Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Kombucha Inoculum and the Fermentation Process
2.3. Grape Pomace Kombucha
2.4. Chemical Composition Analysis of the Grape Pomace Kombucha Samples
2.4.1. pH, Titratable Acidity, Brix Level, Sugar, and Acid Analysis
2.4.2. Polyphenol Analysis
2.5. Antioxidant Activity
2.6. Anti-Inflammatory and Anti-Diabetic Activities
2.7. Statistical Analysis
3. Results
3.1. Chemical Analysis
3.2. Total Polyphenol, Anthocyanin, and Antioxidant Activity of the Grape Pomace Kombucha
3.3. Biological Activities: Antidiabetic and Anti-Inflammatory Potential
3.4. Biological Activities: Antidiabetic and Anti-Inflammatory Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanni, A.; Parisi, M.; Colonna, M. Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers 2021, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Içen, H.; Corbo, M.R.; Sinigaglia, M.; Korkmaz, B.I.O.; Bevilacqua, A. Microbiology and antimicrobial effects of kombucha, a short overview. Food Biosci. 2023, 56, 103270. [Google Scholar] [CrossRef]
- Huang, X.; Xin, Y.; Lu, T. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. eLife 2022, 11, e76401. [Google Scholar] [CrossRef] [PubMed]
- Barakat, N.; Beaufort, S.; Rizk, Z.; Bouajila, J.; Taillandier, P.; El Rayess, Y. Kombucha Analogues around the World: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10105–10129. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a Beverage from Red Grape Juice Fermented with the Kombucha Consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Vitas, J.S.; Vukmanović, S.Z.; Malbaša, R.V.; Tepić Horecki, A.N. Influence of Process Temperature on Ethanol Content in Kombucha Products Obtained by Fermentation of Flotated Must Effluent. Acta Period. Technol. 2019, 50, 311–315. [Google Scholar] [CrossRef]
- Vukmanović, S.; Vitas, J.; Malbaša, R. Valorization of Winery Effluent Using Kombucha Culture. J. Food Process. Preserv. 2020, 44, e14627. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.-P.; Taillandier, P.; Beaufort, S. Metabolome-Microbiome Signatures in the Fermented Beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef] [PubMed]
- Dawra, M.; El Rayess, Y.; El Beyrouthy, M.; Nehme, N.; El Hage, R.; Taillandier, P.; Bouajila, J. Biological activities and chemical characterization of the Lebanese endemic plant Origanum ehrenbergii Boiss. Flavour Fragr. J. 2021, 36, 339–351. [Google Scholar] [CrossRef]
- Ghanem, C.; Taillandier, P.; Rizk, Z.; Nehme, N.; Souchard, J.P.; El Rayess, Y. Evolution of polyphenols during syrah grapes maceration: Time versus temperature effect. Molecules 2019, 24, 2845. [Google Scholar] [CrossRef] [PubMed]
- Dawra, M.; Bouajila, J.; El Beyrouthy, M.; Abi Rizk, A.; Taillandier, P.; Nehme, N.; El Rayess, Y. Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts. Molecules 2023, 28, 2429. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, C.; Bouajila, J.; Rizk, Z.; El Beyrouthy, M.; Sadaka, C.; Gürer, E.S.; Sharifi-Rad, J.; Nehme, N.; El Rayess, Y. Comparative analysis of pre-fermentation treatments on phenolic compounds and bioactivity in Vitis Vinifera var. Syrah and var. Cabernet Sauvignon grapes. Nutrire 2023, 48, 25. [Google Scholar] [CrossRef]
- Barbosa, C.D.; Uetanabaro, A.P.T.; Santos, W.C.R.; Caetano, R.G.; Albano, H.; Kato, R.; Cosenza, G.P.; Azeredo, A.; Góes-Neto, A.; Rosa, C.A.; et al. Microbial–physicochemical integrated analysis of kombucha fermentation. LWT 2021, 148, 111788. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Gallardo, B.; Mantecón, Á.R.; del Álamo-Sanza, M.; Manso, T. Evaluation of Grape Pomace from Red Wine By-Product as Feed for Sheep. J. Sci. Food Agric. 2017, 97, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Tinikul, R.; Chenprakhon, P.; Maenpuen, S.; Chaiyen, P. Biotransformation of Plant-Derived Phenolic Acids. Biotechnol. J. 2018, 13, e1700632. [Google Scholar] [CrossRef] [PubMed]
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A Review on Health Benefits of Kombucha Nutritional Compounds and Metabolites. CYTA–J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Morata, A.; Escott, C.; Loira, I.; López, C.; Palomero, F.; González, C. Emerging Non-thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants 2021, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Li, R.-Y.; Chen, J.-X.; Wang, F.; Gao, Y.; Fu, Y.-Q.; Xu, Y.-Q.; Yin, J.-F. Zijuan tea- based kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chem. 2021, 363, 130322. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Eun, J.-B. Impact of Time and Temperature on the Physicochemical, Microbiological, and Nutraceutical Properties of Laver Kombucha (Porphyra dentata) during Fermentation. LWT 2022, 154, 112643. [Google Scholar] [CrossRef]
- Muzaifa, M.; Andini, R.; Sulaiman, M.I.; Abubakar, Y.; Rahmi, F. Novel Utilization of Coffee Processing By-Products: Kombucha Cascara Originated from “Gayo-Arabica”. IOP Conf. Ser. Earth Environ. Sci. 2021, 644, 012048. [Google Scholar] [CrossRef]
- Zubaidah, E.; Dewantari, F.J.; Novitasari, F.R.; Srianta, I.; Blanc, P.J. Potential of Snake Fruit (Salacca Zalacca (Gaerth.) Voss) for the Development of a Beverage through Fermentation with the Kombucha Consortium. Biocatal. Agric. Biotechnol. 2018, 13, 198–203. [Google Scholar] [CrossRef]
- Newair, E.F.; Abdel-Hamid, R.; Kilmartin, P.A. Electrochemical Determination of the Antioxidant Activity in Echinacea Purpurea Roots Using Square Wave Voltammetry. Electroanalysis 2017, 29, 1131–1140. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sun, Q.; Park, Y. The Bioactive Effects of Chicoric Acid as a Functional Food Ingredient. J. Med. Food 2019, 22, 645–652. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Khlupova, M.; Vasil’eva, I.; Shumakovich, G.; Zaitseva, E.; Chertkov, V.; Shestakova, A.; Morozova, O.; Yaropolov, A. Enzymatic Polymerization of Dihydroquercetin (Taxifolin) in Betaine-based Deep Eutectic Solvent and Product Characterization. Catalysts 2021, 11, 639. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci. 2018, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Park, Y.-D.; Park, H.; Moon, K.-O.; Ha, K.-T.; Baek, N.-I.; Park, C.-S.; Joo, M.; Cha, J. Synthesis and Biological Evaluation of a Novel Baicalein Glycoside as an Anti-Inflammatory Agent. Eur. J. Pharmacol. 2015, 744, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Fiod Riccio, B.V.; Fonseca-Santos, B.; Colerato Ferrari, P.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit. Rev. Anal. Chem. 2020, 50, 339–358. [Google Scholar] [CrossRef]
- Chen, M.; Li, D.; Gao, Z.; Zhang, C. Enzymatic Transformation of Polydatin to Resveratrol by Piceid-β-D-Glucosidase from Aspergillus Oryzae. Bioprocess Biosyst. Eng. 2014, 37, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Lee, H.L.; Song, J.; Lee, Y.; Kim, B.-G.; Mok, H.; Ahn, J.-H. Biosynthesis of Resveratrol Derivatives and Evaluation of Their Anti-Inflammatory Activity. Appl. Biol. Chem. 2021, 64, 1–10. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. Enhancement of the Functional Properties of Coffee Through Fermentation by “Tea Fungus” (Kombucha). J. Food Process. Preserv. 2015, 39, 2596–2603. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
Sample | pH | Brix | Total Acidity | Total Sugars (g/L) | Acetic Acid (g/L) | Ethanol (g/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eq Sulfuric Acid (g/L) | ||||||||||||
Beginning | End | Beginning | End | Beginning | End | Beginning | End | Beginning | End | Beginning | End | |
20 g sucrose −25 °C—Day 7 | 3.36 ± 0.03 b | 3.02 ± 0.01 a | 4.00 ± 0.10 b | 2.20 ± 0.10 a | 3.79 ± 0.27 cd | 8.80 ± 0.14 c | 38.33 ± 1.27 a | 12.31 ± 1.03 b | 1.13 ± 0.21 b | 6.43 ± 0.37 a | 1.94 ± 1.11 f | 5.90 ± 0.32 cd |
20 g sucrose −25 °C—Day 10 | 3.36 ± 0.03 b | 2.95 ± 0.02 a | 4.00 ± 0.10 b | 2.00 ± 0.10 a | 3.41 ± 0.17 a | 11.19 ± 0.65 g | 40.35 ± 1.02 b | 6.63 ± 0.98 a | 1.12 ± 0.02 b | 11.58 ± 1.12 c | 0.74 ± 0.05 a | 7.12 ± 0.45 e |
35 g sucrose −25 °C—Day 7 | 3.23 ± 0.01 a | 2.92 ± 0.02 a | 5.30 ± 0.20 d | 3.00 ± 0.20 b | 3.78 ± 0.05 cd | 9.37 ± 0.26 e | 53.43 ± 2.17 c | 21.86 ± 1.78 e | 1.13 ± 0.11 b | 10.98 ± 0.76 c | 1.78 ± 0.07 e | 9.30 ± 0.23 f |
35 g sucrose −25 °C—Day 10 | 3.23 ± 0.02 a | 2.90 ± 0.02 a | 5.30 ± 0.10 d | 2.70 ± 0.10 b | 3.81 ± 0.21 d | 12.41 ± 0.05 h | 54.42 ± 1.78 c | 15.43 ± 0.93 c | 1.47 ± 0.15 c | 13.03 ± 1.11 c | 2.00 ± 0.23 g | 5.09 ± 0.67 b |
20 g sucrose −20 °C—Day 7 | 3.38 ± 0.03 b | 3.17 ± 0.01 b | 3.90 ± 0.10 a | 2.10 ± 0.10 a | 3.57 ± 0.35 b | 7.35 ± 0.13 a | 40.09 ± 1.32 b | 17.39 ± 1.21 d | 1.05 ± 0.14 a | 5.05 ± 1.02 a | 2.02 ± 0.17 g | 5.28 ± 0.46 bc |
20 g sucrose −20 °C—Day 10 | 3.38 ± 0.02 b | 3.05 ± 0.03 a | 3.90 ± 0.20 a | 2.00 ± 0.10 a | 3.51 ± 0.14 b | 9.02 ± 0.12 d | 37.34 ± 0.97 a | 12.25 ± 1.14 b | 1.76 ± 0.08 d | 7.48 ± 0.34 ab | 1.01 ± 0.08 b | 4.51 ± 0.33 a |
35 g sucrose −20 °C—Day 7 | 3.36 ± 0.02 b | 3.17 ± 0.01 b | 4.60 ± 0.10 c | 2.20 ± 0.10 a | 3.63 ± 0.21 b | 8.04 ± 0.24 b | 57.48 ± 1.25 d | 32.16 ± 1.94 f | 1.63 ± 0.14 d | 6.96 ± 0.23 ab | 1.36 ± 0.06 d | 7.52 ± 0.31 e |
35 g sucrose −20 °C—Day 10 | 3.36 ± 0.01 b | 3.09 ± 0.02 a | 4.60 ± 0.10 c | 2.10 ± 0.10 a | 3.74 ± 0.07 c | 10.29 ± 0.3 f | 55.75 ± 1.13 d | 18.84 ± 1.25 d | 1.03 ± 0.07 a | 8.20 ± 0.89 b | 1.29 ± 0.11 c | 6.19 ± 0.87 d |
Sample | Total Polyphenols (GAE mg/L) | Total Anthocyanin (mg/L) | Antioxidant Activity (DPPH IC50 mL/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
Beginning | End | % Change | Beginning | End | % Change | Beginning | End | % Change | |
20 g sucrose −25 °C—Day 7 | 198.75 ± 6.54 c | 357.19 ± 8.25 d | 78.72 | 68.10 ± 1.49 b | 96.83 ± 2.70 b | 29.67 | 2.54 ± 0.06 b | 1.15 ± 0.02 b | 54.7 |
20 g sucrose −25 °C—Day 10 | 187.08 ± 7.21 b | 245.95 ± 5.13 b | 31.47 | 68.10 ± 1.49 b | 76.42 ± 1.80 a | 12.22 | 2.45 ± 0.02 a | 1.33 ± 0.02 f | 45.7 |
35 g sucrose −25 °C—Day 7 | 246.19 ± 5.21 h | 360.1 ± 0.51 d | 46.27 | 69.27 ± 6.40 b | 97.42 ± 7.52 b | 28.9 | 2.68 ± 0.03 f | 1.26 ± 0.02 de | 53.0 |
35 g sucrose −25 °C—Day 10 | 175.62 ± 4.32 a | 183.92 ± 7.51 a | 4.73 | 69.27 ± 6.40 b | 75.54 ± 1.89 a | 9.05 | 2.65 ± 0.08 e | 1.23 ± 0.01 d | 53.6 |
20 g sucrose −20 °C—Day 7 | 211.28 ± 9.21 e | 507.14 ± 9.21 e | 140.03 | 68.69 ± 5.82 b | 109.37 ± 2.1 bc | 59.22 | 2.62 ± 0.19 d | 1.08 ± 0.03 a | 58.8 |
20 g sucrose −20 °C—Day 10 | 213.41 ± 4.28 f | 340.11 ± 4.21 d | 59.38 | 68.69 ± 5.82 b | 117.25 ± 3.22 c | 70.69 | 2.58 ± 0.09 c | 1.19 ± 0.1 c | 53.9 |
35 g sucrose −20 °C—Day 7 | 201.62 ± 3.23 d | 483.17 ± 3.18 c | 139.64 | 65.19 ± 6.43 a | 110.83 ± 3.93 bc | 70.01 | 2.55 ± 0.02 b | 1.25 ± 0.05 de | 51.0 |
35 g sucrose −20 °C—Day 10 | 234.88 ± 5.27 g | 335.71 ± 1.33 d | 42.93 | 65.19 ± 6.43 a | 114.33 ± 1.48 c | 75.37 | 2.67 ± 0.05 f | 1.26 ± 0.07 e | 52.8 |
Compound | Extract | ||||||||
---|---|---|---|---|---|---|---|---|---|
Grape Pomace (100 g/L Dry Basis | 20 g of Sucrose −25 °C—Day 7 | 20 g of Sucrose −25 °C—Day 10 | 35 g of Sucrose −25 °C—Day 7 | 35 g of Sucrose −25 °C—Day 10 | 20 g of Sucrose −20 °C—Day 7 | 20 g of Sucrose −20 °C—Day 10 | 35 g of Sucrose −20 °C—Day 7 | 35 g of Sucrose −20 °C—Day 10 | |
Gallic acid | + | + | + | + | - | - | + | + | + |
3-Tert-Butyl-4-Hydroxybenzoic acid | + | - | + | - | + | + | - | - | - |
Benzyl 4-Hydroxybenzoate | + | - | + | + | + | + | + | + | + |
3-Benzyloxy-4,5-Dihydroxy-Benzoic acid methyl ester | + | + | + | - | - | + | + | + | + |
Isobutyl 4-Hydroxybenzoate | - | - | + | + | + | + | + | + | + |
Butyl 4-Hydroxybenzoate | + | + | + | + | + | + | - | + | + |
Caffeic acid | + | - | - | - | - | - | - | + | - |
A-Cyano-4-Hydroxycinnamic acid | - | - | + | - | - | + | - | - | - |
Sinapic acid | - | - | - | - | - | - | + | - | - |
Ferulic acid | - | + | + | - | + | - | - | - | - |
(−)-Chicoric acid | + | - | + | - | - | - | + | + | + |
Ethyl Trans-2-Hydroxycinnamate | + | + | + | + | + | - | + | + | + |
Cinnamyl-3,4-Dihydroxy-A-Cyanocinnamate | + | + | + | - | + | + | + | + | + |
(−)-Epicatechin | - | - | - | - | - | - | - | - | - |
Taxifolin | + | - | - | - | + | - | - | + | - |
Quercetin 3-Β-D-Glucoside | - | + | + | - | - | + | - | - | + |
(±)-Taxifolin Hydrate | - | - | + | - | + | + | + | + | - |
Rutin Hydrate | - | - | + | + | - | - | - | + | - |
Myricitrin Dihydrate | + | - | - | - | + | - | - | + | - |
Myricetin | + | - | - | - | + | - | - | - | - |
7,3′-Dihydroxyflavone | - | + | + | + | + | + | - | + | - |
3′,5′-Dihydroxyflavone | + | - | + | - | + | + | + | + | + |
7-Hydroxyflavone | + | + | - | + | + | - | + | + | - |
Baicalein | + | + | + | - | + | + | - | - | - |
6-Hydroxyflavone | + | + | - | - | + | + | + | + | + |
3′-Hydroxy-6-Methylflavone | + | + | + | + | + | + | + | + | + |
6-Hydroxy-4′-Methylflavone | + | + | - | - | - | + | + | + | + |
4′,5-Dihydroxy-7-Methoxyflavone | + | - | + | + | - | - | - | + | + |
3,3′,4′-Trimethoxyflavone | + | - | + | + | + | + | + | + | + |
3,7-Dimethoxyflavone | - | + | + | + | + | + | + | + | + |
3,3′-Dimethoxyflavone | - | + | + | + | + | + | - | + | + |
3,6,3′-Trimethoxyflavone | + | - | + | - | + | + | - | + | + |
5-Hydroxyflavone | + | + | - | - | - | + | + | - | + |
5-Hydroxy-3′-Methoxyflavone | + | - | + | + | + | - | - | + | - |
3′-Hydroxy-B-Naphthoflavone | - | + | - | - | - | + | - | - | - |
Phenoxodiol | + | - | + | + | + | - | + | + | + |
6-Hydroxycoumarine | + | - | + | - | + | + | + | + | - |
4,7-Dihydroxycoumarine | + | - | - | + | + | + | + | - | - |
Scopoletin | - | - | - | - | - | + | + | - | - |
7-Hydroxy-4-(Trifluoromethyl)Coumarine | + | + | - | - | - | + | + | + | + |
7-Hydroxy-4-Methyl-3-Coumarinylacetic acid | + | + | - | - | - | + | + | + | + |
7-Hydroxy-4-Phenylcoumarine | - | - | + | - | + | + | + | + | - |
Polydatin | + | - | - | - | - | - | - | - | - |
Rhapontin | + | - | - | - | - | - | - | - | - |
Resveratrol | - | - | - | - | + | - | - | + | - |
Pinosylvin Monomethyl Ether | - | + | - | + | + | + | + | + | - |
Fermentation Parameters | Characteristics of Grape Pomace Kombucha | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Temp. | Sucrose | Brix | Acidity | pH | Total Sugars | Acetic Acid | Ethanol | TPC | TAC | DPPH | α-Amylase | α-Glucosidase | 15-lox | |
Time | 1 | 0.000 | 0.000 | −0.362 | 0.749 | −0.219 | −0.56 | 0.442 | −0.397 | −0.741 | −0.289 | 0.504 | −0.007 | 0.49 | 0.120 |
Temp. | 0.000 | 1 | 0.000 | −0.056 | 0.565 | −0.865 | −0.396 | 0.692 | 0.340 | −0.644 | −0.834 | 0.286 | −0.061 | −0.209 | −0.752 |
Sucrose | 0.000 | 0.000 | 1 | 0.557 | 0.312 | −0.178 | 0.698 | 0.431 | 0.452 | −0.120 | 0.002 | 0.424 | 0.353 | 0.288 | 0.197 |
Brix | −0.362 | −0.056 | 0.557 | 1 | −0.138 | −0.107 | 0.584 | 0.007 | −0.006 | 0.178 | 0.216 | −0.412 | 0.365 | 0.091 | 0.005 |
Acidity | 0.749 | 0.565 | 0.312 | −0.138 | 1 | −0.683 | −0.43 | 0.849 | −0.023 | −0.957 | −0.727 | 0.644 | 0.077 | 0.374 | −0.311 |
pH | −0.219 | −0.865 | −0.178 | −0.107 | −0.683 | 1 | 0.340 | −0.822 | −0.288 | 0.745 | 0.748 | −0.372 | 0.031 | 0.010 | 0.653 |
Total Sugars | −0.56 | −0.396 | 0.698 | 0.584 | −0.425 | 0.340 | 1 | −0.200 | 0.427 | 0.583 | 0.455 | −0.041 | 0.248 | 0.081 | 0.375 |
Acetic acid | 0.442 | 0.692 | 0.431 | 0.007 | 0.849 | −0.822 | −0.200 | 1 | 0.361 | −0.794 | −0.754 | 0.641 | 0.013 | 0.252 | −0.377 |
Ethanol | −0.397 | 0.340 | 0.452 | −0.006 | −0.023 | −0.288 | 0.427 | 0.361 | 1 | 0.073 | −0.135 | 0.508 | −0.002 | −0.310 | 0.022 |
TPC | −0.741 | −0.644 | −0.120 | 0.178 | −0.957 | 0.745 | 0.583 | −0.794 | 0.073 | 1 | 0.754 | −0.571 | −0.036 | −0.272 | 0.375 |
TAC | −0.289 | −0.834 | 0.002 | 0.216 | −0.727 | 0.748 | 0.455 | −0.754 | −0.135 | 0.754 | 1 | −0.391 | 0.159 | −0.106 | 0.672 |
DPPH | 0.504 | 0.286 | 0.424 | −0.412 | 0.644 | −0.372 | −0.041 | 0.641 | 0.508 | −0.571 | −0.391 | 1 | −0.054 | 0.221 | 0.115 |
α-amylase | −0.007 | −0.061 | 0.353 | 0.365 | 0.077 | 0.031 | 0.248 | 0.013 | −0.002 | −0.036 | 0.159 | −0.054 | 1 | −0.219 | 0.117 |
α-glucosidase | 0.49 | −0.209 | 0.288 | 0.091 | 0.374 | 0.010 | 0.081 | 0.252 | −0.310 | −0.272 | −0.106 | 0.221 | −0.219 | 1 | 0.209 |
15-lox | 0.120 | −0.752 | 0.197 | 0.005 | −0.311 | 0.653 | 0.375 | −0.377 | 0.022 | 0.375 | 0.672 | 0.115 | 0.117 | 0.209 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, N.; Bouajila, J.; Beaufort, S.; Rizk, Z.; Taillandier, P.; El Rayess, Y. Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages 2024, 10, 29. https://doi.org/10.3390/beverages10020029
Barakat N, Bouajila J, Beaufort S, Rizk Z, Taillandier P, El Rayess Y. Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages. 2024; 10(2):29. https://doi.org/10.3390/beverages10020029
Chicago/Turabian StyleBarakat, Nathalie, Jalloul Bouajila, Sandra Beaufort, Ziad Rizk, Patricia Taillandier, and Youssef El Rayess. 2024. "Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities" Beverages 10, no. 2: 29. https://doi.org/10.3390/beverages10020029
APA StyleBarakat, N., Bouajila, J., Beaufort, S., Rizk, Z., Taillandier, P., & El Rayess, Y. (2024). Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages, 10(2), 29. https://doi.org/10.3390/beverages10020029