New Trends in Beverage Packaging Systems: A Review
Abstract
:1. Introduction
Material | Advantages | Disadvantages | ||
---|---|---|---|---|
Glass | Reusable and recyclable Improved break resistance allows manufacturers to use thinner glass Odorless and chemically inert Impermeable to gases and vapors Maintenance of product freshness for a long period of time without impairing taste or flavor Useful for heat sterilization Rigid Good insulation Production in numerous different shapes Variations in glass color can protect light-sensitive contents Transparent | Limitation in thin glass Heavy weight Transportation costs Brittleness Susceptibility to breakages from internal pressure, impact, or thermal shock. | ||
Metal | Versatility Physical protection Barrier properties Formability and decorative potential Recyclable Consumer acceptance | Aluminum: high cost compared to other metals and materials (for example, steel) Inability to be welded, which renders it useful only for making seamless containers | ||
Paper and paperboard | Lightweight Economical compared to other packaging systems Recyclable Efficient, low cost protection Available in several forms adapted to different food conditions Easy handling by consumers Very good strength to weight characteristics | Poor barrier properties to light, moisture Not used to protect foods for long periods of time When used as primary packaging, it is coated or laminated to improve functional and protective properties The combination with other materials hinders the subsequent recycling process Tears easily | ||
Plastic | Fluid and moldable Made into sheets, shapes, and structures Flexible Chemically resistant Inexpensive Light weight Wide range of physical and optical properties Heat sealable Easy to print Integrated into production processes where the package is formed, filled, and sealed in the same production line | Variable permeability to light, gases, vapors, and low molecular weight molecules Limited reuse and recycling properties |
2. Influence of Packaging on Beverage Conservation and Drawbacks for Consumer Acceptability
3. New Emerging Strategies
3.1. Material/Structural Modifications
3.2. Active and Intelligent Systems
3.2.1. Active Systems
Active Packaging | Application | Principle | Material | Reference |
---|---|---|---|---|
Antioxidant | Fruit juices | Release of encapsulated antioxidants | Plastic | [13] |
Beer | Oxygen scavenger crowns | Metal | [42] | |
Orange juice | Oxygen scavenger films | Plastic | [21] | |
Aqueous food products | Oxygen scavenger films | Plastic | [43] | |
Beer and wine | Glucose oxidase and catalase oxygen scavengers | Metal and glass | [44] | |
Wine, beer, flavoured alcoholic beverages and malt-based drinks | Polymeric oxygen scavenging system (PET/nylon/cobalt) | Plastic | [45] | |
Beer | Oxygen consumption by immobilized yeast in sealed packaged | Metal | [46] | |
Beverage bottles | Viable spores as oxygen scavengers into PET copolymer | Plastic | [47] | |
Antimicrobial | Raw and pasteurized milk, yogurt and fermented dairy beverages | Carbon dioxide addition at elevated pressure | Plastic | [48] |
Orange juice and liquid egg white | Nisin bacteriocin as polymer coating | Plastic | [49] | |
Water, cantaloupe juice and pineapple juice | Vanillin addition as natural antimicrobial agent into natural polymer films | Plastic | [20] | |
Apple and orange juices | Silver or ZnO nanoparticles | Plastic | [50] | |
Melon and pineapple juices | Cellulose/copper antimicrobial composites | Plastic | [51] | |
Apple juice | Silver nanoparticles | Plastic | [52] | |
Kiwi and melon juices | Cellulose/silver nanocomposites | Plastic | [53] | |
Functional | UHT milk | Lactase-active or cholesterol-active package | Plastic, metal and glass | [54] |
Beer | Gas emission | |||
Milk, drinks and water | Flavor release | |||
Health, wellness, and sport drinks | Nutrient release | |||
Drinkable yogurt | Probiotic release | |||
Orange juice and wine | Odor removal | |||
Self-heating | Chocolate, soup and coffee | Glycerol and potassium salt reaction | Plastic | [55] |
Self-cooling | Beer and soft drinks | Water and desiccant reaction | Plastic and metal | [56] |
3.2.2. Intelligent Systems
Intelligent Packaging | System | Application | Principle | Packaging Material | Reference | |
---|---|---|---|---|---|---|
Sensors | Optical | Milk | Melamine content by colorimetric method | - | [77] | |
Optical | Water | Cyanide content by fluorimetric method | - | [78] | ||
Optical | Water | Pesticides detection by fluorimetric method | - | [79] | ||
Electrochemical | Commercial beverages | Glucose content | - | [81] | ||
Electrochemical | Milk | Aflatoxin-B17 content | - | [82] | ||
Magnetic nanomaterial | Milk | Mycobacterium avium spp. Paratuberculosis concentration | - | [80] | ||
Carbon nanotubes | Water | Cyanobacteria toxin content | Porous fibrous materials: fabrics and papers | [83] | ||
Indicators | Gas indicator | Water, oil and beverages | Oxygen indicator | Plastic | [84] | |
Liquid products | Gas escape from packaging | Plastic | [85] | |||
Time temperature indicator | Milk | Polymerization color reaction | Plastic | [86] | ||
Enzymatic hydrolysis of a lipid substrate with pH reduction | Plastic and carton | [87] | ||||
Wine | Thermosensitive compounds and color change reaction | Glass | [88] | |||
Thermochromic ink | Beer | Temperature sensor | Metal and glass | [89] | ||
Orange juice | Temperature sensor | Plastic and glass | [90] | |||
Coffee | Temperature sensor | Plastic | [91] | |||
Freshness indicator | Coffee | Time detector related to freshness settings | Plastic | [92] | ||
RFID (radio frequency identification) | Passive | Fat-free and whole milk | Monitor milk freshness | Carton | [93] | |
Semi-passive | Wine | Monitor temperature | Glass | [94] | ||
Water | Monitor temperature | Plastic | [95] | |||
Active | Liquors | Anti-counterfeiting, logistics and evidence that duty has been paid | Glass | [96,97] |
4. Closing Remarks
Conflicts of Interest
References
- Barlow, C.Y.; Morgan, D.C. Polymer film packaging for food: An environmental assessment. Resour. Conserv. Recycl. 2013, 78, 74–80. [Google Scholar]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [PubMed]
- Limbo, S.; Khaneghah, A.M. Chapter 11—Active packaging of foods and its combination with electron beam processing. In Electron Beam Pasteurization and Complementary Food Processing Technologies; Pillai, S.D., Shayanfar, S., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 195–217. [Google Scholar]
- Pati, S.; Mentana, A.; La Notte, E.; Del Nobile, M.A. Biodegradable poly-lactic acid package for the storage of carbonic maceration wine. LWT Food Sci. Technol. 2010, 43, 1573–1579. [Google Scholar] [CrossRef]
- Baiano, A.; Mentana, A.; Quinto, M.; Centonze, D.; Longobardi, F.; Ventrella, A.; Agostiano, A.; Varva, G.; De Gianni, A.; Terracone, C.; et al. The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of minutolo white wine. Food Res. Int. 2015, 74, 294–305. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT Food Sci. Technol. 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Han, S.G.; Chin, K.B. Nanotechnology in meat processing and packaging: Potential applications—A review. Asian-Australas. J. Anim. Sci. 2014, 28, 290–302. [Google Scholar]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [PubMed]
- Zygoura, P.; Moyssiadi, T.; Badeka, A.; Kondyli, E.; Savvaidis, I.; Kontominas, M.G. Shelf life of whole pasteurized milk in Greece: Effect of packaging material. Food Chem. 2004, 87, 1–9. [Google Scholar] [CrossRef]
- Dombre, C.; Rigou, P.; Chalier, P. The use of active pet to package rosé wine: Changes of aromatic profile by chemical evolution and by transfers. Food Res. Int. 2015, 74, 63–71. [Google Scholar]
- Wibowo, S.; Grauwet, T.; Santiago, J.S.; Tomic, J.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chem. 2015, 187, 140–151. [Google Scholar] [CrossRef] [PubMed]
- EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into Contact with Food. Available online: http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/guidance_active_and_intelligent_scofcah_231111_en.pdf (accessed on 2 October 2015).
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Emamifar, A.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emerg. Tech. 2010, 11, 742–748. [Google Scholar] [CrossRef]
- Revi, M.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Effect of packaging material on enological parameters and volatile compounds of dry white wine. Food Chem. 2014, 152, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Mentana, A.; Pati, S.; La Notte, E.; del Nobile, M.A. Chemical changes in Apulia table wines as affected by plastic packages. LWT Food Sci. Technol. 2009, 42, 1360–1366. [Google Scholar] [CrossRef]
- Berlinet, C.; Brat, P.; Ducruet, V. Quality of orange juice in barrier packaging material. Packag. Technol. Sci. 2008, 21, 279–286. [Google Scholar] [CrossRef]
- Dombre, C.; Rigou, P.; Wirth, J.; Chalier, P. Aromatic evolution of wine packed in virgin and recycled pet bottles. Food Chem. 2015, 176, 376–387. [Google Scholar] [PubMed]
- Provesi, J.G.; Dias, C.O.; de Mello Castanho Amboni, R.D.; Amante, E.R. Characterisation and stability of quality indices on storage of pumpkin (Cucurbita moschata and Cucurbita maxima) purees. Int. J. Food Sci. Technol. 2012, 47, 67–74. [Google Scholar] [CrossRef]
- Bacigalupi, C.; Lemaistre, M.H.; Boutroy, N.; Bunel, C.; Peyron, S.; Guillard, V.; Chalier, P. Changes in nutritional and sensory properties of orange juice packed in pet bottles: An experimental and modelling approach. Food Chem. 2013, 141, 3827–3836. [Google Scholar] [CrossRef] [PubMed]
- Zerdin, K.; Rooney, M.L.; Vermuë, J. The vitamin c content of orange juice packed in an oxygen scavenger material. Food Chem. 2003, 82, 387–395. [Google Scholar] [CrossRef]
- Ros-Chumillas, M.; Belissario, Y.; Iguaz, A.; López, A. Quality and shelf life of orange juice aseptically packaged in pet bottles. J. Food Eng. 2007, 79, 234–242. [Google Scholar] [CrossRef]
- Müller, K. Multilayer films for bag-in-container systems used in disposable kegs: Basic principles of possible barrier concepts. Brewing Sci. 2013, 66, 31–36. [Google Scholar]
- Berlinet, C.; Brat, P.; Brillouet, J.M.; Ducruet, V. Ascorbic acid, aroma compounds and browning of orange juices related to pet packaging materials and pH. J. Sci. Food Agric. 2006, 86, 2206–2212. [Google Scholar] [CrossRef]
- Peychès-Bach, A.; Moutounet, M.; Peyron, S.; Chalier, P. Factors determining the transport coefficients of aroma compounds through polyethylene films. J. Food Eng. 2009, 95, 45–53. [Google Scholar] [CrossRef]
- Toussaint, M.; Vidal, J.C.; Salmon, J.M. Comparative evolution of oxygen, carbon dioxide, nitrogen, and sulfites during storage of a rosé wine bottled in pet and glass. J. Agr. Food Chem. 2014, 62, 2946–2955. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Brenna, O.V. Oxidative stability of red wine stored in packages with different oxygen permeability. Eur. Food Res. Technol. 2007, 226, 169–179. [Google Scholar] [CrossRef]
- Dombre, C.; Marais, S.; Chappey, C.; Lixon-Buquet, C.; Chalier, P. The behaviour of wine aroma compounds related to structure and barrier properties of virgin, recycled and active pet membranes. J. Membrane Sci. 2014, 463, 215–225. [Google Scholar] [CrossRef]
- Del Caro, A.; Piombino, P.; Genovese, A.; Moio, L.; Fanara, C.; Piga, A. Effect of bottle storage on colour, phenolics and volatile composition of Malvasia and Moscato white wines. S. Afr. J. Enol. Vitic. 2014, 35, 128–138. [Google Scholar]
- Hopfer, H.; Ebeler, S.E.; Heymann, H. The combined effects of storage temperature and packaging type on the sensory and chemical properties of chardonnay. J. Agr. Food Chem. 2012, 60, 10743–10754. [Google Scholar] [CrossRef] [PubMed]
- Hopfer, H.; Buffon, P.A.; Ebeler, S.E.; Heymann, H. The combined effects of storage temperature and packaging on the sensory, chemical, and physical properties of a cabernet sauvignon wine. J. Agr. Food Chem. 2013, 61, 3320–3334. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Domenek, S.; Courgneau, C.; Ducruet, V. Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polym. Degrad. Stab. 2012, 97, 1871–1880. [Google Scholar] [CrossRef]
- Dombre, C.; Chalier, P. Evaluation of transfer of wine aroma compounds through pet bottles. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Ducruet, V.; Vitrac, O.; Saillard, P.; Guichard, E.; Feigenbaum, A.; Fournier, N. Sorption of aroma compounds in pet and PVC during the storage of a strawberry syrup. Food Addit. Contam. 2007, 24, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, A.M.; Ahmed Ishag, K.E.N. Effect of storage packaging on sunflower oil oxidative stability. Am. J. Food Technol. 2012, 7, 700–707. [Google Scholar] [CrossRef]
- Siracusa, V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 2012, 302029. [Google Scholar] [CrossRef]
- Naknikham, U.; Jitwatcharakomol, T.; Tapasa, K.; Meechoowas, E. The simple method for increasing chemical stability of glass bottles. Key Eng. Mater. 2014, 608, 307–310. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, J.; Chen, L.; Li, L.; Li, X. Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 2014, 36, 55–62. [Google Scholar]
- Singh, P.; Wani, A.A.; Saengerlaub, S. Active packaging of food products: Recent trends. Nutr. Food Sci. 2011, 41, 249–260. [Google Scholar] [CrossRef]
- Global Active, Smart and Intelligent Packaging Market by Products, Applications, Trends and Forecasts (2010–2015). Available online: http://www.marketsandmarkets.com/Market-Reports/smartpackaging-324.html (accessed on 2 October 2015).
- Brody, A.L. What’s the hottest food packaging technology today? Food Technol. 2001, 55, 82–84. [Google Scholar]
- Foster, T.; Vasavada, P.C. Beverage Quality and Safety; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Brody, A.L.; Strupinsky, E.R.; Kline, L.R. Oxygen scavenger systems. In Active Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Angelo, S.C. Oxygen absorbers in food preservation: A review. J. Food Sci. Technol. 2015, 52, 1889–1895. [Google Scholar]
- Brody, A.L.; Strupinsky, E.R.; Kline, L.R. Oxygen scavenger. In Active Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Edens, L.; Farin, F.; Ligtvoet, A.F.; van der Platt, J.B. Dry Yeast Immobilized in Wax or Paraffin for Scavenging Oxygen. U.S. Patent 5,106,633, 1992. [Google Scholar]
- Anthierens, T.; Ragaert, P.; Verbrugghe, S.; Ouchchen, A.; De Geest, B.G.; Noseda, B.; Mertens, J.; Beladjal, L.; De Cuyper, D.; Dierickx, W.; et al. Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innov. Food Sci. Emerg. Tech. 2011, 12, 594–599. [Google Scholar] [CrossRef]
- Hotchkiss, J.H.; Werner, B.G.; Lee, E. Addition of carbon dioxide to dairy products to improve quality: A comprehensive review. Compr. Rev. Food. Sci. Safety 2006, 5, 158–168. [Google Scholar] [CrossRef]
- Jian, T.; Zhang, H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J. Food Sci. 2008, 73, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the food industry & recent developments, risks and regulation. Trends Food Sci. Technol. 2012, 24, 30–46. [Google Scholar]
- Llorens, A.; Lloret, E.; Picouet, P.; Fernandez, A. Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int. J. Food Microbiol. 2012, 58, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Del Nobile, M.A.; Cannarsi, M.; Altieri, C.; Sinigaglia, M.; Favia, P.; Iacoviello, G.; D’Agostino, R. Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J. Food Sci. 2004, 69, 379–383. [Google Scholar] [CrossRef]
- Lloret, E.; Picouet, P.; Fernández, A. Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials. LWT Food Sci. Technol. 2012, 49, 333–338. [Google Scholar] [CrossRef]
- Kerry, J.; Butler, P. Smart Packaging Technologies for Fast Moving Consumer Goods; John Wiley & Sons, Ltd.: New York, NY, USA, 2008. [Google Scholar]
- Cork, C. Cown Cork & Seal Packaging Europe GmbH, Switzerland. Available online: http://www.crowncork.com/ (accessed on 2 October 2015).
- Tempra Technology™, Florida, USA. Available online: http://tempratech.com (accessed on 2 October 2015).
- Byun, Y.; Kim, Y.T.; Whiteside, S. Characterization of an antioxidant polylactic acid (PLA) film prepared with a-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 2010, 100, 239–244. [Google Scholar] [CrossRef]
- Valdes, A.; Mellinas, A.C.; Ramos, M.; Burgos, N.; Jimenez, A.; Garrigos, M.C. Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv. 2015, 5, 40324–40335. [Google Scholar] [CrossRef]
- Valdés, A.; Mellinas, A.C.; Ramos, M.; Garrigós, M.C.; Jiménez, A. Natural additives and agricultural wastes in biopolymeformulations for food packaging. Frontiers Chem. 2014, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Phbottle Project. Available online: http://www.phbottle.eu/ (accessed on 2 October 2015).
- Souza, R.; Peruch, G.; dos Santos, A.C. Structure and Function of Food Engineering; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Brody, L.; Bugusu, B.; Han, J.; Koelsch, C.; McHugh, T. Innovative food packaging solutions. J. Food Sci. 2008, 73, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.; Peruch, G.; dos Santos Pires, A.C. Oxygen scavengers: An approach on food preservation, structure and function of food engineering. In Structure and Function of Food Engineering; Eissa, A.A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Vermeiren, L.; Heirlings, L.; Devlieghere, F.; Debevere, J. Oxygen, ethylene and other scavengers. In Novel Food Packaging Techniques; Ahvenainen, R., Ed.; Woodhead Publishing: Cambridge, UK, 2003; pp. 22–49. [Google Scholar]
- Sängerlaub, S.; Gibis, D.; Kirchhoff, E.; Tittjung, M.; Schmid, M.; Müller, K. Compensation of pinhole defects in food packages by application of iron-based oxygen scavenging multilayer films. Packag. Technol. Sci. 2013, 26, 17–30. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov. Food Sci. Emerg. 2012, 16, 211–217. [Google Scholar] [CrossRef]
- Mahieu, A.; Terrié, C.; Youssef, B. Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: Influence of water content. Ind. Crop. Prod. 2015, 72, 192–199. [Google Scholar] [CrossRef]
- Albis Plastic GmbH. SHELFPLUS® O2—A Fresh Solution to Active Packaging. Available online: http://www.albis.com/en/products-solutions/products-brands/shelfplus/ (accessed on 2 October 2015).
- Mu, H.; Gao, H.; Chen, H.; Tao, F.; Fang, X.; Ge, L. A nanosised oxygen scavenger: Preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem. 2013, 136, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Sangsuwan, J.; Rattanapanone, N.; Auras, R.A.; Harte, B.R.; Acgtanapun, P.R. Factors affecting migration of vanillin from chitosan/methyl cellulose films. J. Food Sci. 2009, 74, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Tech. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Al-Holy, M.A.; Castro, L.F.; Al-Quadiri, H.M. Inactivation of Cronobacter spp. (Enterobacter sakazakii) in infant formula using lactic acid, copper sulfate and monolaurin. Letters Appl. Microbiol. 2010, 50, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Yang, H.; Seo, C.W. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli o157:H7 in laboratory medium and carrot juice. Food Chem. 2008, 109, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Azo Materials. Smart Packaging—Intelligent Packaging for Food, Beverages, Pharmaceuticals and Household Products. Available online: http://www.azom.com/article.aspx?ArticleID=2152#_Self-Heating_and_Self-Chilling (accessed on 2 October 2015).
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Dunca, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ai, K.; Liu, Y.; Lu, L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951–956. [Google Scholar] [CrossRef]
- Vamvakaki, V.; Chaniotakis, N.A. Pesticide detection with a liposome-based nano-biosensor. Biosens. Bioelectron. 2007, 22, 2848–2853. [Google Scholar] [CrossRef]
- Kaittanis, C.; Naser, S.A.; Perez, J.M. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 2007, 7, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Yeni, F.; Odaci, D.; Timur, S. Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem. 2010, 119, 380–385. [Google Scholar] [CrossRef]
- Jin, X.; Jin, X.; Chen, L.; Jiang, J.; Shen, G.; Yu, R. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosens. Bioelectron. 2009, 24, 2580–2585. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, W.; Xu, D.; Shim, B.S.; Zhu, Y.; Sun, F.; Liu, L.; Peng, C.; Jin, Z.; Xu, C.; et al. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett. 2009, 9, 4147–4152. [Google Scholar] [CrossRef] [PubMed]
- OxySense Company. How Oxygen Is Measured within a Package/PET Bottle. Available online: http://www.oxysense.com/how-oxysense-works.html (accessed on 2 October 2015).
- UPM the Biofore Company. Available online: http://www.upm.com/E (accessed on 2 October 2015).
- TempTime Corporation. Available online: http://www.fresh-check.com/ (accessed on 2 October 2015).
- Vitsab: The Sign of Freshness. Available online: http://vitsab.com (accessed on 2 October 2015).
- Freshpoint Company. Time Temperature Indicators. VineGuard. Available online: http://www.freshpoint-tti.com/product/VineGuard.aspx (accessed on 2 October 2015).
- Coors Light Company. Available online: http://www.coorslight.com/ (accessed on 2 October 2015).
- Tetra Pak International. Available online: www.tetrapak.com (accessed on 2 October 2015).
- Smart Lid Systems. Available online: http://www.smartlid.com/ (accessed on 2 October 2015).
- Vending. Vending Market Watch. Available online: http://www.vendingmarketwatch.com/ (accessed on 2 October 2015).
- Potyrailo, R.; Nagraj, N.; Tang, Z.; Mondello, F.; Surman, C.; Morris, W. Battery-free radio frequency identification (RFID) sensors for food quality and safety. J. Agric. Food Chem. 2012, 60, 8535–8543. [Google Scholar] [CrossRef] [PubMed]
- eProvenance Company. Available online: https://www.eprovenance.com/ (accessed on 2 October 2015).
- Electronic Product Code. Available online: http://www.epc-rfid.info/rfid_tags (accessed on 2 October 2015).
- Yam, K.L.; Lee, D.S. Emerging Food Packaging Technologies: Principles and Practice; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Swedber, C. Beverage metrics serves up drink-management solution. Available online: http://www.rfidjournal.com/articles/view?8237 (accessed on 5 October 2015).
- Taoukis, P.S.; Labuza, T.P. Oxygen, ethylene and other scavengers. In Novel Food Packaging; CRC Press: Cambridge, UK, 2003. [Google Scholar]
- Hempel, A.W. Use of Oxygen Sensors for the Non Destructive Measurement of Oxygen in Packaged Food and Beverage Products and Its Impact on Product Quality and Shelf Life. Ph.D. Thesis, University College Cork, Ireland, 2014. [Google Scholar]
- Vazquez-Briseno, M.; Hirata, F.I.; Sanchez-Lopez, J.D.; Jimenez-Garcia, E.; Navarro-Cota, C.; Nieto-Hipolito, J.I. Using RFID/NFC and QR-code in mobile phones to link the physical and the digital world, interactive multimedia. In Interactive Multimedia; Deliyannis, I., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Packaging Digest. Beverage Packaging. Available online: http://www.packagingdigest.com/beverage-packaging (accessed on 2 October 2015).
- Advanced Packaging Technology World. Available online: http://www.smitherspira.com/products/subscriptions/advanced-packaging-technology-world (accessed on 2 October 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.; Valdés, A.; Mellinas, A.C.; Garrigós, M.C. New Trends in Beverage Packaging Systems: A Review. Beverages 2015, 1, 248-272. https://doi.org/10.3390/beverages1040248
Ramos M, Valdés A, Mellinas AC, Garrigós MC. New Trends in Beverage Packaging Systems: A Review. Beverages. 2015; 1(4):248-272. https://doi.org/10.3390/beverages1040248
Chicago/Turabian StyleRamos, Marina, Arantzazu Valdés, Ana Cristina Mellinas, and María Carmen Garrigós. 2015. "New Trends in Beverage Packaging Systems: A Review" Beverages 1, no. 4: 248-272. https://doi.org/10.3390/beverages1040248
APA StyleRamos, M., Valdés, A., Mellinas, A. C., & Garrigós, M. C. (2015). New Trends in Beverage Packaging Systems: A Review. Beverages, 1(4), 248-272. https://doi.org/10.3390/beverages1040248