00 ± 0.00 a |
| 4-Oxoisophorone | 3.22 ± 0.92 a | 4.24 ± 0.03 ab | 5.16 ± 0.20 ab | 6.07 ± 1.13 b | 5.67 ± 0.67 ab | 0.57 ± 0.08 b | 0.35 ± 0.06 ab | 0.44 ± 0.18 ab | 0.47 ± 0.02 ab | 0.22 ± 0.01 a |
| Vitispirane 1 | 0.06 ± 0.02 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.04 ± 0.01 a | 39.1 ± 1.70 ab | 27.3 ± 3.02 a | 39.0 ± 2.75 ab | 40.9 ± 3.35 b | 30.3 ± 0.76 ab |
| Vitispirane 2 | 0.07 ± 0.01 a | 0.07 ± 0.02 a | 0.06 ± 0.00 a | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 32.6 ± 5.74 ab | 15.0 ± 1.15 a | 30.0 ± 2.92 ab | 33.1 ± 3.61 b | 18.8 ± 1.15 ab |
| TPB | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 3.10 ± 0.11 ab | 1.98 ± 0.12 a | 2.84 ± 0.41 ab | 3.25 ± 0.19 b | 2.18 ± 0.06 ab |
| TDN | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.00 a | 0.07 ± 0.01 a | 0.07 ± 0.01 a | 36.1 ± 2.44 ab | 20.3 ± 2.68 a | 41.5 ± 7.37 b | 41.6 ± 7.07 b | 33.1 ± 2.96 ab |
| 3-hydroxy-β-damascone | 0.15 ± 0.01 a | 0.19 ± 0.02 a | 0.13 ± 0.02 a | 0.12 ± 0.03 a | 0.17 ± 0.04 a | 0.31 ± 0.01 ab | 0.07 ± 0.01 a | 0.38 ± 0.02 ab | 0.28 ± 0.01 ab | 0.74 ± 0.06 b |
| Sum of norisoprenoids | 4.71 ± 0.92 a | 6.01 ± 0.06 ab | 6.83 ± 0.00 ab | 7.74 ± 1.19 b | 7.41 ± 0.81 ab | 114 ± 8.13 ab | 66.4 ± 0.81 a | 116 ± 13.3 ab | 121 ± 11.0 b | 86.6 ± 1.44 ab |
| Farnesol 1 | 0.27 ± 0.01 a | 0.31 ± 0.05 ab | 0.32 ± 0.01 ab | 0.58 ± 0.07 b | 0.44 ± 0.07 ab | 0.66 ± 0.04 ab | 0.31 ± 0.05 a | 0.60 ± 0.04 ab | 0.31 ± 0.12 a | 1.81 ± 0.63 b |
| Nerolidol 1 | 1.86 ± 0.38 ab | 1.76 ± 0.16 a | 1.91 ± 0.45 ab | 2.75 ± 0.59 b | 2.20 ± 0.63 ab | 3.81 ± 0.67 ab | 3.46 ± 0.36 ab | 3.79 ± 1.00 ab | 4.87 ± 0.97 b | 2.65 ± 0.07 a |
| Bisabolol | 0.03 ± 0.00 a | 0.01 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.03 ± 0.02 a | 0.05 ± 0.01 a | 0.04 ± 0.02 a | 0.07 ± 0.04 a | 0.03 ± 0.01 a |
| Sum of sesquiterpenes | 2.15 ± 0.42 ab | 2.08 ± 0.13 a | 2.25 ± 0.38 ab | 3.36 ± 0.78 b | 2.66 ± 0.67 ab | 4.50 ± 0.51 a | 3.83 ± 0.32 a | 4.42 ± 0.89 a | 5.25 ± 1.05 a | 4.49 ± 1.68 a |
| Methyl salicylate | 1.85 ± 0.09 a | 2.66 ± 0.32 a | 2.32 ± 0.13 a | 2.25 ± 0.42 a | 2.47 ± 0.24 a | 19.7 ±2.56 b | 2.42 ± 0.20 ab | 6.27 ± 2.46 ab | 19.8 ± 5.76 b | 1.93 ± 0.08 a |
| Benzaldehyde | 1.10 ± 0.11 a | 1.22 ± 0.23 ab | 1.49 ± 0.23 ab | 2.25 ± 0.98 b | 1.39 ± 0.79 ab | 2.25 ± 0.23 ab | 2.29 ± 0.19 b | 1.47 ± 0.09 ab | 1.41 ± 0.08 a | 1.82 ± 0.20 ab |
| 2,6-Dimethoxyphenol | 3.99 ± 0.23 a | 4.34 ± 0.05 a | 3.96 ± 0.39 a | 3.70 ± 0.58 a | 3.89 ± 0.76 a | 2.89 ± 0.24 a | 3.04 ± 0.36 a | 3.02 ± 0.18 a | 3.00 ± 0.32 a | 3.08 ± 0.19 a |
| Vanillin | 32.8 ± 0.85 a | 35.7 ± 2.25 a | 32.2 ± 0.76 a | 30.7 ± 2.26 a | 37.0 ± 7.32 a | 24.7 ± 0.80 a | 28.1 ± 1.15 a | 31.2 ± 2.01 a | 24.3 ± 2.10 a | 31.4 ± 1.78 a |
| Eugenol | 1.92 ± 0.08 a | 2.98 ± 0.11 b | 2.12 ± 0.10 ab | 1.98 ± 0.03 a | 2.52 ± 0.28 ab | 0.23 ± 0.01 a | 0.21 ± 0.01 a | 0.23 ± 0.01 a | 0.22 ± 0.03 a | 0.23 ± 0.01 a |
| Ethyl cinnamate | 0.12 ± 0.01 a | 0.33 ± 0.05 b | 0.12 ± 0.03 a | 0.22 ± 0.06 ab | 0.25 ± 0.06 ab | 0.16 ± 0.03 a | 0.33 ± 0.01 ab | 0.20 ± 0.01 ab | 0.31 ± 0.04 ab | 0.38 ± 0.02 b |
| Sum of benzenoids | 41.8 ± 0.70 a | 47.2 ± 1.67 a | 42.2 ± 0.57 a | 41.1 ± 2.74 a | 47.6 ± 7.16 a | 49.9 ± 3.27 b | 36.4 ± 1.53 a | 42.4 ± 3.58 ab | 49.1 ± 5.11 ab | 38.8 ± 2.03 ab |
| T1 | T2 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Control | A | B | C | D | Control | A | B | C | D | |
| Methanethiol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 2.73 ± 0.92 a | 3.40 ± 0.23 a | 4.85 ± 0.47 a | 2.61 ± 0.58 a | 3.96 ± 0.90 a |
| Carbon disulfide | 3.05 ± 0.15 a | 2.96 ± 0.08 a | 2.98 ± 0.05 a | 3.15 ± 0.14 a | 3.05 ± 0.23 a | 5.59 ± 0.19 ab | 6.10 ± 1.35 ab | 5.48 ± 0.10 a | 7.30 ± 0.45 ab | 8.98 ± 1.24 b |
| DMS | 1.34 ± 0.09 a | 1.31 ± 0.05 a | 1.17 ± 0.05 a | 1.28 ± 0.09 a | 1.16 ± 0.13 a | 3.42 ± 0.17 a | 3.92 ± 0.55 a | 3.53 ± 0.64 a | 3.70 ± 0.20 a | 3.34 ± 0.38 a |
| DES | 0.10 ± 0.01 ab | 0.08 ± 0.02 ab | 0.05 ± 0.01 a | 0.19 ± 0.02 b | 0.09 ± 0.00 ab | 0.73 ± 0.09 a | 0.82 ± 0.07 a | 0.65 ± 0.16 a | 0.76 ± 0.19 a | 0.69 ± 0.07 a |
| DMDS | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| Sum of VSC | 4.49 ± 0.21 a | 4.35 ± 0.03 a | 4.20 ± 0.09 a | 4.62 ± 0.22 a | 4.30 ± 0.44 a | 12.5 ± 0.72 a | 14.2 ± 1.82 ab | 14.5 ± 3.29 ab | 14.4 ± 0.37 ab | 17.0 ± 2.52 b |
| 1-Butanol | 39.4 ± 2.16 a | 39.0 ± 2.19 a | 39.4 ± 1.16 a | 37.8 ± 3.47 a | 36.1 ± 3.81 a | 64.6 ± 4.52 ab | 57.9 ± 3.18 ab | 56.3 ± 6.56 ab | 50.8 ± 3.88 a | 131 ± 10.3 b |
| 1-Pentanol | 145 ± 59.9 a | 133 ± 41.2 a | 123 ± 55.4 a | 139 ± 63.8 a | 143 ± 14.2 a | 531 ± 55.4 b | 508 ± 29.4 ab | 518 ± 43.8 ab | 264 ± 23.8 a | 498 ± 62.1 ab |
| Isoamyl alcohol | 184,684 ± 6213 a | 176,442 ± 19,332 a | 184,779 ± 2773 a | 188,788 ± 17,804 a | 191,057 ± 8486 a | 72,667 ± 3105 a | 70,376 ± 9426 a | 66,438 ± 8279 a | 59,974 ± 1199 a | 69,878 ± 5926 a |
| Methionol | 166 ± 9.38 a | 164 ± 11.1 a | 167 ± 9.47 a | 149 ± 4.79 a | 164 ± 9.87 a | 177 ± 18.9 a | 197 ± 19.6 a | 183 ± 11.8 a | 176 ± 16.5 a | 188 ± 20.6 a |
| Phenylethyl Alcohol | 17,206 ± 1636 a | 18,120 ± 1085 a | 16,407 ± 914 a | 17,984 ± 1458 a | 17,747 ± 110 a | 7208 ± 632 a | 6949 ± 186 a | 6955 ± 402 a | 7376 ± 478 a | 6951 ± 691 a |
| Benzyl Alcohol | 38.9 ± 1.75 ab | 62.1 ± 2.63 b | 38.5 ± 2.77 a | 40.1 ± 6.36 ab | 46.2 ± 1.75 ab | 54.5 ± 2.53 a | 88.9 ± 9.31 ab | 148 ± 8.76 ab | 61.3 ± 5.95 ab | 179 ± 15.3 b |
| Sum of higher alcohol | 202,279 ± 7755 a | 194,960 ± 19,777 a | 201,554 ± 3450 a | 207,137 ± 19,334 a | 209,194 ± 8587 a | 80,703 ± 3730 a | 78,178 ± 9657 a | 74,299 ± 8733 a | 67,903 ± 1727 a | 77,827 ± 6722 a |
| 1-Hexanol | 384 ± 4.54 a | 384 ± 13.2 a | 397 ± 14.6 a | 381 ± 25.0 a | 383 ± 18.6 a | 499 ± 17.8 a | 483 ± 55.8 a | 491 ± 27.0 a | 486 ± 70.2 a | 506 ± 39.0 a |
| cis-3-Hexen-1-ol | 7.75 ± 0.24 a | 7.94 ± 0.43 a | 8.18 ± 0.29 a | 7.86 ± 0.42 a | 7.84 ± 0.46 a | 8.21 ± 0.98 a | 8.33 ± 0.78 a | 7.99 ± 0.67 a | 8.42 ± 0.71 a | 8.08 ± 0.73 a |
| trans-3-Hexen-1-ol | 121 ± 2.17 a | 124 ± 3.96 a | 123 ± 4.16 a | 119 ± 8.63 a | 121 ± 5.30 a | 124 ± 13.0 a | 127 ± 10.9 a | 133 ± 12.8 a | 122 ± 13.3 a | 140 ± 8.92 a |
| cis-2-hexen-1-ol | 4.72 ± 0.24 a | 4.71 ± 0.35 a | 4.89 ± 0.36 a | 4.82 ± 0.34 a | 4.78 ± 0.23 a | 13.4 ± 1.30 a | 14.4 ± 1.76 a | 14.5 ± 0.22 a | 12.6 ± 1.45 a | 14.4 ± 1.09 a |
| Sum of C6 alcohols | 517 ± 6.53 a | 521 ± 17.8 a | 533 ± 19.3 a | 512 ± 34.4 a | 517 ± 24.5 a | 644 ± 32.7 a | 633 ± 69.2 a | 647 ± 40.6 a | 629 ± 85.7 a | 668 ± 48.3 a |
| Isoamyl acetate | 2255 ± 137 a | 2162 ± 53.8 a | 2159 ± 276 a | 2127 ± 468 a | 2125 ± 88.1 a | 1598 ± 115 a | 1600 ± 136 a | 1608 ± 204 a | 1597 ± 146 a | 1553 ± 177 a |
| n-Hexyl acetate | 52.4 ± 10.3 a | 55.6 ± 4.57 a | 45.6 ± 18.2 a | 49.0 ± 10.8 a | 51.6 ± 9.40 a | 40.2 ± 3.79 ab | 46.7 ± 2.17 ab | 45.5 ± 3.80 ab | 48.7 ± 5.08 b | 39.3 ± 2.46 a |
| 2-Phenethyl acetate | 258 ± 31.8 a | 267 ± 9.97 a | 235 ± 60.4 a | 242 ± 72.5 a | 252 ± 27.3 a | 168 ± 12.8 ab | 177 ± 14.2 ab | 185 ± 8.35 ab | 201 ± 12.3 b | 164 ± 23.1 a |
| Sum of acetates | 2564 ± 179 a | 2484 ± 67.2 a | 2440 ± 354 a | 2417 ± 562 a | 2428 ± 124 a | 1807 ± 128 a | 1823 ± 151 a | 1838 ± 216 a | 1847 ± 162 a | 1756 ± 202 a |
| Ethyl butanoate | 225 ± 3.22 a | 224 ± 9.30 a | 226 ± 4.63 a | 226 ± 24.0 a | 221 ± 2.89 a | 243 ± 9.74 a | 237 ± 19.3 a | 231 ± 14.5 a | 230 ± 14.5 a | 234 ± 8.20 a |
| Ethyl hexanoate | 684 ± 135 a | 746 ± 46.1 a | 590 ± 25.6 a | 655 ± 267 a | 688 ± 104 a | 679 ± 61.6 a | 718 ± 33.2 a | 703 ± 76.9 a | 724 ± 68.3 a | 712 ± 84.7 a |
| Ethyl octanoate | 500 ± 159 a | 598 ± 131 a | 403 ± 85.3 a | 500 ± 272 a | 563 ± 179 a | 355 ± 48.1 a | 519 ± 25.0 ab | 499 ± 7.64 ab | 630 ± 44.1 b | 513 ± 35.4 ab |
| Ethyl decanoate | 65.0 ± 15.9 a | 66.5 ± 10.5 a | 59.1 ± 8.40 a | 76.0 ± 9.58 a | 80.0 ± 27.6 a | 34.4 ± 4.00 a | 58.1 ± 6.36 ab | 68.4 ± 5.59 ab | 102 ± 7.65 b | 80.5 ± 6.21 ab |
| Sum of ethyl esters of straight-chain fatty acids | 1474 ± 308 a | 1634 ± 208 a | 1278 ± 566 a | 1456 ± 600 a | 1553 ± 306 a | 1312 ± 123 a | 1532 ± 79.2 ab | 1501 ± 103 ab | 1686 ± 132 b | 1540 ± 130 ab |
| Ethyl-2-methylbutanoate | 2.80 ± 0.18 a | 2.86 ± 0.24 a | 2.56 ± 0.42 a | 2.63 ± 0.55 a | 2.81 ± 0.08 a | 5.33 ± 0.52 ab | 5.63 ± 0.45 b | 4.28 ± 0.40 a | 4.88 ± 0.42 ab | 4.79 ± 0.26 ab |
| Ethyl 3-methylbutanoate | 4.11 ± 0.71 a | 4.20 ± 0.47 a | 4.93 ± 0.38 a | 5.00 ± 0.42 a | 3.01 ± 0.76 a | 10.5 ± 1.32 ab | 12.1 ± 1.14 b | 11.5 ± 0.87 ab | 9.22 ± 0.87 a | 9.75 ± 0.79 ab |
| Ethyl 3-hydroxybutyrate | 65.9 ± 2.79 a | 70.9 ± 1.66 a | 69.8 ± 4.10 a | 72.4 ± 8.62 a | 70.3 ± 2.31 a | 64.3 ± 4.83 a | 67.4 ± 5.75 a | 65.1 ± 4.25 a | 56.3 ± 7.21 a | 65.2 ± 5.51 a |
| Ethyl di-2-hydroxyhexanoate | 0.48 ± 0.01 a | 0.48 ± 0.02 a | 0.49 ± 0.02 a | 0.47 ± 0.04 a | 0.48 ± 0.01 a | 0.97 ± 0.09 a | 0.92 ± 0.05 a | 0.86 ± 0.09 a | 0.87 ± 0.06 a | 0.89 ± 0.09 a |
| Sum of ethyl esters of branched fatty acids | 73.3 ± 2.94 a | 78.4 ± 1.45 a | 77.7 ± 4.84 a | 80.5 ± 9.60 a | 76.6 ± 3.15 a | 81.1 ± 6.57 a | 86.0 ± 7.23 a | 81.8 ± 5.5 a | 71.3 ± 8.5 a | 80.6 ± 6.64 a |
| 3-Methylbutanoic acid | 196 ± 4.66 a | 194 ± 5.07 a | 195 ± 8.29 a | 194 ± 14.8 a | 199 ± 8.38 a | 266 ± 22.2 a | 257 ± 19.4 a | 267 ± 34.5 a | 269 ± 11.5 a | 261 ± 22.9 a |
| Hexanoic acid | 5922 ± 434 a | 5733 ± 185 a | 6045 ± 279 a | 5900 ± 468 a | 5904 ± 261 a | 4547 ± 318 a | 4255 ± 407 a | 4063 ± 247 a | 4189 ± 293 a | 3923 ± 468 a |
| Octanoic acid | 10,317 ± 645 a | 10,281 ± 233 a | 10,547 ± 123 a | 10,314 ± 670 a | 10,321 ± 240 a | 7282 ± 442 a | 7410 ± 687 a | 7468 ± 224 a | 7912 ± 678 a | 7107 ± 971 a |
| Sum of fatty acids | 16,435 ± 1077 a | 16,209 ± 421 a | 16,788 ± 381 a | 16,407 ± 1153 a | 16,424 ± 506 a | 12,095 ± 781 a | 11,921 ± 1108 a | 11,798 ± 504 a | 12,370 ± 960 a | 11,291 ± 1458 a |
| α-Phellandrene | 0.02 ± 0.00 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a |
| α-Terpinene | <LOQ | <LOQ | 0.04 ± 0.00 | <LOQ | 0.03 ± 0.00 | <LOQ | <LOQ | <LOQ | 0.03 ± 0.01 | 0.03 ± 0.01 |
| γ-Terpinene | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| β-Pinene | 0.00 ± 0.00 a | 0.03 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a |
| 3-Carene | <LOQ | <LOQ | <LOQ | <LOQ | 0.03 ± 0.00 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| β-Myrcene | 0.07 ± 0.01 a | 0.10 ± 0.01 a | 0.12 ± 0.03 a | 0.11 ± 0.03 a | 0.09 ± 0.01 a | 0.10 ± 0.03 ab | 0.14 ± 0.02 b | 0.09 ± 0.01 ab | 0.08 ± 0.03 a | 0.08 ± 0.00 a |
| Limonene | 0.34 ± 0.01 a | 0.34 ± 0.03 a | 0.37 ± 0.01 a | 0.35 ± 0.03 a | 0.36 ± 0.01 a | 0.34 ± 0.00 a | 0.35 ± 0.01 a | 0.35 ± 0.01 a | 0.35 ± 0.02 a | 0.35 ± 0.01 a |
| 1,4-Cineole | 0.02 ± 0.01 a | 0.01 ± 0.01 a | <LOQ | <LOQ | <LOQ | 0.10 ± 0.01 a | 1.11 ± 0.09 ab | 1.85 ± 0.02 b | 1.11 ± 0.11 ab | 0.21 ± 0.06 ab |
| 1,8-Cineole | 0.01 ± 0.01 | <LOQ | <LOQ | 0.01 ± 0.01 | 0.01 ± 0.01 | <LOQ | <LOQ | <LOQ | 0.01 ± 0.00 | <LOQ |
| p-Cymene | <LOQ | 0.08 ± 0.01 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
| Terpinolene | 0.07 ± 0.03 a | 0.10 ± 0.01 a | 0.09 ± 0.02 a | 0.07 ± 0.02 a | 0.09 ± 0.01 a | 0.05 ± 0.01 a | 0.07 ± 0.01 ab | 0.09 ± 0.01 ab | 0.10 ± 0.04 b | 0.10 ± 0.01 b |
| Linalool | 2.63 ± 0.42 a | 3.24 ± 0.15 a | 2.98 ± 0.22 a | 3.00 ± 0.23 a | 3.06 ± 0.23 a | 2.36 ± 0.09 ab | 3.28 ± 0.26 b | 2.25 ± 0.06 ab | 2.26 ± 0.81 ab | 1.98 ± 0.47 a |
| Terpinen-4-ol | 0.19 ± 0.04 ab | 0.27 ± 0.03 b | 0.19 ± 0.02 ab | 0.08 ± 0.02 a | 0.10 ± 0.01 ab | 0.30 ± 0.02 a | 0.28 ± 0.01 a | 0.30 ± 0.01 a | 0.33 ± 0.03 a | 0.28 ± 0.01 a |
| α-Terpineol | 1.13 ± 0.26 a | 1.73 ± 0.05 a | 1.62 ± 0.40 a | 1.37 ± 0.12 a | 1.54 ± 0.02 a | 1.55 ± 0.28 ab | 1.63 ± 0.10 ab | 1.50 ± 0.14 a | 2.77 ± 0.76 b | 2.22 ± 0.09 ab |
| β-Citronellol | 1.24 ± 0.36 a | 2.07 ± 0.56 ab | 1.43 ± 0.19 ab | 1.67 ± 0.36 ab | 2.56 ± 0.92 b | 1.48 ± 0.96 b | 1.28 ± 0.14 ab | 0.95 ± 0.16 ab | 0.96 ± 0.16 ab | 0.82 ± 0.06 a |
| Nerol | 0.19 ± 0.07 a | 0.18 ± 0.01 a | 0.40 ± 0.09 a | 0.32 ± 0.01 a | 0.33 ± 0.03 a | 0.46 ± 0.04 a | 0.52 ± 0.03 ab | 0.78 ± 0.10 ab | 0.74 ± 0.29 ab | 1.38 ± 0.20 b |
| Geraniol | 2.01 ± 0.10 a | 2.14 ± 0.17 a | 2.95 ± 0.57 a | 2.21 ± 0.46 a | 1.96 ± 0.66 a | 0.92 ± 0.20 a | 2.19 ± 0.47 b | 1.17 ± 0.11 ab | 1.43 ± 0.32 ab | 1.01 ± 0.35 ab |
| Linalyl acetate | 0.16 ± 0.06 a | 0.27 ± 0.02 a | 0.15 ± 0.07 a | 0.18 ± 0.04 a | 0.23 ± 0.08 a | 0.18 ± 0.01 a | 0.11 ± 0.06 a | 0.30 ± 0.09 a | 0.15 ± 0.03 a | 0.17 ± 0.02 a |
| Geranyl acetate | 0.07 ± 0.04 a | 0.08 ± 0.01 a | 0.12 ± 0.00 a | 0.12 ± 0.02 a | 0.09 ± 0.01 a | 0.08 ± 0.01 a | 0.09 ± 0.01 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a | 0.09 ± 0.01 a |
| Geranyl acetone | 0.91 ± 0.02 b | 0.10 ± 0.02 a | 0.10 ± 0.01 a | 0.16 ± 0.06 ab | 0.90 ± 0.03 b | 0.10 ± 0.03 ab | 0.12 ± 0.03 ab | 0.08 ± 0.01 a | 1.45 ± 0.17 b | 0.08 ± 0.03 a |
| Sum of monoterpenoids | 9.14 ± 1.27 a | 11.0 ± 1.65 a | 10.7 ± 1.77 a | 9.80 ± 1.09 a | 11.5 ± 1.37 a | 8.00 ± 1.13 a | 11.29 ± 1.00 a | 9.95 ± 2.77 a | 12.0 ± 3.03 a | 8.91 ± 1.80 a |
| β-Damascenone | 1.39 ± 0.34 a | 1.59 ± 0.18 a | 1.48 ± 0.46 a | 1.72 ± 0.21 a | 1.57 ± 0.20 a | 1.21 ± 0.02 a | 1.37 ± 0.17 a | 1.46 ± 0.13 a | 1.34 ± 0.15 a | 1.39 ± 0.17 a |
| α-Ionol | 0.01 ± 0.00 a | 0.02 ± 0.02 a | 0.01 ± 0.01 a | 0.03 ± 0.00 a | 0.02 ± 0.02 a | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.01 a |
| 4-Oxoisophorone | 5.21 ± 1.79 a | 6.60 ± 0.87 ab | 9.77 ± 0.83 ab | 14.3 ± 0.76 b | 8.73 ± 2.24 ab | 0.44 ± 0.05 a | 0.49 ± 0.10 ab | 0.65 ± 0.06 ab | 0.73 ± 0.24 ab | 0.82 ± 0.13 b |
| Vitispirane 1 | 0.06 ± 0.02 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.06 ± 0.02 a | 0.07 ± 0.00 a | 24.6 ± 3.75 a | 31.5 ± 3.13 ab | 49.2 ± 3.9 ab | 79.5 ± 17.4 b | 63.5 ± 13.7 b |
| Vitispirane 2 | 0.08 ± 0.00 a | 0.11 ± 0.02 a | 0.12 ± 0.03 a | 0.08 ± 0.02 a | 0.10 ± 0.00 a | 24.7 ± 5.05 a | 30.1 ± 3.88 ab | 53.1 ± 0.93 ab | 94.2 ± 13.4 b | 71.5 ± 16.8 ab |
| TPB | 0.00 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 1.87 ± 0.11 a | 2.03 ± 0.27 ab | 2.62 ± 0.37 ab | 3.98 ± 0.55 b | 3.82 ± 0.19 ab |
| TDN | 0.06 ± 0.02 a | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.02 a | 0.06 ± 0.04 a | 29.9 ± 9.12 a | 29.7 ± 3.22 a | 41.5 ± 3.73 ab | 55.1 ± 16.4 b | 58.3 ± 9.13 b |
| 3-hydroxy-β-damascone | 0.00 ± 0.00 a | 0.23 ± 0.05 b | 0.11 ± 0.00 ab | 0.09 ± 0.00 ab | 0.09 ± 0.00 ab | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.15 ± 0.01 ab | 0.07 ± 0.00 ab | 0.18 ± 0.01 b |
| Sum of norisoprenoids | 6.82 ± 2.12 a | 8.71 ± 1.01 ab | 11.7 ± 8.29 ab | 16.3 ± 0.62 b | 10.7 ± 2.05 ab | 82.7 ± 17.2 a | 95.2 ± 10.3 ab | 149 ± 8.1 ab | 235 ± 88.2 b | 200 ± 39.6 b |
| Farnesol 1 | 0.47 ± 0.09 a | 0.55 ± 0.07 a | 0.36 ± 0.09 a | 0.72 ± 0.23 a | 0.68 ± 0.04 a | 0.25 ± 0.10 a | 1.64 ± 0.23 ab | 1.78 ± 0.34 ab | 0.25 ± 0.08 a | 5.25 ± 0.82 b |
| Nerolidol 1 | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.05 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 1.78 ± 0.16 a | 2.78 ± 0.27 a | 2.89 ± 0.34 a | 2.87 ± 0.80 a | 2.94 ± 0.64 a |
| Bisabolol | 0.01 ± 0.01 a | 0.12 ± 0.00 ab | 0.19 ± 0.05 b | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.04 ± 0.01 a | 0.02 ± 0.02 a | 0.16 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.02 a |
| Sum of sesquiterpenes | 0.50 ± 0.29 a | 0.69 ± 0.52 a | 0.60 ± 0.13 a | 0.76 ± 0.23 a | 0.71 ± 0.04 a | 2.06 ± 0.07 a | 4.44 ± 3.42 ab | 4.83 ± 2.51 ab | 3.17 ± 0.74 ab | 8.23 ± 5.3 b |
| Methyl salicylate | 2.08 ± 0.27 a | 2.57 ± 0.22 ab | 3.33 ± 0.50 b | 2.22 ± 0.10 ab | 2.49 ± 0.09 ab | 1.69 ± 0.05 a | 2.35 ± 0.27 ab | 1.79 ± 0.17 ab | 3.34 ± 0.85 b | 2.13 ± 0.11 ab |
| Benzaldehyde | 1.70 ± 0.16 a | 2.08 ± 0.27 a | 2.17 ± 0.30 a | 2.31 ± 0.19 a | 1.92 ± 0.36 a | 1.47 ± 0.04 ab | 1.16 ± 0.05 a | 1.37 ± 0.12 ab | 1.29 ± 0.14 ab | 1.61 ± 0.10 b |
| 2,6-Dimethoxyphenol | 3.88 ± 0.73 a | 4.07 ± 0.33 a | 4.17 ± 0.02 a | 4.24 ± 0.06 a | 3.87 ± 0.73 a | 2.96 ± 0.12 a | 3.01 ± 0.35 a | 2.99 ± 0.44 a | 4.47 ± 0.63 a | 2.95 ± 0.35 a |
| Vanillin | 34.5 ± 0.91 a | 36.0 ± 1.50 a | 35.0 ± 1.06 a | 35.5 ± 2.78 a | 34.3 ± 1.88 a | 22.2 ± 0.81 ab | 25.3 ± 2.18 ab | 1.99 ± 0.10 a | 27.0 ± 2.49 b | 24.4 ± 3.02 ab |
| Eugenol | 2.02 ± 0.08 ab | 3.10 ± 0.06 b | 2.14 ± 0.11 ab | 1.47 ± 0.08 a | 2.16 ± 0.09 ab | 0.23 ± 0.01 ab | 0.23 ± 0.01 ab | 0.22 ± 0.02 a | 0.60 ± 0.08 b | 0.67 ± 0.08 b |
| Ethyl cinnamate | 0.19 ± 0.03 a | 0.40 ± 0.05 b | 0.23 ± 0.06 ab | 0.22 ± 0.05 ab | 0.18 ± 0.04 a | 0.12 ± 0.02 a | 0.28 ± 0.05 ab | 0.16 ± 0.02 ab | 0.25 ± 0.03 ab | 0.33 ± 0.03 b |
| Sum of benzenoids | 44.4 ± 0.64 a | 48.1 ± 1.12 a | 47.0 ± 1.29 a | 46.0 ± 3.95 a | 45.0 ± 2.72 a | 28.7 ± 1.02 ab | 32.3 ± 2.82 ab | 8.52 ± 0.72 a | 42.1 ± 9.94 b | 32.1 ± 3.68 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Samaniego Solis, J.A.; Luzzini, G.; Prévide Bernardo, N.; Boscaini, A.; Dal Cin, A.; Zandonà, V.; Ugliano, M.; Melis, O.; Slaghenaufi, D. Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees. Beverages 2026, 12, 8. https://doi.org/10.3390/beverages12010008
Samaniego Solis JA, Luzzini G, Prévide Bernardo N, Boscaini A, Dal Cin A, Zandonà V, Ugliano M, Melis O, Slaghenaufi D. Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees. Beverages. 2026; 12(1):8. https://doi.org/10.3390/beverages12010008
Chicago/Turabian StyleSamaniego Solis, Jessica Anahi, Giovanni Luzzini, Naíssa Prévide Bernardo, Anita Boscaini, Andrea Dal Cin, Vittorio Zandonà, Maurizio Ugliano, Olga Melis, and Davide Slaghenaufi. 2026. "Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees" Beverages 12, no. 1: 8. https://doi.org/10.3390/beverages12010008
APA StyleSamaniego Solis, J. A., Luzzini, G., Prévide Bernardo, N., Boscaini, A., Dal Cin, A., Zandonà, V., Ugliano, M., Melis, O., & Slaghenaufi, D. (2026). Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees. Beverages, 12(1), 8. https://doi.org/10.3390/beverages12010008

