The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages
Abstract
1. Introduction
2. Chemical Composition and Diversity of Cassava
2.1. High Starch Content: Implications for Fermentation and Processing
2.2. Secondary Metabolites
2.2.1. Cyanogenic Glycosides (Linamarin, Lotaustralin)—Implications for Processing Safety
2.2.2. Relevance of Phenolic Compounds and Antioxidants in Cassava for Beverage Quality
3. Cassava as a Substrate for Beverage Production
4. Nutritional Significance of Cassava-Based Beverages
5. Health Benefits and Functional Potential
5.1. Probiotic and Prebiotic Properties
5.2. Antioxidant Activity
5.3. Detoxification and Gut Health
6. Challenges and Opportunities
6.1. Safety Concerns
6.2. Innovation and Commercialization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olsen, K.M.; Schaal, B.A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 1999, 96, 5586–5591. [Google Scholar] [CrossRef] [PubMed]
- Wooding, S.; Nolorbe-Payahua, C. Ethnobotanical Diversity of Cassava (Manihot esculenta Crantz) in the Peruvian Amazon. Diversity 2022, 14, 252. [Google Scholar] [CrossRef]
- Alves-Pereira, A.; Zucchi, M.I.; Clement, C.R.; Viana, J.P.G.; Pinheiro, J.B.; Veasey, E.A.; de Souza, A.P. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci. Rep. 2022, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Thuy, C.T.L.; Lopez-Lavalle, L.A.B.; Vu, N.A.; Hy, N.H.; Nhan, P.T.; Ceballos, H.; Newby, J.; Tung, N.B.; Hien, N.T.; Tuan, L.N.; et al. Identifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus. Agriculture 2021, 11, 829. [Google Scholar] [CrossRef]
- Parmar, A.; Sturm, B.; Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Otekunrin, O.A. Cassava (Manihot esculenta Crantz): A global scientific footprint—Production, trade, and bibliometric insights. Discov. Agric. 2024, 2, 94. [Google Scholar] [CrossRef]
- Kaur, K.; Ahluwalia, P. Cassava as potential crop for the food and fermentation industry: A review. Int. J. Food Ferment. Technol. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Falade, K.O.; Akingbala, J.O. Utilization of cassava for food. Food Rev. Int. 2010, 27, 51–83. [Google Scholar] [CrossRef]
- Qi, M.; Jiang, L.; Song, J.; Li, L.; Xu, M.; Li, Y.; Ma, C.; Chen, S.; Li, H. Enhancing cassava beer quality: Extrusion-induced modification of cassava starch structure boosts fermentable sugar content in wort. Int. J. Biol. Macromol. 2024, 278, 134895. [Google Scholar] [CrossRef]
- Drapal, M.; Barros de Carvalho, E.; Ovalle Rivera, T.M.; Becerra Lopez-Lavalle, L.A.; Fraser, P.D. Capturing Biochemical Diversity in Cassava (Manihot esculenta Crantz) through the Application of Metabolite Profiling. J. Agric. Food Chem. 2019, 67, 986–993. [Google Scholar] [CrossRef]
- Manano, J.; Ogwok, P.; Byarugaba-Bazirake, G.W. Chemical composition of major cassava varieties in Uganda, targeted for industrialisation. J. Food Res. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Blagbrough, I.S.; Bayoumi, S.A.; Rowan, M.G.; Beeching, J.R. Cassava: An appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry 2010, 71, 1940–1951. [Google Scholar] [CrossRef]
- Gazola, D.; Zucareli, C.; Ringenberg, R.; de Oliveira, M.C.N.; da Graça, J.P.; de Oliveira Nunes, E.; Hoffmann-Campo, C.B. Secondary metabolite contents in different parts of cassava plants infested by Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae). Arthropod-Plant Interact. 2019, 13, 359–366. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Adeloye, A.A.; Olaomo, O.O.; Kayitesi, E. Effect of fermentation time on physicochemical properties of starch extracted from cassava root. Food Biosci. 2020, 33, 100485. [Google Scholar] [CrossRef]
- Akpoghelie, P.O.; Edo, G.I. Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. Biocatal. Agric. Biotechnol. 2022, 45, 102535. [Google Scholar] [CrossRef]
- Daly, L. “The Spirits Drink Cassava Beer”: The More-Than-Human Politics of Self-Help in Amazonian Guyana. Med. Anthropol. 2025, 44, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Processing Techniques to Reduce Toxicity and Antinutrients of Cassava for Use as a Staple Food. Compr. Rev. Food Sci. Food Saf. 2009, 8, 17–27. [Google Scholar] [CrossRef]
- Cereda, M.P.; de Vasconcellos, S.P. Cassava cyanogenic glycosides: Importance, toxicity, and dosage methods. In Varieties and Landraces: Cultural Practices and Traditional Uses; Elsevier: Amsterdam, The Netherlands, 2023; pp. 179–209. [Google Scholar]
- Nyamekye, C.A. Health Issues Related to the Production and Consumption of Cassava as a Staple Food. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2021. [Google Scholar]
- Cressey, P.; Saunders, D.; Goodman, J. Cyanogenic glycosides in plant-based foods available in New Zealand. Food Addit. Contam. Part A 2013, 30, 1946–1953. [Google Scholar] [CrossRef]
- Rivolta, I.; Binda, A.; Masi, A.; DiFrancesco, J.C. Cardiac and neuronal HCN channelopathies. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 931–951. [Google Scholar] [CrossRef]
- Wahl-Schott, C.; Biel, M. HCN channels: Structure, cellular regulation and physiological function. Cell. Mol. Life Sci. 2008, 66, 470. [Google Scholar] [CrossRef]
- Roubille, F.; Tardif, J.-C. New therapeutic targets in cardiology: Heart failure and arrhythmia: HCN channels. Circulation 2013, 127, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Alitubeera, P.H. Outbreak of cyanide poisoning caused by consumption of cassava flour—Kasese District, Uganda, September 2017. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Siritunga, D.; Sayre, R. Transgenic approaches for cyanogen reduction in cassava. J. AOAC Int. 2007, 90, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Siritunga, D.; Sayre, R.T. Generation of cyanogen-free transgenic cassava. Planta 2003, 217, 367–373. [Google Scholar] [CrossRef]
- Ninkuu, V.; Liu, Z.; Zhou, Y.; Sun, X. The nutritional and industrial significance of cottonseeds and genetic techniques in gossypol detoxification. Plants People Planet 2024, 6, 271–286. [Google Scholar] [CrossRef]
- Panghal, A.; Claudia, M.; Paras, S.; Chhikara, N. Cassava toxicity, detoxification and its food applications: A review. Toxin Rev. 2021, 40, 1–16. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products–A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- de Oliveira, I.; Santos-Buelga, C.; Aquino, Y.; Barros, L.; Heleno, S.A. New frontiers in the exploration of phenolic compounds and other bioactives as natural preservatives. Food Biosci. 2025, 68, 106571. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J. Funct. Foods 2021, 77, 104340. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, L.; Liao, C.; Chen, L.; Wang, J.; Zeng, L. Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology. Food Chem. 2018, 269, 24–34. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, G.; Aluko, O.O.; Mo, Z.; Mao, J.; Zhang, H.; Liu, X.; Ma, M.; Wang, Q.; Liu, H. Bitter and astringent substances in green tea: Composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Res. Int. 2022, 157, 111262. [Google Scholar] [CrossRef] [PubMed]
- Ninkuu, V.; Aluko, O.O.; Jianpei, Y.; Chen, S.; Zeng, H.; Dakora, F.D. Phenylpropanoids metabolism: Recent insight into stress tolerance and plant development cues. Front. Plant Sci. 2025, 16, 1571825. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Zhang, L.; Qing-Qing, C.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Andrés–Meza, P.; Aguilar–Rivera, N.; Meneses–Márquez, I.; Del Rosario–Arellano, J.L.; Bolio–López, G.I.; Leyva–Ovalle, O.R. Cassava cultivation; current and potential use of agroindustrial co–products. AIMS Environ. Sci. 2024, 11, 248–278. [Google Scholar] [CrossRef]
- Coelho, E.; Ballesteros, L.F.; Domingues, L.; Vilanova, M.; Teixeira, J.A. Production of a Distilled Spirit Using Cassava Flour as Raw Material: Chemical Characterization and Sensory Profile. Molecules 2020, 25, 3228. [Google Scholar] [CrossRef]
- Kubo, R.; Funakawa, S.; Araki, S.; Kitabatake, N. Production of indigenous alcoholic beverages in a rural village of Cameroon. J. Inst. Brew. 2014, 120, 133–141. [Google Scholar] [CrossRef]
- Malinao, C.W.M.; Baniaga, G.E.; Cay, J.J.G. Local Production Techniques and Sensory Evaluation of Cassava Wine. J. Interdiscip. Perspect. 2025, 3, 214–220. [Google Scholar]
- Chacón, G.; Arias, G.; José Sandoval-Cañas, G.; Ordoñez Araque, R. Ancestral fermented indigenous beverages from South America made from cassava (Manihot esculenta). Ciência E Tecnol. De Aliment. 2020; ahead of print. [Google Scholar] [CrossRef]
- Mgm, E.; Krishnadath, I.; van Eer, E.; Ym, S.; Mans, D.; Sgs, V. Metabolic syndrome in Indigenous Amerindian women in Suriname; less on waist and more on weight? J. Obes. Overweig. 2017, 3, 201. [Google Scholar]
- Mayorga, G.A.C.; Palma, G.B.A.; Sandoval-Cañas, G.J.; Ordoñez-Araque, R.H. Ancestral fermented indigenous beverages from South America made from cassava (Manihot esculenta). Food Sci. Technol. 2021, 41. [Google Scholar] [CrossRef]
- Ngozi Joan, A.; Peter, A.S. Mutation Breeding: A Tool in Nutritional Improvement of Cassava. In Cassava—Recent Updates on Food, Feed, and Industry; Frediansyah, A., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Lima, T.T.M.; Hosken, B.d.O.; Venturim, B.C.; Lopes, I.L.; Martin, J.G.P. Traditional Brazilian fermented foods: Cultural and technological aspects. J. Ethn. Foods 2022, 9, 35. [Google Scholar] [CrossRef]
- Freire, A.L.; Ramos, C.L.; de Almeida, E.G.; Duarte, W.F.; Schwan, R.F. Study of the physicochemical parameters and spontaneous fermentation during the traditional production of yakupa, an indigenous beverage produced by Brazilian Amerindians. World J. Microbiol. Biotechnol. 2014, 30, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Motlhanka, K.; Zhou, N.; Lebani, K. Microbial and chemical diversity of traditional non-cereal based alcoholic beverages of Sub-Saharan Africa. Beverages 2018, 4, 36. [Google Scholar] [CrossRef]
- Andrade, J.S.; Pantoja, L.; Maeda, R.N. Improvement on beverage volume yield and on process of alcoholic beverage production from pejibaye (Bactris gasipaes Kunth). Food Sci. Technol. 2003, 23, 34–38. [Google Scholar]
- Harsono, G. Analisa Dan Perancangan Sistem Manajemen Gudang Pada Perusahaan Jasa Maklon/E-Contract Manufacturing (Studi Kasus: CV. Sakura Satrya Jaya). JUSIBI J. Sist. Inf. Dan E-Bisnis 2020, 2, 374–390. [Google Scholar]
- Cereda, M.P.; dos Santo Brito, V.H. Fermented Foods and Beverages from Cassava (Manihot esculenta Crantz) in South America. In Fermented Foods of Latin America; CRC Press: Boca Raton, FL, USA, 2017; pp. 202–223. [Google Scholar]
- Wireko-Manu, F.D. Development and quality assessment of cassava-sweetpotato non-alcoholic beverage. MOJ Food Process. Technol. 2016, 2, 1–5. [Google Scholar]
- Palacio, J. The Garifuna, A Nation Across Borders: Essays in Social Anthropology; Cubola Prod: Benque Viejo Del Carmen, Belize, 2005. [Google Scholar]
- Gico, E.T.; Ybarzabal, E.R. Indigenous rice wine making in Central Panay, Philippines. Patubas 2015, 10, 49–73. [Google Scholar]
- Gregorio, C.G.C. Philippine Traditional Alcoholic Beverages: A Germinal Study. In Natural Products in Beverages: Botany, Phytochemistry, Pharmacology and Processing; Mérillon, J.-M., Riviere, C., Lefèvre, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–30. [Google Scholar] [CrossRef]
- Dobermann, D.; Field, L.M.; Michaelson, L.V. Using Hermetia illucens to process Ugandan waragi waste. J. Clean. Prod. 2019, 211, 303–308. [Google Scholar] [CrossRef]
- Cereda, M.P.; de Almeida Lima, U. Etanol, spirits and beer produced from underground starchy raw materials. In Traditional Starch Food Products; Elsevier: Amsterdam, The Netherlands, 2025; pp. 205–236. [Google Scholar]
- Scaria, S.; Balasubramanian, B.; Arun, M.; Jaison, J.; Gangwar, J.; Kurian, J.; Pappuswamy, M.; Pusparaj, K.; Park, S.; Joseph, K.S. Cassava (Manihot esculenta Crantz)—A potential source of phytochemicals, food, and nutrition—An updated review. eFood 2024, 5, e127. [Google Scholar] [CrossRef]
- Wuyts, S.; Van Beeck, W.; Allonsius, C.N.; van den Broek, M.F.; Lebeer, S. Applications of plant-based fermented foods and their microbes. Curr. Opin. Biotechnol. 2020, 61, 45–52. [Google Scholar] [CrossRef]
- Osungbaro, T. Physical and nutritive properties of fermented cereal foods. Afr. J. Food Sci. 2008, 3, 23–27. [Google Scholar]
- Marfo, E.K.; Simpson, B.K.; Idowu, J.S.; Oke, O.L. Effect of local food processing on phytate levels in cassava, cocoyam, yam, maize, sorghum, rice, cowpea, and soybean. J. Agric. Food Chem. 1990, 38, 1580–1585. [Google Scholar] [CrossRef]
- Adinsi, L.; Mestres, C.; Akissoé, N.; Vieira-Dalodé, G.; Anihouvi, V.; Noel, D.; Hounhouigan, D. Comprehensive quality and potential hazards of gowe, a malted and fermented cereal beverage from West Africa. A diagnostic for a future re-engineering. Food Control 2017, 82, 18–25. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Krebs, N.F. Dietary reference intakes for zinc may require adjustment for phytate intake based upon model predictions. J. Nutr. 2008, 138, 2363–2366. [Google Scholar] [CrossRef] [PubMed]
- Tefera, T.; Ameha, K.; Biruhtesfa, A. Cassava based foods: Microbial fermentation by single starter culture towards cyanide reduction, protein enhancement and palatability. Int. Food Res. J. 2014, 21, 1751–1756. [Google Scholar]
- Manivanh, N.; Preston, T.R.; Le Van, A.; Tran, H. Improving nutritive value of cassava root (Manihot esculenta crantz) by fermentation with yeast (saccharomyces cerevisiae), urea and di-ammonium phosphate. Livest. Res. Rural Dev. 2018, 30. Available online: http://www.lrrd.org/lrrd30/5/noup30094.html (accessed on 23 June 2025).
- Bala, J.D.; Ijah, U.; Abioye, P.; Emele, L.C. Protein enrichment of Cassava with yeasts for Garri production. Biotechnol. Indian J. 2012, 6, 120–126. [Google Scholar]
- Chelule, P.K.; Mbongwa, H.P.; Carries, S.; Gqaleni, N. Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem. 2010, 122, 656–661. [Google Scholar] [CrossRef]
- Halake, N.; Chinthapalli, B. Fermentation of Traditional African Cassava Based Foods: Microorganisms Role in Nutritional and Safety Value. J. Exp. Agric. Int. 2020, 42, 56–65. [Google Scholar] [CrossRef]
- Hasan, M.; Sultan, Z.; Mar-E-Um, M. Significance of Fermented Food in Nutrition and Food Science. J. Sci. Res. 2014, 6, 16530. [Google Scholar] [CrossRef]
- Halake, N.; Chinthapalli, B.; Chitra, D. Role of Selected Fermentative Microorganisms on Cyanide Reduction, Protein Enhancement and Palatability of Cassava Based Food. Int. J. Res. Agric. For. 2019, 6, 1–12. [Google Scholar]
- Shumye Gebre, T.; Admassu Emire, S.; Okomo Aloo, S.; Chelliah, R.; Vijayalakshmi, S.; Hwan Oh, D. Unveiling the potential of African fermented cereal-based beverages: Probiotics, functional drinks, health benefits and bioactive components. Food Res. Int. 2024, 191, 114656. [Google Scholar] [CrossRef]
- Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef]
- Phiri, S.; Schoustra, S.E.; van den Heuvel, J.; Smid, E.J.; Shindano, J.; Linnemann, A. Fermented cereal-based Munkoyo beverage: Processing practices, microbial diversity and aroma compounds. PLoS ONE 2019, 14, e0223501. [Google Scholar] [CrossRef]
- Gemechu, T. Review on lactic acid bacteria function in milk fermentation and preservation. Afr. J. Food Sci. 2015, 9, 170–175. [Google Scholar]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed. Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef]
- García-Mahecha, M.; Soto-Valdez, H.; Carvajal-Millan, E.; Madera-Santana, T.J.; Lomelí-Ramírez, M.G.; Colín-Chávez, C. Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. Molecules 2023, 28, 458. [Google Scholar] [CrossRef]
- Keawyok, K.; Waree, W.; Jodnak, S. Prebiotic properties of isomaltooligosaccharides from cassava as a potential ingredient in high-protein drinks for athletes. Bioact. Compd. Health Dis. Online 2023, 6, 38–55. [Google Scholar] [CrossRef]
- Souza, C.M.; Bastos, T.S.; Kaelle, G.C.; Bortolo, M.; de Oliveira, S.G.; Félix, A.P. Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota. J. Anim. Physiol. Anim. Nutr. 2023, 107, 18–29. [Google Scholar] [CrossRef]
- de Souza, C.B.; Roeselers, G.; Troost, F.; Jonkers, D.; Koenen, M.; Venema, K. Prebiotic effects of cassava bagasse in TNO’s in vitro model of the colon in lean versus obese microbiota. J. Funct. Foods 2014, 11, 210–220. [Google Scholar] [CrossRef]
- Hayati, S.R.; Pattarapanawan, M.; Phuengjayaem, S.; Akrimajirachoote, N.; Laohakunjit, N.; Kovitvadhi, A.; Kotatha, D. Preparation, characterization, and prebiotic potential of resistant maltodextrin from the remaining starch in cassava pulp. Int. J. Biol. Macromol. 2025, 297, 139894. [Google Scholar] [CrossRef]
- Rogoski, W.; Pereira, G.N.; Cesca, K.; da Silva, M.A.; Zanella, E.; Stambuk, B.U.; Ávila, P.F.; Goldbeck, R.; de Oliveira, D.; de Andrade, C.J. Production of cassava peel-based xylooligosaccharides using endo-1, 4-β-xylanase from Trichoderma longibrachiatum: The effect of alkaline pretreatment. Biomass Convers. Biorefinery 2024, 14, 11351–11363. [Google Scholar] [CrossRef]
- Poletto, P.; Pereira, G.N.; Monteiro, C.R.; Pereira, M.A.F.; Bordignon, S.E.; de Oliveira, D. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 2020, 91, 352–363. [Google Scholar] [CrossRef]
- Ratnadewi, A.A.I.; Rahma, M.T.; Nurhayati, N.; Santoso, A.B.; Senjarini, K.; Labes, A.; Reza, M. Production of xylooligosaccharide from cassava pulp’s waste by endo-β-1, 4-D-xylanase and characterization of its prebiotic effect by fermentation of Lactobacillus acidophilus. Fermentation 2022, 8, 488. [Google Scholar] [CrossRef]
- Osundahunsi, O.F.; Williams, A.O.; Oluwalana, I.B. Prebiotic effects of cassava fibre as an ingredient in cracker-like products. Food Funct. 2012, 3, 159–163. [Google Scholar] [CrossRef]
- Mafaldo, Í.M.; Araújo, L.M.; Cabral, L.; Barão, C.E.; Noronha, M.F.; Fink, J.R.; de Albuquerque, T.M.R.; dos Santos Lima, M.; Vidal, H.; Pimentel, T.C. Cassava (Manihot esculenta) Brazilian cultivars have different chemical compositions, present prebiotic potential, and beneficial effects on the colonic microbiota of celiac individuals. Food Res. Int. 2024, 195, 114909. [Google Scholar] [CrossRef]
- Tedelind, S.; Westberg, F.; Kjerrulf, M.; Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. WJG 2007, 13, 2826. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, B.; Wang, F.; Huang, D.; Zhong, F.; Li, Y. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend. LWT 2021, 137, 110398. [Google Scholar] [CrossRef]
- Oguntoye, M.A.; Ezekiel, O.O.; Oridupa, O.A. Viability of Lactobacillus rhamnosus GG in provitamin A cassava hydrolysate during fermentation, storage, in vitro and in vivo gastrointestinal conditions. Food Biosci. 2021, 40, 100845. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, Y.; Zhu, Y.; Lan, Y. Preparation and drug-loading properties of amphoteric cassava starch nanoparticles. Nanomaterials 2022, 12, 598. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-R.; Xiao, Y.; Ali, M.; Xu, F.-Y.; Li, J.; Wang, R.; Zeng, X.-A.; Teng, Y.-X. Improving resistant starch content of cassava starch by pulsed electric field-assisted esterification. Int. J. Biol. Macromol. 2024, 276, 133272. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ruiz, J.D.; Rodriguez-Sandoval, E.; Hernandez, M.S.; Melo-Brito, N.B.; Mejía-Villota, A. Physicochemical and microbiological quality of a fermented soybean beverage: Effect of modified cassava starches. Food Sci. Technol. 2024, 44. [Google Scholar] [CrossRef]
- Ekeledo, E.; Latif, S.; Abass, A.; Müller, J. Antioxidant potential of extracts from peels and stems of yellow-fleshed and white cassava varieties. Int. J. Food Sci. Technol. 2021, 56, 1333–1342. [Google Scholar] [CrossRef]
- Yi, B.; Hu, L.; Mei, W.; Zhou, K.; Wang, H.; Luo, Y.; Wei, X.; Dai, H. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 10157–10167. [Google Scholar] [CrossRef]
- Laya, A.; Koubala, B.B. Polyphenols in cassava leaves (Manihot esculenta Crantz) and their stability in antioxidant potential after in vitro gastrointestinal digestion. Heliyon 2020, 6, e03567. [Google Scholar] [CrossRef]
- Lehmane, H.; Kohonou, A.N.; Tchogou, A.P.; Ba, R.; Dah-Nouvlessounon, D.; Didagbé, O.; Sina, H.; Senou, M.; Adjanohoun, A.; Baba-Moussa, L. Antioxidant, anti-inflammatory, and anti-cancer properties of amygdalin extracted from three cassava varieties cultivated in Benin. Molecules 2023, 28, 4548. [Google Scholar] [CrossRef]
- Ziemah, J.; Ullrich, M.S.; Kuhnert, N. Antibacterial activity potential of industrial food production waste extracts against pathogenic bacteria: Comparative analysis and characterization. Foods 2024, 13, 1902. [Google Scholar] [CrossRef]
- Elshamy, S.; Kuhnert, N.; El-Shazly, M.; Ziemah, J.; Handoussa, H. Comparative metabolomic study of twelve Acacia species by UHPLC-q-tof-ESI-MS coupled with chemometrics in correlation with antibacterial activity. Fitoterapia 2025, 181, 106378. [Google Scholar] [CrossRef]
- Linn, K.Z.; Myint, P.P. Estimation of nutritive value, total phenolic content and in vitro antioxidant activity of Manihot esculenta Crantz.(Cassava) leaf. J. Med. Plants 2018, 6, 73–78. [Google Scholar]
- Lu, T.; Song, B.; Yang, J.; Tan, H.; Qiao, H.; Zhi, W.; Chen, R.; Sheng, Z. Lactobacillus HNC7-YLC92 Improves the Fermentation Quality of Cassava–Acerola Cherry Beverage. Fermentation 2024, 10, 90. [Google Scholar] [CrossRef]
- Ojo, I.; Apiamu, A.; Egbune, E.O.; Tonukari, N.J. Biochemical characterization of solid-state fermented cassava stem (Manihot esculenta Crantz-MEC) and its application in poultry feed formulation. Appl. Biochem. Biotechnol. 2022, 194, 2620–2631. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zi, X.; Lv, R.; Zhang, L.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Cassava foliage effects on antioxidant capacity, growth, immunity, and ruminal microbial metabolism in Hainan black goats. Microorganisms 2023, 11, 2320. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, T.; Zi, X.; Lv, R.; Gu, L. Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese. Microorganisms 2025, 13, 660. [Google Scholar] [CrossRef]
- Okrathok, S.; Sirisopapong, M.; Mermillod, P.; Khempaka, S. Modified dietary fiber from cassava pulp affects the cecal microbial population, short-chain fatty acid, and ammonia production in broiler chickens. Poult. Sci. 2023, 102, 102265. [Google Scholar] [CrossRef]
- Khota, W.; Kaewpila, C.; Suwannasing, R.; Srikacha, N.; Maensathit, J.; Ampaporn, K.; Patarapreecha, P.; Thip-Uten, S.; Sawnongbue, P.; Subepang, S. Ensiling cyanide residue and In vitro rumen fermentation of cassava root silage treated with cyanide-utilizing bacteria and cellulase. Fermentation 2023, 9, 151. [Google Scholar] [CrossRef]
- Posridee, K.; Oonsivilai, A.; Oonsivilai, R. Maltodextrin from Sweet Cassava: A Promising Endurance Enhancer. Foods 2024, 13, 766. [Google Scholar] [CrossRef]
- Adinsi, L.; Akissoé, N.; Escobar, A.; Prin, L.; Kougblenou, N.; Dufour, D.; Hounhouigan, D.J.; Fliedel, G. Sensory and physicochemical profiling of traditional and enriched gari in Benin. Food Sci. Nutr. 2019, 7, 3338–3348. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Chu-ky, S.; Luong, H.N.; Nguyen, H.V. Effect of pretreatment methods on enzymatic kinetics of ungelatinized cassava flour hydrolysis. Catalysts 2020, 10, 760. [Google Scholar] [CrossRef]
- Kumari, K.; Nagar, S.; Goyal, S.; Maan, S.; Chugh, V.; Kumar, V.; Kharor, N. Xylooligosaccharide Production From Lignocellulosic Biomass and Their Health Benefits as Prebiotics. Biochem. Res. Int. 2024, 2024, 6179375. [Google Scholar] [CrossRef] [PubMed]
Cassava Beverage | Origin | Production | Part Used | Production Process | References |
---|---|---|---|---|---|
Masato de Yuca | Peru, Colombia, Venezuela | Indigenous beverage | Root | Boiled cassava roots are mashed to produce the fermented drink | [41] |
Kasiri/kaschiri | Guyana, Suriname, Venezuela | Indigenous beverage | Root | An alcoholic drink made by fermenting cassava juice extracted from grated roots | [42] |
Parakari | Guyana, Venezuela | Indigenous beverage | Root | A fermented beverage processed using cassava bread and a mold for saccharification | [43] |
Nihamanchi | Ecuador, Peru | Indigenous beverage | Root | Boiled cassava root is mashed to produce the fermented drink | [44] |
Cauim | Brazil | Indigenous beverage | Root | Fermenting cassava root flavored with fruit juices | [45] |
Yakupa | Brazil | Indigenous beverage | Root | A non-alcoholic beverage made from fermented cassava dough | [46] |
Tarubá | Brazil | Indigenous beverage | Root | Fermented cassava roots | [47] |
Caiçuma | Brazil | Indigenous beverage | Root | Fermented cassava roots | [48] |
Sakurá | Brazil, Suriname | Indigenous beverage | Root | Derived from sweet cassava | [49] |
Chicha de Yuca | Amazon Basin | Indigenous beverage | Root | A traditional fermented drink made from chewed cassava | [50] |
Tiquira | Brazil | Indigenous beverage | Root | Fermented cassava roots | [50] |
Non-alcoholic beverage | Ghana | New formulation | Root | Fermenting, sieving, and toasting cassava roots | [51] |
Sahou | Belize (Garifuna culture) | Indigenous beverage | Starch | Addition of water to grated cassava | [52] |
Pangasi | Philippines | Indigenous beverage | Root | A fermentation process similar to tapuey | [53,54] |
Waragi | Uganda | Indigenous beverage | Flour | Fermentation and distillation of cassava roots | [55] |
Tiquira | Brazil (Maranhão and Pará) | Indigenous beverage | Root | Fermentation and distillation of cassava roots | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemah, J.; Aluko, O.O.; Ninkuu, V.; Adetunde, L.A.; Anyetin-Nya, A.K.; Abugri, J.; Ullrich, M.S.; Dakora, F.D.; Chen, S.; Kuhnert, N. The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages. Beverages 2025, 11, 98. https://doi.org/10.3390/beverages11040098
Ziemah J, Aluko OO, Ninkuu V, Adetunde LA, Anyetin-Nya AK, Abugri J, Ullrich MS, Dakora FD, Chen S, Kuhnert N. The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages. Beverages. 2025; 11(4):98. https://doi.org/10.3390/beverages11040098
Chicago/Turabian StyleZiemah, James, Oluwaseun Olayemi Aluko, Vincent Ninkuu, Lawrence Adelani Adetunde, Asekabta Karl Anyetin-Nya, James Abugri, Matthias S. Ullrich, Felix Dapare Dakora, Songbi Chen, and Nikolai Kuhnert. 2025. "The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages" Beverages 11, no. 4: 98. https://doi.org/10.3390/beverages11040098
APA StyleZiemah, J., Aluko, O. O., Ninkuu, V., Adetunde, L. A., Anyetin-Nya, A. K., Abugri, J., Ullrich, M. S., Dakora, F. D., Chen, S., & Kuhnert, N. (2025). The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages. Beverages, 11(4), 98. https://doi.org/10.3390/beverages11040098