Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning
Abstract
:1. Introduction
- Firstly, we designed an integrative framework consisting of multi-label feature selection and classification for ECG signals to handle the multi-label and high-dimensionality problems of ECG characteristics simultaneously.
- Secondly, we further developed an effective multi-label arrhythmia classification model for ECG signals. An ECG classification neural network based on feature extraction and time series data processing abilities was constructed.
- Thirdly, by mining the best subset of features among numerous attributes, specific features that can adequately represent the disease association were extracted. The performance of the proposed method was verified to be improved by going through a performance comparison with other multi-label feature selection and classification algorithms.
2. Related Work
3. Methods
3.1. Data and Problem Description
3.1.1. Dataset and Extraction of Attributes
3.1.2. Problem Description
3.2. Proposed AS-CNN-GRU Model
3.2.1. Multi-Label Attribute Selection Layer
3.2.2. CNN-GRU Layer
4. Results
4.1. CNN-GRU Layer
4.2. Results Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aaronson, P.I.; Ward, J.P.; Connolly, M.J. The Cardiovascular System at a Glance; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Ai, D.; Yang, J.; Wang, Z.; Fan, J.; Ai, C.; Wang, Y. Fast multi-scale feature fusion for ECG heartbeat classification. EURASIP J. Adv. Signal Process. 2015, 2015, 46. [Google Scholar] [CrossRef] [Green Version]
- Hu, J. An approach to EEG-based gender recognition using entropy measurement methods. Knowl. Based Syst. 2018, 140, 134–141. [Google Scholar] [CrossRef]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Jiang, H.; Li, Q.; Rao, N. Multi-label classification of abnormalities in 12-lead ECG using 1D CNN and LSTM. In Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting; Springer: Berlin/Heidelberg, Germany, 2019; pp. 55–63. [Google Scholar]
- Li, Y.; Zhang, Z.; Zhou, F.; Xing, Y.; Li, J.; Liu, C. Multi-label classification of arrhythmia for long-term electrocardiogram signals with feature learning. IEEE Trans. Instrum. Meas. 2021, 70, 2512611. [Google Scholar] [CrossRef]
- Kamath, C. ECG beat classification using features extracted from Teager energy functions in time and frequency domains. IET Signal Process. 2011, 5, 575–581. [Google Scholar] [CrossRef]
- Shen, C.-P.; Kao, W.-C.; Yang, Y.-Y.; Hsu, M.-C.; Wu, Y.-T.; Lai, F. Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines. Expert Syst. Appl. 2012, 39, 7845–7852. [Google Scholar] [CrossRef]
- Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yang, C.-M. Heartbeat classification using normalized RR intervals and morphological features. Math. Probl. Eng. 2014, 2014, 712474. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhu, Y. Early detection of atrial fibrillation based on ECG signals. Bioengineering 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Pławiak, P.; Acharya, U.R. Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 2020, 32, 11137–11161. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Fong, S.; Li, T. Attribute reduction based on multi-objective decomposition-ensemble optimizer with rough set and entropy. In Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; IEEE: Manhattan, NY, USA, 2019; pp. 673–680. [Google Scholar]
- Yang, J.; Huang, S.; Tang, R.; Hu, Q.; Lan, K.; Wang, H.; Zhao, Q.; Fong, S. Broad Learning with Attribute Selection for Rheumatoid Arthritis. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: Manhattan, NY, USA, 2020; pp. 552–558. [Google Scholar]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020, 471, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Mining prognosis index of brain metastases using artificial intelligence. Cancers 2019, 11, 1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D. Early diagnosis of Alzheimer’s disease with deep learning. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April 2014–2 May 2014; IEEE: Manhattan, NY, USA, 2014; pp. 1015–1018. [Google Scholar]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yao, Q.; Cai, Y.; Miao, F.; Sun, F.; Li, Y. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J. Biomed. Health Inform. 2018, 22, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415, 190–198. [Google Scholar] [CrossRef]
- Yildirim, Ö. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 2018, 96, 189–202. [Google Scholar] [CrossRef]
- Li, K.; Pan, W.; Li, Y.; Jiang, Q.; Liu, G. A method to detect sleep apnea based on deep neural network and hidden markov model using single-lead ECG signal. Neurocomputing 2018, 294, 94–101. [Google Scholar] [CrossRef]
- Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015; IEEE: Manhattan, NY, USA, 2015; pp. 1–7. [Google Scholar]
- Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J. Biomed. Health Inform. 2019, 24, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, C.; Liu, Y.; Yang, H.; Fu, D.; Wang, H.; Zhang, P. A global and updatable ECG beat classification system based on recurrent neural networks and active learning. Inf. Sci. 2019, 501, 523–542. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Zhao, Y.; Yan, C. Multi-label ECG signal classification based on ensemble classifier. IEEE Access 2020, 8, 117986–117996. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Qazan, S.; Al-Ebbini, L.; Alquran, H.; Qasmieh, I.A. ECG heartbeat arrhythmias classification: A comparison study between different types of spectrum representation and convolutional neural networks architectures. J. Ambient. Intell. Humaniz. Comput. 2021, 1–31. [Google Scholar] [CrossRef]
- Elgendi, M.; Meo, M.; Abbott, D. A proof-of-concept study: Simple and effective detection of P and T waves in arrhythmic ECG Signals. Bioengineering 2016, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, K.A.; Touryan, J.; Mullen, T.; Kothe, C.; Bigdely-Shamlo, N. How sensitive are EEG results to preprocessing methods: A benchmarking study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Madan, P.; Singh, V.; Singh, D.P.; Diwakar, M.; Pant, B.; Kishor, A. A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification. Bioengineering 2022, 9, 152. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Zhao, L.; Zhang, X.; Wu, X.; Xu, X.; Liu, Y.; Ma, C.; Wei, S.; He, Z. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 2018, 8, 1368–1373. [Google Scholar] [CrossRef]
- Datta, S.; Puri, C.; Mukherjee, A.; Banerjee, R.; Choudhury, A.D.; Singh, R.; Ukil, A.; Bandyopadhyay, S.; Pal, A.; Khandelwal, S. Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier. In Proceedings of the 2017 Computing in Cardiology (Cinc), Rennes, France, 24–27 September 2017; IEEE: Manhattan, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. Arxiv Prepr. 2014. [Google Scholar] [CrossRef]
- Yang, J.; Hu, S.; Wang, Q.; Fong, S. Discriminable Multi-Label Attribute Selection for Pre-Course Student Performance Prediction. Entropy 2021, 23, 1252. [Google Scholar] [CrossRef]
- Li, J.; Li, P.; Hu, X.; Yu, K. Learning Common and Label-Specific Features for Multi-Label Classification with Correlation Information. Pattern Recognit. 2021, 121, 108259. [Google Scholar] [CrossRef]
- Oh, S.L.; Ng, E.Y.; Tan, R.S.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef] [Green Version]
- Benites, F.; Sapozhnikova, E. Haram: A hierarchical aram neural network for large-scale text classification. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; IEEE: Manhattan, NY, USA, 2015; pp. 847–854. [Google Scholar]
- Chen, W.-J.; Shao, Y.-H.; Li, C.-N.; Deng, N.-Y. MLTSVM: A novel twin support vector machine to multi-label learning. Pattern Recognit. 2016, 52, 61–74. [Google Scholar] [CrossRef]
- Shan, J.; Hou, C.; Tao, H.; Zhuge, W.; Yi, D. Co-learning binary classifiers for LP-based multi-label classification. Cogn. Syst. Res. 2019, 55, 146–152. [Google Scholar] [CrossRef]
- Jun, X.; Lu, Y.; Lei, Z.; Guolun, D. Conditional entropy based classifier chains for multi-label classification. Neurocomputing 2019, 335, 185–194. [Google Scholar] [CrossRef]
- Szymański, P.; Kajdanowicz, T.; Kersting, K. How is a data-driven approach better than random choice in label space division for multi-label classification? Entropy 2016, 18, 282. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.; Wang, R.; Fan, X.; Liu, J.; Li, Y. Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Inf. Fusion 2020, 53, 174–182. [Google Scholar] [CrossRef]
Type | Prevalence Rate | Number of Records |
---|---|---|
Normal | N/A | 914 |
AF | 11–15% | 1219 |
PVC | 14–16% | 711 |
PAC | 5–7% | 609 |
LBBB | 5–7% | 254 |
RBBB | 5–7% | 1828 |
Type of Features | No. | Overview | Specific Content |
---|---|---|---|
Time domain features | 27 | A statistical feature is extracted from the RR interval of the ECG signal | the minimum and maximum values of the RR intervals, the median heart rate and the root mean square of the difference between adjacent RR intervals, etc. |
Frequency domain features | 35 | Mainly based on the features of the ECG signal with windows | Calculation of window signal spectrum parameters. Including spectral center, center-of-mass frequency, wavelet transform coefficient, normalized low frequency power and normalized high frequency power, etc. |
Morphological features | 30 | Morphological change features | Calculate the depth of S-wave and Q-wave and R-wave, ST slope, width of QRS, etc. according to the position and amplitude of P-wave, Q-wave, R-wave, S-wave and T-wave. |
Nonlinear features | 26 | Other features | Calculated by nonlinear methods, such as sample entropy, approximate entropy, fuzzy entropy, etc. |
Types | Activation Function | Output Shapes | Kernel Size | No. of Filters | Stride | Trainable Parameters |
---|---|---|---|---|---|---|
Input | – | 1000 × 1 | – | – | – | 0 |
Full convolution | ReLU | 1008 × 3 | 20 × 1 | 3 | 1 | 50 |
Max-pooling | – | 504 × 3 | 2 × 1 | 3 | 2 | 0 |
Full convolution | ReLU | 520 × 6 | 10 × 1 | 6 | 1 | 160 |
Max-pooling | – | 260 × 6 | 2 × 1 | 6 | 2 | 0 |
Full convolution | ReLU | 263 × 6 | 5 × 1 | 6 | 1 | 160 |
Max-pooling | – | 132 × 6 | 2 × 1 | 6 | 2 | 0 |
GRU | 20 | – | – | – | 1280 | |
Fully-connected | ReLU | 20 | – | – | – | 400 |
Fully-connected | ReLU | 10 | – | – | – | 200 |
Fully-connected | Softmax | 5 | – | – | – | 55 |
Methods | Accuracy Score | Hamming Loss | Jaccard Similarity | Precision | Recall | F1 |
---|---|---|---|---|---|---|
BRSVM | 0.411 | 0.116 | 0.447 | 0.519 | 0.353 | 0.364 |
MLKNN | 0.560 | 0.115 | 0.588 | 0.72 | 0.515 | 0.561 |
MLHARAM | 0.487 | 0.149 | 0.625 | 0.567 | 0.637 | 0.552 |
MLTSVM | 0.261 | 0.143 | 0.327 | 0.582 | 0.369 | 0.439 |
Label Powerset | 0.718 | 0.137 | 0.752 | 0.854 | 0.661 | 0.717 |
Classifer Chain | 0.659 | 0.068 | 0.694 | 0.893 | 0.584 | 0.683 |
LSPC | 0.381 | 0.27 | 0.376 | 0.366 | 0.735 | 0.486 |
EEMD + FFT + BP * | 0.745 | 0.072 | 0.757 | 0.784 | 0.736 | 0.712 |
CNN + LSTM | 0.761 | 0.07 | 0.787 | 0.818 | 0.745 | 0.753 |
FusionGC | 0.763 | 0.06 | 0.788 | 0.815 | 0.748 | 0.754 |
AS+FusionGC * | 0.774 | 0.062 | 0.795 | 0.839 | 0.734 | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Li, J.; Lan, K.; Wei, A.; Wang, H.; Huang, S.; Fong, S. Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning. Bioengineering 2022, 9, 268. https://doi.org/10.3390/bioengineering9070268
Yang J, Li J, Lan K, Wei A, Wang H, Huang S, Fong S. Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning. Bioengineering. 2022; 9(7):268. https://doi.org/10.3390/bioengineering9070268
Chicago/Turabian StyleYang, Jie, Jinfeng Li, Kun Lan, Anruo Wei, Han Wang, Shigao Huang, and Simon Fong. 2022. "Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning" Bioengineering 9, no. 7: 268. https://doi.org/10.3390/bioengineering9070268
APA StyleYang, J., Li, J., Lan, K., Wei, A., Wang, H., Huang, S., & Fong, S. (2022). Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning. Bioengineering, 9(7), 268. https://doi.org/10.3390/bioengineering9070268