Sustainable Production of a Carotenoid-Rich Fruit Spirit from Cantaloupe Waste: Process Optimization, Shelf-Life, and Rural Scalability
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Supply and Preparation
2.2. Low-Temperature Maceration Protocol
2.3. Filtration, Sweetening, and Pasteurization
2.4. Chemical Analyses
2.5. Color and Physical Stability
2.6. Microbiological Safety and Shelf-Life Prediction
2.7. Sensory Evaluation
2.8. Volatile Aroma Profiling
2.9. Composting of Pomace
2.10. Life-Cycle Assessment
2.11. Statistical Analysis
3. Results
3.1. Base Beverage Metrics
3.2. Storage Stability
3.3. Challenge Test
3.4. Benchmark Against Fruit Spirits
3.5. Volatile Profile
3.6. Sensory Summary
3.7. Antioxidant Capacity
3.8. Life-Cycle Metrics
3.9. Compost Performance
3.10. Rural Economics
3.11. Study Limitations
4. Discussion
4.1. Base Beverage Metrics
4.2. Storage Stability
4.3. Challenge Test
4.4. Benchmark Against Fruit Spirits
4.5. Volatile Profile
4.6. Sensory Summary
4.7. Antioxidant Capacity
4.8. Life-Cycle Metrics
4.9. Compost Performance
4.10. Rural Economics
4.11. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| C/N | Carbon-to-Nitrogen Ratio |
| DAD | Diode-Array Detector (o Diode-Array Detection) |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| EtOH | Ethanol |
| GHG | Greenhouse Gas |
| GWP | Global Warming Potential |
| HPLC | High-Performance Liquid Chromatography |
| HPLC-DAD | High-Performance Liquid Chromatography with Diode-Array Detection |
| IPCC | Intergovernmental Panel on Climate Change |
| ISO | International Organization for Standardization |
| LCA | Life-Cycle Assessment |
| λ | Lag Phase |
| μmax | Maximum Specific Growth Rate |
| NaOCl | Sodium Hypochlorite |
| NPV | Net Present Value |
| OAV | Odor Activity Value |
| ORAC | Oxygen Radical Absorbance Capacity |
| PO4-eq | Phosphate-equivalent |
| QDA | Quantitative Descriptive Analysis |
| ROS | Reactive Oxygen Species |
| SIAP | Servicio de Información Agroalimentaria y Pesquera (Mexico) |
| TE | Trolox Equivalents |
| v/v | Volume per Volume |
| w/w | Weight per Weight |
References
- SIAP. Anuario Estadístico de la Producción Agrícola 2023; Secretaría de Agricultura y Desarrollo Rural: Ciudad de México, Mexico, 2023; Available online: https://www.gob.mx/siap/documentos/anuario-estadistico-de-produccion-agricola-2023-272190 (accessed on 18 September 2025).
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Statistical Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://www.fao.org/faostat/en/ (accessed on 18 September 2025).
- Espinoza-Arellano, J.d.J.; Fabela-Hernández, A.M.; Gaytán-Mascorro, A.; Reyes-González, A.; Sánchez-Toledano, B.I. Quantification and Use of Food Losses: The Case of Cantaloupe Melon in a Region of North-Central Mexico. Rev. Mex. Cienc. Agric. 2023, 14, 159–170. [Google Scholar] [CrossRef]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2020, 50, 515–532. [Google Scholar] [CrossRef]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Pott, D.M.; Oliveira, A.L.; Verruck, S.; Prudêncio, E.S. Light-barrier packaging and natural antioxidants to preserve carotenoids in functional beverages: A review. Trends Food Sci. Technol. 2021, 118, 185–197. [Google Scholar] [CrossRef]
- Clausen, A.; Silva, A.P.; Fraga, S. Small-scale tropical fruit spirits: A comparative techno-economic study. Foods 2023, 12, 1823. [Google Scholar] [CrossRef]
- Baker, G.A.; Brouwer, A.M. Craft spirits production: A survey of practices and inputs. J. Food Distrib. Res. 2020, 51, 45–58. [Google Scholar] [CrossRef]
- Salas-Millán, J.Á.; Aznar, A.; Conesa, E.; Conesa-Bueno, A.; Aguayo, E. Fruit wine obtained from melon by-products: Physico-chemical and sensory analysis, and characterization of key aromas by GC-MS. Foods 2022, 11, 3619. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, H.; Qi, X.; Li, J.; Fu, L.; Wang, X. Effect of main metabolites on carotenoids degradation during the fermentation of Chinese wolfberry wine. Food Sci. 2017, 38, 36–41. [Google Scholar] [CrossRef]
- Śliwińska-Bartel, M.; Wiśniewska, P.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The flavour of fruit spirits and fruit liqueurs: A review. Flavour Fragr. J. 2015, 30, 185–195. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Boulahrouf, A.; Smaali, I.; Santos, M.; Ferchichi, A. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Related Health Side Effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef]
- Mercado Mercado, G.; López Teros, V.; Montalvo González, E.; González Aguilar, G.A.; Álvarez Parrilla, E.; Sáyago Ayerdi, S.G. Efecto de la extracción asistida por ultrasonido en la liberación y bioaccesibilidad in vitro de carotenoides, en bebidas elaboradas con mango (Mangifera indica L.) ‘Ataulfo’. Nova Sci. 2018, 10, 100. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Jia, S.; Dai, Y.; Lin, X.; Ji, C.; Chen, Y. The Antioxidant Capacity and Flavor Diversity of Strawberry Wine Are Improved Through Fermentation with the Indigenous Non-Saccharomyces Yeasts Hanseniaspora uvarum and Kurtzmaniella quercitrusa. Foods 2025, 14, 886. [Google Scholar] [CrossRef]
- Cafieiro, C.S.P.; Tavares, P.P.L.G.; de Souza, C.O.; Cruz, L.F.S.; Mamede, M.E.O. Elaboration of wild passion fruit (Passiflora cincinnata Mast.) liqueur: A sensory and physicochemical study. An. Da Acad. Bras. De Ciências 2022, 94, e20211446. [Google Scholar] [CrossRef]
- da Silva, F.B.; Gaspar, T.; Shimizu-Marin, V.D.; Nishiyama-Hortense, Y.P.; Pérez-Navarro, J.; Gómez-Alonso, S.; Lago-Vanzela, E.S. BRS Carmem grape liqueurs: Influence of alcoholic base on physicochemical characteristics, anthocyanin composition, and sensory acceptance. Molecules 2025, 30, 2270. [Google Scholar] [CrossRef]
- Petrović, M.; Veljović, S.; Tomić, N.; Zlatanović, S.; Tosti, T.; Vukosavljević, P.; Gorjanović, S. Formulation of Novel Liqueurs from Juice Industry Waste: Consumer Acceptance, Phenolic Profile and Preliminary Monitoring of Antioxidant Activity and Colour Changes During Storage. Food Technol. Biotechnol. 2021, 59, 282–294. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Juice HACCP Hazards and Controls Guidance, 1st ed.; FDA: Silver Spring, MD, USA, 2004. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-hazard-analysis-critical-control-point-hazards-and-controls-guidance-first (accessed on 18 September 2025).
- Rodriguez-Amaya, D.B. Carotenoids and Food Preparation: The Retention of Provitamin a Carotenoids in Prepared, Processed and Stored Foods; OMNI/USAID: Washington, DC, USA, 1997; 88p. [Google Scholar]
- Romero-Rodríguez, M.A.; Vázquez-Oderiz, M.L.; López Hernández, J.; Simal Lozano, J. Determination of Vitamin C and Organic Acids in Various Fruits by HPLC. J. Chromatogr. Sci. 1992, 30, 433–437. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Color measurement and analysis in fresh and processed foods: A review. Food Bioprocess. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Nikolić, D.; Bursać Kovačević, D.; Levaj, B.; Dragović-Uzelac, V. Carotenoid stability in fruit liqueurs: Impact of ethanol, sugar and storage conditions. Food Res. Int. 2022, 158, 111520. [Google Scholar] [CrossRef]
- ISO 4833:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Colony-Count Technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21527-1:2008; Microbiology—Enumeration of Yeasts and Moulds—Part 1: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 9308-1:2014; Water Quality—Enumeration of Escherichia coli and Coliform bacteria. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 6579-1:2017; Microbiology—Horizontal Method for the Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 8586:2023; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of Solid-Phase Microextraction in Food Analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef]
- EPA/625/R-92/013; Control of Pathogens and Vector Attraction in Sewage Sludge. U.S. Environmental Protection Agency: Washington, DC, USA, 1992.
- ASTM D6338-21; Standard Test Method for Determination of the Maturity Index in Composts. ASTM International: West Conshohocken, PA, USA, 2021.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 21st ed.; Method 923.09, Reducing Sugars (Luff–Schoorl Method); AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Martínez, J.M.; Baltierra-Trejo, E.; Taboada-González, P.; Aguilar-Virgen, Q.; Marquez-Benavides, L. Life Cycle Environmental Impacts and Energy Demand of Craft Mezcal in Mexico. Sustainability 2020, 12, 8242. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Gibbs, P. Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends Food Sci. Technol. 2001, 12, 68–74. [Google Scholar] [CrossRef]
- Pang, X.-N.; Li, Z.-J.; Chen, J.-Y.; Gao, L.-J.; Han, B.-Z. A Comprehensive Review of Spirit Drink Safety Standards and Regulations from an International Perspective. J. Food Prot. 2017, 80, 431–442. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Wińska, K.; Szumny, A.; Nawirska-Olszańska, A.; Mizgier, P.; Wyspiańska, D. Composition and Antioxidant Activity of Red Fruit Liqueurs. Food Chem. 2014, 157, 533–539. [Google Scholar] [CrossRef]
- Lamikanra, O.; Richard, O.A. Effect of storage on some volatile aroma compounds in fresh-cut cantaloupe melon. J. Agric. Food Chem. 2002, 50, 4043–4047. [Google Scholar] [CrossRef]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F.; Lanciotti, R. Role of yeasts on the sensory component of wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef]
- Stanzer, D. Alcoholic Fermentation as a Source of Congeners in Fruit and Spirit Products. Foods 2023, 12, 1951. [Google Scholar] [CrossRef] [PubMed]
- Rugani, B.; Vázquez-Rowe, I.; Benedetto, G.; Benetto, E. A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J. Clean. Prod. 2013, 54, 61–77. [Google Scholar] [CrossRef]
- Mayer, F.D.; Zaiat, M.; Costa, J.A.V. Small-scale production of hydrous ethanol fuel: Economic and environmental performance. Renew. Sustain. Energy Rev. 2016, 66, 168–179. [Google Scholar] [CrossRef]




| Parameter | 0 d | 30 d | 90 d | Legal/Industry Limit | Method |
|---|---|---|---|---|---|
| β-Carotene (mg L−1) | 8.2 ± 0.5 | 7.4 ± 0.4 | 6.1 ± 0.3 | --- | HPLC-DAD 450 nm |
| Lycopene (mg L−1) | 5.4 ± 0.3 | 4.9 ± 0.2 | 4.0 ± 0.2 | --- | HPLC-DAD 450 nm |
| Vitamin C (mg L−1) | 42 ± 3 | 38 ± 2 | 31 ± 2 | --- | HPLC 254 nm |
| Citric acid (g L−1) | 1.21 ± 0.04 | 1.18 ± 0.05 | 1.15 ± 0.03 | --- | HPLC 254 nm |
| Malic acid (g L−1) | 0.38 ± 0.02 | 0.37 ± 0.02 | 0.36 ± 0.01 | --- | HPLC 254 nm |
| Total Sugars (g 100 g−1) | 6.2 ± 0.3 | 6.1 ± 0.3 | 6.0 ± 0.3 | --- | Luff-Schoorl [34] 4 |
| ΔE vs. 0 d * | --- | 1.8 ± 0.2 | 2.9 ± 0.3 | <3.0 2 | Colorimeter |
| pH | 3.80 ± 0.05 | 3.79 ± 0.04 | 3.77 ± 0.06 | >3.5 | Potentiometer |
| Ethanol (% v/v) | 20.0 ± 0.1 | 19.9 ± 0.1 | 19.8 ± 0.1 | 20 ± 1 | Densitometer |
| Aerobic mesophiles (CFU mL−1) | <10 2 | <10 2 | <10 2 | ≤10 3 | ISO 4833:2013 |
| Yeasts and molds (CFU mL−1) | <10 1 | <10 1 | <10 1 | ≤10 2 | ISO 21527-1:2008 |
| Escherichia coli (NMP 100 mL−1) | <3 | <3 | <3 | Absence | ISO 9308-1:2014 |
| Salmonella spp. (25 mL) | Absence | Absence | Absence | Absence | ISO 6579-1:2017 |
| Alicyclobacillus spp. (CFU 100 mL−1) | <10 1 | <10 1 | <10 1 | Absence 3 | SMEWW 9260 |
| Beverage (20% v/v EtOH, 30 °Brix) | ORAC (mmol TE L−1) | FRAP (mmol TE L−1) | DPPH IC50 (mg mL−1) | Reference |
|---|---|---|---|---|
| Cantaloupe spirit (this study) | 18.4 ± 0.7 | 15.1 ± 0.5 | 0.18 ± 0.01 | — |
| Mango liqueur | 12.3 ± 0.9 | 11.4 ± 0.6 | 0.25 ± 0.02 | [14] |
| Passion-fruit liqueur | 10.5 ± 0.8 | 9.8 ± 0.4 | 0.28 ± 0.03 | [16] |
| Pulp Level (%, v/v) | ORAC (mmol TE L−1) | FRAP (mmol TE L−1) | DPPH IC50 (mg mL−1) |
|---|---|---|---|
| 15% | 18.4 ± 0.7 a | 15.1 ± 0.5 a | 0.18 ± 0.01 a |
| 20% | 21.3 ± 0.9 b | 17.5 ± 0.6 b | 0.15 ± 0.01 b |
| 25% | 24.6 ± 1.1 c | 20.2 ± 0.8 c | 0.12 ± 0.01 c |
| Parameter | Control (0% Compost) | 2% Compost | p-Value |
|---|---|---|---|
| Water-holding capacity (%) | 18 ± 2 a | 22 ± 1 b | 0.003 |
| Organic matter (%) | 0.9 ± 0.1 a | 2.1 ± 0.2 b | <0.001 |
| Available P (mg kg−1) | 6.2 ± 0.8 a | 9.4 ± 0.9 b | 0.004 |
| Total N (g kg−1) | 0.41 ± 0.04 a | 0.58 ± 0.05 b | 0.002 |
| Cost or Revenue Item | Value (USD L−1) | % of Total |
|---|---|---|
| Variable costs | 2.15 | 74.1 |
| Neutral alcohol (38% v/v) | 1.10 | 37.9 |
| Glass bottle + crown cap | 0.65 | 22.4 |
| Raw fruit (rejected) | 0.45 | 15.5 |
| Sugar + utilities + chemicals | 0.20 | 6.9 |
| Fixed costs | 0.75 | 25.9 |
| Labor (2 operators) | 0.50 | 17.2 |
| Depreciation (10 yr, straight-line) | 0.05 | 1.7 |
| Maintenance + insurance | 0.20 | 6.9 |
| Total production cost | 2.90 | 100 |
| Selling price (ex-factory) | 4.50 | — |
| Gross margin | 1.60 | 36% |
| Payback period | 24 months | — |
| NPV (10 yr, 8% discount) | USD 18,400 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Perales-García, M.V.; Gonzáles-Torres, A.; García-Carrillo, M.; Vela-Perales, V.; Galindo-Guzmán, M.; Segura-Echevarría, O.A.; Luna-Ortega, J.G.; Ríos-Plaza, J.L.; Morales-García, A.M.; Zúñiga-Valenzuela, R.; et al. Sustainable Production of a Carotenoid-Rich Fruit Spirit from Cantaloupe Waste: Process Optimization, Shelf-Life, and Rural Scalability. Beverages 2026, 12, 3. https://doi.org/10.3390/beverages12010003
Perales-García MV, Gonzáles-Torres A, García-Carrillo M, Vela-Perales V, Galindo-Guzmán M, Segura-Echevarría OA, Luna-Ortega JG, Ríos-Plaza JL, Morales-García AM, Zúñiga-Valenzuela R, et al. Sustainable Production of a Carotenoid-Rich Fruit Spirit from Cantaloupe Waste: Process Optimization, Shelf-Life, and Rural Scalability. Beverages. 2026; 12(1):3. https://doi.org/10.3390/beverages12010003
Chicago/Turabian StylePerales-García, Martha Vianey, Anselmo Gonzáles-Torres, Mario García-Carrillo, Vianey Vela-Perales, Magdalena Galindo-Guzmán, Oscar Alan Segura-Echevarría, J. Guadalupe Luna-Ortega, Juan Luis Ríos-Plaza, Adamaris Maday Morales-García, Rafael Zúñiga-Valenzuela, and et al. 2026. "Sustainable Production of a Carotenoid-Rich Fruit Spirit from Cantaloupe Waste: Process Optimization, Shelf-Life, and Rural Scalability" Beverages 12, no. 1: 3. https://doi.org/10.3390/beverages12010003
APA StylePerales-García, M. V., Gonzáles-Torres, A., García-Carrillo, M., Vela-Perales, V., Galindo-Guzmán, M., Segura-Echevarría, O. A., Luna-Ortega, J. G., Ríos-Plaza, J. L., Morales-García, A. M., Zúñiga-Valenzuela, R., Cervantes-Vázquez, T. J. Á., Cervantes-Vázquez, M. G., Sánchez-Lucio, R., & Valenzuela-García, A. A. (2026). Sustainable Production of a Carotenoid-Rich Fruit Spirit from Cantaloupe Waste: Process Optimization, Shelf-Life, and Rural Scalability. Beverages, 12(1), 3. https://doi.org/10.3390/beverages12010003

