Exploring the Potential of Indigenous Grape Varieties for Sparkling Wine Production in the Hrvatska Istra Subregion (Croatia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapevine Varieties
2.2. Sparkling Wines Production
2.3. Chemical Analysis of Must, Base, and Sparkling Wines
2.4. Identification and Quantification of Volatile Compounds in Sparkling Wines
2.5. Calculation of Odor Activity Value (OAV) and Relative Odor Contribution (ROC)
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Grape Must, Basic, and Sparkling Wines
3.2. Volatile Compounds
3.3. Odor Activity Values (OAV) and Relative Odor Contribution (ROC)
3.4. Sensory Analysis
3.5. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). Standards and Technical Documents. Available online: https://www.oiv.int/standards/international-code-of-oenological-practices/part-i-definitions/special-wines (accessed on 26 March 2025).
- EU Regulation (EU). No 1308/2013 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R1308 (accessed on 26 March 2025).
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Tufariello, M.; Berbegal, C.; Fragasso, M.; De Simone, N.; Spano, G.; Russo, P.; Venerito, P.; Bozzo, F.; Grieco, F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation 2022, 8, 275. [Google Scholar] [CrossRef]
- Jagatić Korenika, A.-M.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Multivariate analysis for the differentiation of sparkling wines elaborated from autochthonous Spanish grape varieties: Volatile compounds, amino acids and biogenic amines. Eur. Food Res. Technol. 2013, 236, 827–841. [Google Scholar] [CrossRef]
- Welke, J.E.; Dachery, B.; Magro, L.D.; Hernandes, K.C.; Zini, C.A. Volatile Compounds Formation in Sparkling Wine. In Volatile Compounds Formation in Specialty Beverages; CRC Press: Boca Raton, FL, USA, 2022; pp. 109–141. [Google Scholar]
- Martín-Garcia, A.; Abarca-Rivas, C.; Riu-Aumatell, M.; López-Tamames, E. Comparison of volatile compounds during biological ageing and commercial storage of Cava (Spanish sparkling wine): The role of lees. Heliyon 2023, 9, e19306. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Pulgati, F.H.; Zini, C.A. Main differences between volatiles of sparkling and base wines accessed through comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection and chemometric tools. Food Chem. 2014, 164, 427–437. [Google Scholar] [CrossRef]
- Coelho, E.; Coimbra, M.A.; Nogueira, J.M.F.; Rocha, S.M. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal. Chim. Acta 2009, 635, 214–221. [Google Scholar] [CrossRef]
- Luchian, C.E.; Grosaru, D.; Scutarașu, E.C.; Colibaba, L.C.; Scutarașu, A.; Cotea, V.V. Advancing Sparkling Wine in the 21st Century: From Traditional Methods to Modern Innovations and Market Trends. Fermentation 2025, 11, 174. [Google Scholar] [CrossRef]
- Basile, T.; Debiase, G.; Mazzone, F.; Scarano, L.; Marsico, A.D.; Cardone, M.F. New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis. Beverages 2025, 11, 25. [Google Scholar] [CrossRef]
- Šikuten, I.; Kozina, B.; Jeromel, A.; Preiner, D.; Jagatić Korenika, A.-M. Senzorna ocjena pjenušavog vina ‘Graševina’ klon OB-435. Glas. Zaštite Bilja 2022, 45, 100–106. [Google Scholar] [CrossRef]
- Plavša, T.; Bubola, M.; Jagatić Korenika, A.M.; Jeromel, A. Utjecaj inkapsuliranog kvasca na kakvoću pjenušavog ružičastog vina ‘Teran’. Glas. Zaštite Bilja 2021, 44, 92–99. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. Sparkling Wines Produced from Alternative Varieties: Sensory Attributes and Evolution of Phenolics during Winemaking and Aging. Am. J. Enol. Vitic. 2013, 64, 39–49. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Liu, S.; Pszczólkowski, P. Resurgence of minority and autochthonous grapevine varieties in South America: A review of their oenological potential. J. Sci. Food Agric. 2020, 100, 465–482. [Google Scholar] [CrossRef]
- García, M.J.; Aleixandre, J.L.; Álvarez, I.; Lizama, V. Foam aptitude of Bobal variety in white sparkling wine elaboration and study of volatile compounds. Eur. Food Res. Technol. 2009, 229, 133–139. [Google Scholar] [CrossRef]
- Bubola, M.; Rusjan, D.; Lukić, I. Crop level vs. leaf removal: Effects on Istrian Malvasia wine aroma and phenolic acids composition. Food Chem. 2020, 312, 126046. [Google Scholar] [CrossRef]
- Radeka, S.; Bestulić, E.; Rossi, S.; Orbanić, F.; Bubola, M.; Plavša, T.; Lukić, I.; Jeromel, A. Effect of Different Vinification Techniques on the Concentration of Volatile Aroma Compounds and Sensory Profile of Malvazija Istarska Wines. Fermentation 2023, 9, 676. [Google Scholar] [CrossRef]
- Orbanić, F.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Kovačević Ganić, K.; Horvat, I.; Plavša, T.; Bubola, M.; Lukić, I.; Jeromel, A.; et al. Applying Different Vinification Techniques in Teran Red Wine Production: Impact on Bioactive Compounds and Sensory Attributes. Foods 2023, 12, 3838. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Bestulić, E.; Orbanić, F.; Horvat, I.; Lukić, I.; Ilak Peršurić, A.S.; Bubola, M.; Plavša, T.; Radeka, S. Comprehensive Analysis of Teran Red Wine Aroma and Sensory Profiles: Impacts of Maceration Duration, Pre-Fermentation Heating Treatment, and Barrel Aging. Appl. Sci. 2024, 14, 8729. [Google Scholar] [CrossRef]
- Radeka, S.; Orbanić, F.; Rossi, S.; Bestulić, E.; Horvat, I.; Ilak Peršurić, A.S.; Lukić, I.; Plavša, T.; Bubola, M.; Jeromel, A. Evaluating the Impact of Pre-Fermentative and Post-Fermentative Vinification Technologies on Bioactive Compounds and Antioxidant Activity of Teran Red Wine By-Products. Foods 2024, 13, 3493. [Google Scholar] [CrossRef]
- Lacombe, T. Vitis genetic resources: Current challenges, achievements and perspectives. Vitis 2023, 62, 1–10. [Google Scholar] [CrossRef]
- Marinov, L.; Magris, G.; Di Gaspero, G.; Morgante, M.; Maletić, E.; Bubola, M.; Pejić, I.; Zdunić, G. Single nucleotide polymorphism (SNP) analysis reveals ancestry and genetic diversity of cultivated and wild grapevines in Croatia. BMC Plant Biol. 2024, 24, 975. [Google Scholar] [CrossRef] [PubMed]
- Vitolović, V. Vinogradarstvo Istre; Savez Poljoprivrednih Inženjera i Tehničara. FNR Jugoslavije: Beograd, Serbia, 1960; p. 29. [Google Scholar]
- Wood, A.; Vargas Soto, S.; Gambetta, G.; Schober, D.; Jeffers, E.; Coulson, T. Modelling the climate changing concentrations of key red wine grape quality molecules using a flexible modelling approach. OENO One 2024, 58, 8086. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Faralli, M.; Mallucci, S.; Bignardi, A.; Varner, M.; Bertamini, M. Four decades in the vineyard: The impact of climate change on grapevine phenology and wine quality in northern Italy. OENO One 2024, 58, 8083. [Google Scholar] [CrossRef]
- Bubola, M.; Persic, M.; Rossi, S.; Bestulić, E.; Zdunić, G.; Plavša, T.; Radeka, S. Severe Shoot Trimming and Crop Size as Tools to Modulate Cv. Merlot Berry Composition. Plants 2022, 11, 3571. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis. Available online: https://www.oiv.int/sites/default/files/publication/2025-03/Compendium%20of%20MA%20Wine%20Complet%202025.pdf (accessed on 26 March 2025).
- Tomaz, I.; Šikuten, I.; Tuščić, V.; Rendulić, N.; Preiner, D.; Buljević, N.; Korenika, A.M.J.; Jeromel, A. Optimisation of SPME Arrow GC/MS method for determination of wine volatile organic compounds. OENO One 2024, 58, 1–13. [Google Scholar] [CrossRef]
- Raymond Eder, M.L.; Rosa, A.L. Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation 2021, 7, 321. [Google Scholar] [CrossRef]
- Preiner, D.; Tupajić, P.; Karoglan Kontić, J.; Andabaka, Ž.; Marković, Z.; Maletić, E. Organic acids profiles of the most important Dalmatian native grapevine (V. vinifera L.) cultivars. J. Food Compos. Anal. 2013, 32, 162–168. [Google Scholar] [CrossRef]
- Sartor, S.; Burin, V.M.; Ferreira-Lima, N.E.; Caliari, V.; Bordignon-Luiz, M.T. Polyphenolic Profiling, Browning, and Glutathione Content of Sparkling Wines Produced with Nontraditional Grape Varieties: Indicator of Quality During the Biological Aging. J. Food Sci. 2019, 84, 3546–3554. [Google Scholar] [CrossRef]
- Lima, M.M.M.; Choy, Y.Y.; Tran, J.; Lydon, M.; Runnebaum, R.C. Organic acids characterization: Wines of Pinot noir and juices of ‘Bordeaux grape varieties’. J. Food Compos. Anal. 2022, 114, 104745. [Google Scholar] [CrossRef]
- Caliari, V.; Burin, V.M.; Rosier, J.P.; BordignonLuiz, M.T. Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res. Int. 2014, 62, 965–973. [Google Scholar] [CrossRef]
- Voce, S.; Škrab, D.; Vrhovsek, U.; Battistutta, F.; Comuzzo, P.; Sivilotti, P. Compositional characterization of commercial sparkling wines from cv. Ribolla Gialla produced in Friuli Venezia Giulia. Eur. Food Res. Technol. 2019, 245, 2279–2292. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Montevecchi, G.; Masino, F.; Vasile Simone, G.; Cerretti, E.; Antonelli, A. Aromatic Profile of White Sweet Semi-sparkling Wine from Malvasia di Candia Aromatica Grapes. S. Afr. J. Enol. Vitic. 2015, 36, 267–276. [Google Scholar] [CrossRef]
- De Souza Nascimento, A.M.; De Souza, J.F.; Dos Santos Lima, M.; Pereira, G.E. Volatile Profiles of Sparkling Wines Produced by the Traditional Method from a Semi-Arid Region. Beverages 2018, 4, 103. [Google Scholar] [CrossRef]
- Cravero, M.C. Innovations in Sparkling Wine Production: A Review on the Sensory Aspects and the Consumer’s Point of View. Beverages 2023, 9, 80. [Google Scholar] [CrossRef]
- Cotea, V.V.; Focea, M.C.; Luchian, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of Different Commercial Yeasts on Volatile Fraction of Sparkling Wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Luzzini, G.; Borgato, M.; Boscaini, A.; Dal Cin, A.; Zandonà, V.; Ugliano, M. Characterization of the Aroma Profile of Commercial Prosecco Sparkling Wines. Appl. Sci. 2023, 13, 3609. [Google Scholar] [CrossRef]
- Martínez-García, R.; García-Martínez, T.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem. 2017, 237, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T. Gas Chromatographic Analysis of Volatile Fatty Acids in Wines. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar] [CrossRef]
- Li, X.; Ahmad, N.; Gao, Y.; Wang, Y.; Meng, X.; Duan, C.; Lu, J.; Pan, Q. Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties. Horticulturae 2024, 10, 970. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Assessment of Volatile and Sensory Profiles between Base and Sparkling Wines. J. Agric. Food Chem. 2010, 58, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J.M. Multivariate optimization of headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of terpenoids in sparkling wines. Talanta 2020, 208, 120483. [Google Scholar] [CrossRef]
- Gallardo-Chacón, J.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Analysis of Sparkling Wine Lees Surface Volatiles by Optimized Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2009, 57, 3279–3285. [Google Scholar] [CrossRef]
- Luzzini, G.; Slaghenaufi, D.; Facinelli, D.; Ugliano, M. Contribution of terpenes, methanethiol, and fermentative esters to sparkling wine aroma in relation to production technology, vintage, and aging: A case study on Durello wines. J. Sci. Food Agric. 2023, 103, 5353–5363. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the Aroma of Grapes and Wines: A Review. S. Afr. J. Enol. Vitic. 2017, 4, 49–58. [Google Scholar] [CrossRef]
Parameters | Malvazija Istarska | Garganja | Duranija | Surina | Hrvatica | Teran |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Brix | 18.30 ± 0.03 b | 17.00 ± 0.25 d | 17.40 ± 0.09 c | 17.00 ± 0.12 d | 18.90 ± 0.12 a | 17.20 ± 0.09 cd |
Titratable acidity * (g L−1) | 6.20 ± 0.05 e | 7.10 ± 0.09 c | 6.80 ± 0.07 d | 7.80 ± 0.08 b | 6.30 ± 0.05 e | 7.95 ± 0.12 a |
Citric acid (g L−1) | 0.12 ± 0.01 d | 0.23 ± 0.01 a | 0.17 ± 0.01 b | 0.13 ± 0.01 d | 0.15 ± 0.01 c | 0.15 ± 0.01 c |
Tartaric acid (g L−1) | 3.40 ± 0.04 c | 3.80 ± 0.06 b | 3.50 ± 0.06 c | 3.90 ± 0.04 b | 3.50 ± 0.04 c | 4.20 ± 0.11 a |
Malic acid (g L−1) | 2.00 ± 0.07 f | 2.70 ± 0.05 c | 2.40 ± 0.06 d | 3.05 ± 0.02 b | 2.10 ± 0.04 e | 3.22 ± 0.03 a |
pH | 3.18 ± 0.01 a | 3.09 ± 0.03 b | 3.05 ± 0.01 bc | 3.04 ± 0.01 cd | 3.15 ± 0.01 a | 3.02 ± 0.01 d |
Parameters | Malvazija Istarska | Garganja | Duranija | Surina | Hrvatica | Teran |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Alcohol (vol%) | 10.90 ± 0.14 a | 10.27 ± 0.33 b | 10.34 ± 0.09 b | 10.02 ± 0.02 b | 11.18 ± 0.03 a | 10.00 ± 0.03 b |
Titratable acidity * (g L−1) | 6.38 ± 0.04 d | 7.75 ± 0.19 b | 7.15 ± 0.08 c | 8.20 ± 0.01 a | 6.58 ± 0.04 d | 8.27 ± 0.08 a |
Citric acid (g L−1) | 0.22 ± 0.02 ab | 0.25 ± 0.01 ab | 0.16 ± 0.01 b | 0.15 ± 0.01 b | 0.24 ± 0.02 a | 0.17 ± 0.03 ab |
Tartaric acid (g L−1) | 3.38 ± 0.04 d | 3.65 ± 0.05 c | 3.43 ± 0.01 d | 3.84 ± 0.05 b | 3.38 ± 0.04 d | 4.05 ± 0.07 a |
Malic acid (g L−1) | 2.03 ± 0.04 d | 2.74 ± 0.06 b | 2.45 ± 0.09 c | 2.99 ± 0.01 a | 2.06 ± 0.03 d | 3.13 ± 0.11 a |
Succinic acid (g L−1) | 0.49 ± 0.04 b | 0.88 ± 0.10 a | 0.73 ± 0.07 a | 0.82 ± 0.02 a | 0.50 ± 0.10 b | 0.73 ± 0.07 a |
Lactic acid (g L−1) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Volatile acidity ** (g L−1) | 0.25 ± 0.03 | 0.31 ± 0.02 | 0.31 ± 0.05 | 0.33 ± 0.09 | 0.32 ± 0.09 | 0.27 ± 0.05 |
Residual sugar (g L−1) | 1.50 ± 0.2 | 0.85 ± 0.4 | 1.30 ± 0.1 | 1.05 ± 0.02 | 1.00 ± 0.00 | 1.50 ± 0.05 |
pH | 3.20 ± 0.02 a | 3.10 ± 0.01 b | 3.03 ± 0.09 b | 3.03 ± 0.02 c | 3.14 ± 0.02 b | 3.03 ± 0.02 c |
Parameters | Malvazija Istarska | Garganja | Duranija | Surina | Hrvatica | Teran |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Alcohol (vol%) | 12.21 ± 0.07 a | 11.46 ± 0.22 c | 11.78 ± 0.20 b | 11.29 ± 0.04 c | 12.28 ± 0.21 a | 11.50 ± 0.12 c |
Titratable acidity * (g L−1) | 7.23 ± 0.04 cd | 7.85 ± 0.26 b | 7.42 ± 0.35 c | 8.41 ± 0.17 a | 6.83 ± 0.17 d | 8.56 ± 0.20 a |
Residual sugar (g L−1) | 2.07 ± 0.06 a | 1.07 ± 0.06 b | 0.67 ± 0.15 d | 0.67 ± 0.17 d | 0.79 ± 0.12 cd | 0.97 ± 0.25 bc |
Volatile acidity ** (g L−1) | 0.36 ± 0.04 | 0.41 ± 0.03 | 0.32 ± 0.04 | 0.37 ± 0.07 | 0.37 ± 0.08 | 0.35 ± 0.07 |
pH | 3.13 ± 0.04 ab | 3.06 ± 0.01 bc | 3.06 ± 0.05 bc | 3.03 ± 0.06 c | 3.18 ± 0.04 a | 3.01 ± 0.03 c |
Pressure (bar) | 4.9 ± 0.10 ab | 5.2 ± 0.06 a | 5.0 ± 0.25 ab | 4.90 ± 0.20 ab | 4.50 ± 0.31 bc | 4.30 ± 0.56 c |
Parameters | Malvazija Istarska | Garganja | Duranija | Surina | Hrvatica | Teran |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Fatty acids | ||||||
9-Decenoic acid | 0.01 ± 0.00 d | 5.63 ± 0.12 b | 0.01 ± 0.00 d | 7.47 ± 0.08 a | 3.34 ± 0.06 c | 0.01 ± 0.00 d |
Decanoic acid | 801.96 ± 58.33 a | 559.29 ± 25.22 c | 543.71 ± 22.12 c | 683.15 ± 67.11 b | 441.59 ± 31.05 d | 503.51 ± 19.05 cd |
Dodecanoic acid | 0.36 ± 0.08 c | 8.39 ± 1.14 b | 0.23 ± 0.05 c | 10.30 ± 2.18 a | 0.01 ± 0.00 c | 8.22 ± 0.91 b |
3-Hydroxy-dodecanoic acid | 4.02 ± 0.05 d | 5.09 ± 0.56 b | 4.00 ± 0.01 d | 4.09 ± 0.80 cd | 4.79 ± 0.19 bc | 6.05 ± 0.08 a |
Hexanoic acid | 3212.12 ± 87.55 a | 2148.08 ± 159.35 c | 1816.66 ± 92.33 d | 2752.34 ± 187.21 b | 2397.26 c ± 156.33 c | 3369.03 ± 153.05 a |
2-Ethyl-hexanoic acid | 50.77 ± 9.21 a | 10.09 ± 0.58 bc | 16.22 ± 1.69 b | 11.77 ± 1.09 bc | 7.32 ± 1.21 d | 8.17 ± 1.11 d |
Nonanoic acid | 2.88 ± 0.67 b | 3.80 ± 0.05 a | 2.52 ± 0.07 b | 3.84 ± 0.50 a | 2.51 ± 0.80 b | 0.05 ± 0.01 c |
Octanoic acid | 5109.40 ± 102.36 a | 3690.80 ± 232.22 d | 4204.41 ± 192.33 c | 4718.29 ± 215.11 b | 3619.45 ± 122.48 d | 4643.54 ± 256.33 b |
Propanoic acid | 0.76 ± 0.01 c | 1.31 ± 0.04 b | 0.48 ± 0.03 d | 0.52 ± 0.05 d | 0.40 ± 0.01 e | 1.65 ± 0.04 a |
2-Methyl-propanoic acid | 0.42 ± 0.05 b | 0.64 ± 1.31 b | 0.50 ± 0.01 b | 0.27 ± 0.08 b | 1.00 ± 0.05 b | 35.40 ± 2.28 a |
Σ fatty acids | 9182.71 ± 258.31 a | 6433.11 ± 419.34 c | 6588.75 ± 308.64 c | 8192.03 ± 474.21 b | 6477.65 ± 312.18 c | 8575.62 ± 432.86 ab |
Alcohols | ||||||
1-Butanol | 219.15 ± 12.25 a | 94.41 ± 2.25 c | 123.57 ± 11.54 b | 17.51 ± 1.04 e | 76.48 ± 8.04 d | 131.87 ± 10.08 b |
1-Hexanol | 1940.23 ± 94.55 a | 590.14 ± 36.57 c | 404.75 ± 29.64 d | 634.94 ± 57.24 c | 1484.22 ± 59.07 b | 1892.94 ± 61.05 a |
2-Ethyl-1-hexanol | 2.49 ± 0.23 c | 2.19 ± 0.45 c | 2.35 ± 0.15 c | 3.77 ± 0.88 b | 2.89 ± 0.40 c | 5.71 ± 0.22 a |
1-Nonanol | 2.02 ± 0.10 a | 1.15 ± 0.02 b | n.d. | 0.97 ± 0.17 c | n.d. | n.d. |
1-Octanol | 10.57 ± 1.22 b | 12.91 ± 0.57 a | 8.57 ± 0.98 c | 11.41 ± 0.08 b | 3.35 ± 0.56 d | 13.57 ± 0.84 a |
1-Pentanol | 0.23 ± 0.05 b | 0.09 ± 0.02 cd | 0.06 ± 0.01 d | 0.22 ± 0.02 b | 0.16 ± 0.07 bc | 0.54 ± 0.05 a |
3-Methyl-1-pentanol | 54.27 ± 3.57 b | 50.19 ± 3.56 b | 0.05 ± 0.00 d | 115.53 ± 10.24 a | 0.04 ± 0.01 d | 28.82 ± 1.33 c |
4-Methyl-1-pentanol | 20.37 ± 2.18 c | 27.45 ± 4.22 b | 16.31 ± 1.24 cd | 41.57 ± 3.23 a | 0.11 ± 0.02 e | 12.36 ± 1.12 d |
1-Propanol | 5.40 ± 0.48 d | 108.19 ± 11.25 a | 91.85 ± 6.25 b | 0.34 ± 0.02 d | 69.57 ± 5.55 c | 9.71 ± 0.48 d |
3-Ethoxy-1-propanol | 22.31 ± 1.29 d | 10.33 ± 1.08 d | 42.16 ± 3.24 c | 52.89 ± 11.12 c | 281.98 ± 15.96 a | 148.37 ± 12.11 b |
2,3-Butanediol, isomer 2 | 706.32 ± 24.33 b | 616.15 ± 38.99 c | 224.28 ± 14.66 f | 446.98 ± 29.57 e | 536.25 ± 37.01 d | 906.36 ± 56.22 a |
trans- 2-Heksen-1-ol | 7.03 ± 0.84 a | 0.03 ± 0.00 d | 3.68 ± 0.23 b | 0.04 ± 0.00 d | 1.40 ± 0.03 c | 0.06 ± 0.01 d |
2-Nonanol | 0.46 ± 0.03 b | 0.01 ± 0.00 e | 0.20 ± 0.01 d | 0.99 ± 0.02 a | 0.35 ± 0.02 c | 0.39 ± 0.06 c |
2-Octanol | 0.65 ± 0.07 a | 0.26 ± 0.04 b | 0.06 ± 0.00 c | n.d. | 0.01 ± 0.00 c | 0.01 ± 0.00 c |
2-Octen-1-ol | 4.03 ± 0.51 a | 0.02 d ± 0.00 | 0.01 ± 0.00 d | 3.17 ± 0.07 b | 3.13 ± 0.51 b | 2.13 ± 0.08 c |
3-Ethyl-4-methylpentan-1-ol | 0.95 ± 0.47 c | 2.91 ± 0.07 b | 1.38 ± 0.06 c | 0.21 ± 0.01 d | 4.07 ± 0.65 a | 0.01 ± 0.00 d |
trans-3-Hexen-1-ol | 77.05 ± 3.66 a | 18.88 ± 0.58 cd | 17.15 ± 1.25 d | 44.11 ± 2.56 b | 19.44 ± 1.02 cd | 21.02 ± 0.94 c |
cis-3-Hexen-1-ol | 119.42 ± 9.54 a | 40.22 ± 1.25 c | 5.22 ± 0.45 e | 14.20 ± 1.21 d | 47.60 ± 2.33 c | 93.66 ± 3.95 b |
Benzyl alcohol | 197.69 ± 53.33 a | 41.95 ± 3.24 b | 0.15 ± 0.02 c | 65.47 ± 3.66 b | 35.79 ± 1.05 bc | 61.63 ± 4.05 b |
2,3-Butanediol, isomer 1 | 4040.53 ± 158.15 a | 3541.54 ± 125.49 bc | 1355.56 ± 95.55 e | 3308.09 ± 145.21 c | 2034.93 ± 70.09 d | 3806.97 ± 255.22 ab |
Isoamyl alcohol | 107,735.08 ± 567.22 c | 107,085.81 ± 689.25 c | 68,884.08 ± 224.10 e | 145,280.99 ± 986.67 a | 70,947.74 ± 453.31 d | 109,200.59 ± 593.34 b |
Isobutyl alcohol | 5895.28 ± 211.27 b | 3397.80 ± 154.22 d | 4549.45 ± 84.60 c | 6638.78 ± 266.25 a | 4516.05 ± 166.62 c | 5815.28 ± 210.07 b |
2-phenylethanol | 27,463.93 ± 1125.37 a | 27,293.99 ± 985.34 a | 20,949.34 ± 335.27 b | 28,167.08 ± 426.05 a | 16,857.61 ± 299.31 d | 19,276.83 ± 305.22 c |
Σ alcohols | 148,525.46 ± 2270.71 b | 142,936.59 ± 2058.46 c | 96,680.22 ± 809.25 d | 184,849.26 ± 1945.32 a | 96,923.15 ± 1121.63 d | 141,428.81 ± 1516.44 c |
C13-norisoprenoides | ||||||
Dehydro-β-ionone | 11.07 ± 0.98 a | 2.07 ± 0.07 d | 3.51 ± 0.07 c | 5.17 ± 0.51 b | 0.59 ± 0.02 e | 4.74 ± 0.31 b |
4-Hydroxy-ß-ionone | 0.81 ± 0.05 a | 0.11 ± 0.01 c | 0.12 ± 0.02 c | 0.10 ± 0.00 c | 0.13 ± 0.01 c | 0.73 ± 0.09 b |
α-Ionon | 0.01 ± 0.00 c | 0.55 ± 0.05 a | 0.01 ± 0.00 c | 0.02 ± 0.00 c | 0.25 ± 0.03 b | 0.00 ± 0.00 c |
β-Damascenone | 10.42 ± 0.59 a | 3.25 ± 0.11 c | 4.62 ± 0.54 b | 3.22 ± 0.08 c | 2.40 ± 0.05 d | 4.94 ± 0.57 b |
β-Ionone | 16.48 ± 1.10 a | 4.94 ± 0.06 b | 5.48 ± 0.68 b | 4.88 ± 0.12 b | 2.58 ± 0.11 c | 5.69 ± 0.66 b |
TDN | 6.55 ± 0.51 d | 2.67 ± 0.07 e | 8.78 ± 0.87 c | 3.52 ± 0.22 e | 10.95 ± 0.69 b | 13.79 ± 1.13 a |
TPB | 13.02 ± 0.91 a | 6.67 ± 0.09 b | 6.64 ± 0.22 b | 5.39 ± 0.19 c | 2.58 ± 0.05 d | 4.95 ± 0.06 c |
Vitispirane A | 7.33 ± 0.20 b | 5.63 ± 0.04 c | 4.72 ± 0.02 c | 8.34 ± 1.23 b | 8.01 ± 0.41 b | 13.50 ± 0.59 a |
Vitispirane B | 6.80 ± 0.63 c | 9.34 ± 0.15 b | 6.34 ± 0.34 c | 15.50 ± 2.15 a | 7.08 ± 0.06 c | 14.81 ± 1.05 a |
Σ C13-norisoprenoides | 65.68 ± 4.97 a | 25.88 ± 0.65 c | 33.88 ± 2.76 bc | 46.16 ± 4.50 b | 34.56 ± 1.43 c | 63.16 ± 4.46 a |
Esters | ||||||
Isoamyl acetate | 54.92 ± 3.55 c | 48.11 ± 0.94 d | 45.45 ± 0.74 d | 70.91 ± 4.22 b | 46.08 ± 2.22 d | 82.76 ± 4.08 a |
Ethyl-2-butenoate | 0.92 ± 0.07 b | 0.58 ± 0.06 d | 0.80 ± 0.10 c | 0.43 ± 0.05 e | 0.65 ± 0.05 d | 1.26 ± 0.05 a |
2-Methylbutyl octanoate | 0.93 ± 0.06 cd | 0.85 ± 0.07 de | 0.77 ± 0.05 e | 1.08 ± 0.09 b | 1.00 ± 0.12 bc | 1.42 ± 0.01 a |
3-Hexen-1-ol acetate | 0.02 ± 0.00 d | 0.06 ± 0.01 b | 0.01 ± 0.00 d | 0.33 ± 0.01 a | 0.02 ± 0.00 d | 0.29 ± 0.02 b |
Ethyl-3-hexenoate | 0.35 ± 0.04 c | 0.61 ± 0.01 b | n.d. | 0.01 ± 0.00 d | 0.62 ± 0.06 b | 0.80 ± 0.06 a |
Ethyl-4-hexenoate | 3.73 ± 0.22 a | 1.62 ± 0.02 b | 1.38 ± 0.33 bc | 1.23 ± 0.02 d | 0.01 ± 0.00 e | 0.12 ± 0.01 e |
Hexyl acetate | 0.20 ± 0.00 d | 0.58 ± 0.01 b | 0.27 ± 0.01 c | 0.08 ± 0.03 e | 0.73 ± 0.04 a | 0.04 ± 0.01 f |
Isopropyl salicylate | 5.58 ± 0.94 a | 0.34 ± 0.00 c | 0.01 ± 0.00 c | 0.28 ± 0.04 c | 2.55 ± 0.64 b | 1.82 ± 0.24 b |
Ethyl-2-methylbutanoate | 68.88 ± 8.66 bc | 76.90 ± 2.25 b | 62.54 ± 5.47 bcd | 109.83 ± 15.22 a | 59.16 ± 7.12 cd | 53.11 ± 2.06 d |
Ethyl-3-methylbutanoate | 116.19 ± 9.57 bc | 124.01 ± 8.64 b | 101.28 ± 9.09 d | 157.70 ± 5.68 a | 93.30 ± 9.22 d | 104.66 ± 5.99 cd |
Ethyl butanoate | 286.88 ± 15.36 d | 274.14 ± 11.68 d | 378.54 ± 21.33 c | 248.15 ± 21.33 d | 453.16 ± 37.05 b | 604.05 ± 54.49 a |
Ethyl decanoate | 68.25 ± 8.47 ab | 58.14 ± 8.57 b | 58.56 ± 5.22 b | 80.42 ± 14.04 a | 38.39 ± 1.11 c | 58.55 ± 2.24 b |
Diethyl malate | 389.50 ± 24.62 c | 487.71 ± 15.59 b | 273.47 ± 21.07 d | 373.09 ± 32.64 c | 550.24 ± 26.04 b | 1106.49 ± 90.05 a |
Diethyl succinate | 10,621.01 ± 843.28 b | 10,078.74 ± 633.51 bc | 8635.88 ± 369.56 d | 12,509.33 ± 572.33 a | 8605.25 ± 298.55 d | 9194.60 ± 249.33 cd |
Ethyl dodecanoate | 2.71 ± 0.08 b | 2.99 ± 0.21 b | 3.57 ± 0.60 a | 3.07 ± 0.09 b | 1.50 ± 0.02 c | 2.77 ± 0.05 b |
Ethyl-2-hydroxy-4-methylpentanoate | 8.79 ± 0.57 c | 13.32 ± 0.86 a | 8.46 ± 0.98 cd | 7.18 ± 1.05 d | 3.37 ± 0.79 e | 10.82 ± 0.58 b |
Ethyl lactate | 4663.93 ± 342.25 d | 5211.99 ± 235.66 d | 3636.35 ± 156.99 e | 10,244.98 ± 561.05 a | 7045.62 ± 211.09 c | 7671.15 ± 113.99 b |
Ethyl-3-furoate | 0.59 ± 0.08 b | 0.49 ± 0.03 c | 0.60 ± 0.05 b | 0.60 ± 0.01 b | 0.64 ± 0.05 b | 0.86 ± 0.02 a |
Ethyl-3-hydroxybutanoate | 227.86 ± 15.23 a | 177.71 ± 11.37 b | 93.16 ± 5.46 e | 191.73 ± 11.16 b | 102.08 ± 5.66 d | 128.62 ± 1.26 c |
Ethyl-9-hexadecenoate | 11.75 ± 0.80 c | 10.86 ± 0.68 cd | 6.25 ± 0.11 e | 14.17 ± 1.22 a | 13.51 ± 1.02 b | 9.48 ± 0.50 d |
Ethyl hydrogenglutarate | 34.18 ± 0.95 d | 43.36 ± 1.59 c | 30.68 ± 1.02 d | 41.19 ± 3.25 c | 57.77 ± 5.63 b | 77.07 ± 2.36 a |
Ethyl hydrogensuccinate | 738.92 ± 24.55 a | 667.44 ± 33.25 b | 572.23 ± 27.88 c | 598.81 ± 31.33 c | 601.04 ± 33.34 c | 701.45 ± 11.50 ab |
Ethyl hexadecanoate | 16.51 ± 1.29 a | 13.41 ± 2.15 b | 10.86 ± 1.21 c | 6.57 ± 0.56 d | 11.08 ± 0.98 c | 2.98 ± 0.04 e |
Ethyl-3-hydroxyhexanoate | 1.34 ± 0.05 b | 1.06 ± 0.05 b | 1.19 ± 0.60 b | 1.30 ± 0.08 b | 1.39 ± 0.05 b | 2.98 ± 0.63 a |
Ethyl hexanoate | 256.68 ± 2.59 a | 172.79 ± 4.25 c | 151.39 ± 3.49 d | 260.38 ± 19.34 a | 192.27 ± 4.26 b | 272.16 ± 9.05 a |
Isobutyl decanoate | 0.93 ± 0.08 a | 0.05 ± 0.01 bc | 0.01 ± 0.00 c | 0.02 ± 0.00 c | 0.01 ± 0.00 c | 0.11 ± 0.05 b |
Isopentyl hexanoate | 2.04 ± 0.02 cd | 2.28 ± 0.06 b | 1.93 ± 0.04 e | 1.99 ± 0.07 de | 2.11 ± 0.06 c | 4.72 ± 0.06 a |
Methyl octanoate | 1.58 ± 0.04 b | 1.30 ± 0.00 d | 1.07 ± 0.01 f | 1.82 ± 0.03 a | 1.16 ± 0.04 e | 1.50 ± 0.01 c |
Methyl stearate | 0.71 ± 0.01 b | 0.06 ± 0.00 e | 0.70 ± 0.02 b | 0.37 ± 0.02 c | 0.89 ± 0.03 a | 0.12 ± 0.01 d |
Ethyl octanoate | 316.78 ± 11.24 b | 259.61 ± 11.35 c | 223.10 ± 9.66 c | 393.09 ± 35.08 a | 219.81 ± 33.11 c | 303.88 ± 21.22 b |
Ethyl pentadecanoate | 0.01 ± 0.00 b | n.d. | 1.29 ± 0.06 a | n.d. | 1.30 ± 0.02 a | n.d. |
Ethyl pentanoate | 0.65 ± 0.02 b | 0.31 ± 0.02 d | 0.90 ± 0.04 a | 0.47 ± 0.05 c | 0.04 ± 0.01 e | 0.02 ± 0.01 e |
Phenyl acetate | 2.05 ± 0.05 a | 1.62 ± 0.05 b | 1.25 d ± 0.03 | 1.58 ± 0.06 b | 1.36 ± 0.03 c | 2.08 ± 0.06 a |
Σ esters | 17,905.32 ± 1314.74 c | 17,733.03 ± 982.95 c | 14,303.95 ± 641.22 d | 25,322.18 ± 1330.15 a | 18,108.09 ± 678.41 c | 20,402.73 ± 570.04 b |
Terpenes | ||||||
ß-Fanesene | 0.50 ± 0.00 d | 0.75 ± 0.06 b | 0.56 ± 0.04 cd | 0.92 ± 0.07 a | 0.61 ± 0.05 c | 0.91 ± 0.08 a |
3,7-dimethyl-3,6-octadien-1-ol | 0.01 ± 0.00 b | 0.02 ± 0.00 b | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.83 ± 0.04 a |
α-Farnesen | 1.60 ± 0.02 a | 1.20 ± 0.00 b | 0.35 ± 0.07 d | 0.84 ± 0.11 c | 0.82 ± 0.06 c | 0.27 ± 0.01 d |
Citronelol | 1.42 ± 0.06 b | 1.67 ± 0.02 b | 1.97 ± 0.09 b | 3.36 ± 0.05 a | 3.95 ± 0.91 a | 0.18 ± 0.01 c |
Limonene | 0.22 ± 0.01 c | 0.12 ± 0.01 d | 0.01 ± 0.00 e | 0.05 ± 0.02 e | 1.42 ± 0.04 a | 0.85 ± 0.05 b |
trans-Linalool oxide, furan | 8.14 ± 0.58 a | 2.29 ± 0.03 d | 3.29 ± 0.08 b | 3.46 ± 0.08 b | 2.83 ± 0.06 c | 1.09 ± 0.08 e |
Terpinene-4-ol | 2.55 ± 0.66 d | 3.67 ± 0.25 bc | 3.30 ± 0.15 c | 2.53 ± 0.21 d | 4.04 ± 0.57 b | 6.19 ± 0.33 a |
α-Terpinene | 0.04 ± 0.01 bc | 0.20 ± 0.00 bc | 0.01 ± 0.00 c | 0.01 ± 0.00 c | 1.43 ± 0.33 a | 0.28 ± 0.05 b |
β-Myrcene | n.d. | n.d. | 0.06 ± 0.00 c | 0.17 ± 0.02 b | n.d. | 0.50 ± 0.10 a |
β-Ocimene | 0.02 ± 0.00 b | n.d. | 0.04 ± 0.00 a | 0.01 ± 0.00 c | n.d. | n.d. |
Σ terpenes | 14.50 ± 1.34 a | 9.93 ± 0.37 b | 9.60 ± 0.44 b | 11.37 ± 0.57 b | 15.14 ± 2.03 a | 11.10 ± 0.75 b |
Parameters | ODT (µg L−1) | Odor Descriptor | Malvazija Istarska | Garganja | Duranija | Surina | Hrvatica | Teran | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OAV | ROC (%) | OAV | ROC (%) | OAV | ROC (%) | OAV | ROC (%) | OAV | ROC (%) | OAV | ROC (%) | |||
Fatty acids | ||||||||||||||
Hexanoic acid | 420 [45] | cheese, oily [5] | 7.65 | 1.20 | 5.11 | 1.58 | 4.33 | 1.24 | 5.50 | 1.79 | 5.71 | 2.76 | 1.05 | 0.42 |
Octanoic acid | 500 [45] | cheese, oily [5] | 10.22 | 1.60 | 7.38 | 2.28 | 8.41 | 2.42 | 9.44 | 3.06 | 7.24 | 3.50 | 9.29 | 3.75 |
Σ Fatty acids | 2.80 | 3.85 | 3.66 | 4.85 | 6.26 | 4.17 | ||||||||
Alcohols | ||||||||||||||
Isoamylalcohol | 30,000 [4] | alcohol, nail polish [5] | 3.59 | 0.56 | 3.57 | 1.10 | 2.30 | 0.66 | 4.84 | 1.57 | 2.36 | 1.14 | 1.01 | 0.41 |
Phenylethyl Alcohol | 14,000 [4] | floral, rose, honey [5] | 1.96 | 0.31 | 1.95 | 0.60 | 1.50 | 0.43 | 2.01 | 0.65 | 1.20 | 0.58 | 0.70 | 0.28 |
Σ Acohols | 0.87 | 1.70 | 1.09 | 2.22 | 1.73 | 0.69 | ||||||||
C13-norisoprenoides | ||||||||||||||
β-Damascenone | 0.05 [45] | sweet, fruity, floral, honey [5] | 208.36 | 32.68 | 64.90 | 20.01 | 92.44 | 26.57 | 64.48 | 20.93 | 47.96 | 23.20 | 98.88 | 39.89 |
TDN | 2 [45] | petrol, kerosene [5] | 3.28 | 0.51 | 1.34 | 0.41 | 4.39 | 1.26 | 1.76 | 0.57 | 5.47 | 2.65 | 6.89 | 2.78 |
TPB | 0.04 [45] | tobacco [45] | 325.38 | 51.04 | 166.75 | 51.42 | 166.10 | 47.74 | 134.80 | 43.75 | 64.45 | 31.18 | 123.73 | 49.91 |
Σ C13-norisoprenoides | 84.24 | 71.85 | 75.57 | 65.25 | 57.03 | 92.58 | ||||||||
Esters | ||||||||||||||
Isoamyl acetate | 30 [45] | banana [45] | 1.83 | 0.29 | 1.60 | 0.49 | 1.51 | 0.44 | 2.36 | 0.77 | 1.54 | 0.74 | 1.51 | 0.61 |
Ethyl-2-methylbutanoate | 18 [5] | apple, strawberry [5] | 3.83 | 0.60 | 4.27 | 1.32 | 3.47 | 1.00 | 6.10 | 1.98 | 3.29 | 1.59 | 0.77 | 0.31 |
Ethyl-3-methylbutanoate | 3 [5] | fruity, pineapple [5] | 38.73 | 6.08 | 41.34 | 12.75 | 33.76 | 9.70 | 52.57 | 17.06 | 31.10 | 15.05 | 0.90 | 0.36 |
Ethyl butanoate | 20 [45] | pineapple, apple, peach [5] | 14.34 | 2.25 | 13.71 | 4.23 | 18.93 | 5.44 | 12.41 | 4.03 | 22.66 | 10.96 | 2.11 | 0.85 |
Ethyl hexanoate | 14 [45] | fruity, green apple, banana [5] | 18.33 | 2.88 | 12.34 | 3.81 | 10.81 | 3.11 | 11.84 | 3.84 | 13.73 | 6.64 | 1.06 | 0.43 |
Σ esters | 12.09 | 22.59 | 19.68 | 27.68 | 34.98 | 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plavša, T.; Bubola, M.; Jeromel, A.; Tomaz, I.; Krapac, M. Exploring the Potential of Indigenous Grape Varieties for Sparkling Wine Production in the Hrvatska Istra Subregion (Croatia). Beverages 2025, 11, 78. https://doi.org/10.3390/beverages11030078
Plavša T, Bubola M, Jeromel A, Tomaz I, Krapac M. Exploring the Potential of Indigenous Grape Varieties for Sparkling Wine Production in the Hrvatska Istra Subregion (Croatia). Beverages. 2025; 11(3):78. https://doi.org/10.3390/beverages11030078
Chicago/Turabian StylePlavša, Tomislav, Marijan Bubola, Ana Jeromel, Ivana Tomaz, and Marin Krapac. 2025. "Exploring the Potential of Indigenous Grape Varieties for Sparkling Wine Production in the Hrvatska Istra Subregion (Croatia)" Beverages 11, no. 3: 78. https://doi.org/10.3390/beverages11030078
APA StylePlavša, T., Bubola, M., Jeromel, A., Tomaz, I., & Krapac, M. (2025). Exploring the Potential of Indigenous Grape Varieties for Sparkling Wine Production in the Hrvatska Istra Subregion (Croatia). Beverages, 11(3), 78. https://doi.org/10.3390/beverages11030078