Microemulsions and Nanoemulsions in Skin Drug Delivery
Abstract
:1. Introduction
2. Pharmaceutical Emulsions
3. Principles of Drug Delivery
4. Micro and Nanoemulsions
4.1. Microemulsions
4.2. Nanoemulsions
Drug | Formulation | Physical Characterization | Experimental Model | Bioactivity/Effect | Ref |
---|---|---|---|---|---|
Ibuprofen | o/w Palm olein ester | MPS: 20.90 nm PDI: n.s. ZP: n.s. | Rat | Anti-inflammatory Analgesic activity Increased drug solubility Increased permeability | [89] |
o/w Menthol | n.s. | ||||
o/w Limonene | n.s. | ||||
o/w Ethyl oleate, Tween® 20, ethanol | MPS: 46 nm PDI: n.s. ZP: n.s. | Rat | Increase permeability Anti-inflammatory activity | [90] | |
Pioglitazone | o/w Castor Oil, Labrasol®, propylene glycol | MPS: 182 nm PDI: 0.352 ZP: 12.37 mV | Human skin Mice | Increase permeability Anti-inflammatory activity | [91] |
Retinyl palmitate | o/w Labrafac® lipophile, Labrasol®, Plurol® oleique | MPS: 14.42 nm PDI: 0.68 ZP: n.s. | Human skin | Increased permeability | [92] |
Capsaicin | o/w Olive oil, Tween® 80, Span® 80, ethanol | MPS: 13.20 nm PDI: 0.68 ZP: 2.80 mV | Rat Rabbit | Anti-inflammatory Analgesic | [93] |
Betulin | o/w Flax-seed oil, egg phosphatydilcholine | MPS: n.s. PDI: n.s. ZP: −23 mV | Mice | Increase solubility and bioavailability Anti-inflammatory activity Anticarcinogenic activity | [94] |
Eugenol | o/w Eugenol, Tween® 80, Labrasol® | MPS: 89.98 nm PDI: 0.006 ZP: −10.05 mV | Rat | Anti-inflammatory activity | [95] |
o/w Eugenol, Tween® 20, isopropyl alcohol | MPS: 24.40 nm PDI: 0.30 ZP: 0.33 mV | Rat | Anti-inflammatory activity | [96] | |
Etoricoxib | o/w Triacetin, Cremophor® RH 40, Transcutol® P | MPS: 50.67 nm PDI: 0.44 ZP: n.s. | Porcine skin | Increased drug delivery Anti-inflammatory activity | [97] |
Mangiferin | o/w Lipoid, polysorbate 80, tocopherol, almond oil, hyaluronic acid | MPS: 195.50 nm PDI: 0.21 ZP: −38.02 mV | Porcine skin Mice | Increased permeability Anti-inflammatory activity | [98] |
Clobetasol propionate | o/w Eucalyptus oil, Tween® 20, ethanol | n.s. | Rat | Anti-inflammatory activity | [99] |
o/w Algal oil, Tween® 20, PEG 200 | MPS: 120 nm PDI: 0.33 ZP: −37.01 mV | Rat | Increased permeability Anti-inflammatory activity | [100] | |
β-Caryophyllene | o/w Copaiba oil, Span® 80, Tween® 20 or CTAB | MPS: 223.67 nm PDI: 0.18 ZP: 34.57 mV | Mice | Anti-inflammatory activity | [101] |
Curcumin | o/w Clove oil, Tween® 80, PEG 400 | MPS: 93.64 nm PDI: 0.26 ZP: −11.67 mV | Rat | Increased permeability Wound healing capacity Anti-inflammatory activity | [102] |
o/w Limonene, lecithin, ethanol, | MPS: 20 nm PDI: 0.1 ZP: −0.1 mV | Human skin | Increased permeability | [103] | |
o/w Eucalyptol, lecithin, ethanol, | MPS: 15 nm PDI: 0.10 ZP: 0 mV | ||||
Tacrolimus Omega 3 | o/w Fish oil, Tween® 80, Transcutol P | MPS: 116.30 nm PDI: 0.18 ZP: −3.99 mV | Mice | Psoriasis treatment | [104] |
o/w Linseed oil, Tween® 80, Transcutol P | MPS: 126.30 nm PDI: 0.19 ZP: −3.13 mV | ||||
Methotrexate Resveratrol | o/w Acrysol K®, Tween® 20, Transcutol P® | MPS: 55.43 nm PDI: n.s. ZP: −26 mV | Rat | Anti-inflammatory activity Antiarthritic activity | [105] |
Clotrimazole | o/w Labrafac® lipophile, Labrasol®, capryol | MPS: 186 nm PDI: 0.41 ZP: −5.61 mV | Human skin | Antifungal activity | [106] |
Fullerene | o/w Palm kernel oil, Span® 80, Tween® 80 | MPS: 175 nm PDI: n.s. ZP: n.s. | Human fibroblast cell line (3T3) | Prevent collagen degradation and dehydration Antiaging activity | [107] |
α-Lipoic acid | w/o and o/w Shea butter, squalane, stearol, Plurol® oleique CC497, Maisine® 35-1 | MPS: 5.08 µm PDI: n.s. ZP: n.s. | Rat | Antiaging activity | [108] |
Quercetin | o/w Peppermint oil, Cremophor EL®, 1,2-propanediol | MPS: 12.66 nm PDI: 0.27 ZP: −4.35 mV | Rat | Improved solubility and skin permeation Antiaging activity | [109] |
o/w Clove oil, Cremophor EL®, 1,2-propanediol | MPS: 9.74 nm PDI: 0.08 ZP: −0.99 mV | ||||
o/w Rosemary oil, Cremophor EL®, 1,2-propanediol | MPS: 11.61 nm PDI: 0.39 ZP: −4.05 mV | ||||
o/w Arachis oil, oleic acid, Tween® 20, PEG-400 | MPS: 136.8 nm PDI: 0.27 ZP: −25.4 mV | Rat | Increased permeability Antiarthritic activity | [110] | |
Coenzyme Q10 | o/w Isopropyl myristate, Cremophor®, Transcutol® | MPS: 16.89 nm PDI: 0.04 ZP: −13.1 mV | HaCaT, human keratinocytes cell line NIH3T3, human fibroblasts cell line | Wound-healing activity Improved solubility and skin permeation | [111] |
o/w Isopropyl myristate, Tween® 80, Transcutol® HP | MPS: 94. 60 nm PDI: n.s. ZP: −18 mV | Rat | Increased solubility and permeability Antiwrinkle activity | [112] | |
5-Fluorouracil | o/w Lauroglycol-90, Transcutol® HP, isopropyl alcohol | MPS: 68.20 nm PDI: 0.22 ZP: −25.92 mV | SK-MEL-5 cell line | Chemopreventive activity | [113] |
Pentoxifylline | w/o Caprylic/capric triglycerides, Tween® 80, Brij 52 | MPS: 67.36 nm PDI: n.s. ZP: n.s. | Rat | Anti-inflammatory activity | [114] |
Naringenin | o/w Wheat germ oil, oleic acid, Cremophor® EL, Tween® 20 | MPS: 249.05 nm PDI: 0.41 ZP: n.s. | A431 cell lineRat | Antioxidant activity Decreased photoaging Anticancer activity | [115] |
Ferulic acid | o/w Isostearyl isostearate, labrasol, plurol isostearique | MPS: 102.3 nm PDI: 0.16 ZP: −35.20 mV | Rat | Increased permeability Protection against UV radiation | [116] |
Octylmethoxycinnamate, octocrylene, diethylamino hydroxybenzoyl hexyl benzoate, benzophenone-3, pomegranate extract | o/w Chitosan, Tween® 80, Span® 80 | MPS: 109 nm PDI: n.s. ZP: n.s. | Rat | Increased skin retention Photoprotection | [117] |
Resveratrol | o/w Sefsol 218®, PEG 400, Tween® 80 | MPS: 50.04 nm PDI: 0.17 ZP: n.s. | Rat | Protection against UV radiation Antioxidant activity | [118] |
5. SolEmul® Technique
6. Supersaturated Self-Nanoemulsified Drug Delivery Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.S.; Ansari, M.; Samaan, M.; Acosta, E.J. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int. J. Pharm. 2008, 349, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Bolzinger, M.-A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012, 17, 156–165. [Google Scholar] [CrossRef]
- Saino, V.; Monti, D.; Burgalassi, S.; Tampucci, S.; Palma, S.; Allemandi, D.; Chetoni, P. Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur. J. Pharm. Biopharm. 2010, 76, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Appl. Sci. 2020, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.G. Importância do metabolismo no planejamento de fármacos. Quím. Nova 2007, 30, 171–177. [Google Scholar] [CrossRef]
- Neal, M.J. Compêndio de Farmacologia Médica; Instituto Piaget: Lisboa, Portugal, 2007; Volume 1, pp. 11–14. [Google Scholar]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm. Dev. Technol. 2018, 23, 96–105. [Google Scholar] [CrossRef]
- Santos, I.S.; Ponte, B.M.; Boonme, P.; Silva, A.M.; Souto, E.B. Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnol. Adv. 2013, 31, 514–523. [Google Scholar] [CrossRef]
- Labhasetwar, V. Nanotechnology for drug and gene therapy: The importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol. 2005, 16, 674–680. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; Freitas, L.L.; Pohlmann, A.R. Caracterização e estabilidade fisico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Química Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Mangematin, V.; Walsh, S. The future of nanotechnologies. Technovation 2012, 32, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, S.; Rauf, A.; Raza, A.; Akhtar, S.; Tabish, T.A.; Sandhu, M.A.; Zaman, M.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; et al. A Multifunctional Polymeric Micelle for Targeted Delivery of Paclitaxel by the Inhibition of the P-Glycoprotein Transporters. Nanomaterials 2021, 11, 2858. [Google Scholar] [CrossRef] [PubMed]
- López, E.S.; Machado, A.L.L.; Vidal, L.B.; González-Pizarro, R.; Silva, A.D.; Souto, E.B. Lipid Nanoparticles as Carriers for the Treatment of Neurodegeneration Associated with Alzheimer’s Disease and Glaucoma: Present and Future Challenges. Curr. Pharm. Des. 2020, 26, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; et al. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019, 24, 4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Doktorovova, S.; Campos, J.R.; Martins-Lopes, P.; Silva, A.M. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur. J. Pharm. Sci. 2019, 128, 27–35. [Google Scholar] [CrossRef]
- Karthik, P.; Ezhilarasi, P.N.; Anandharamakrishnan, C. Challenges associated in stability of food grade nanoemulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 1435–1450. [Google Scholar] [CrossRef]
- Manson, T.G.; Wilking, J.N.; Meleson, C.B.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, R635–R666. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; McClements, D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef]
- Boonme, P.; Kaewbanjong, J.; Amnuaikit, T.; Andreani, T.; Silva, A.M.; Souto, E.B. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals. Curr. Pharm. Des. 2016, 22, 4257–4263. [Google Scholar] [CrossRef]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef]
- Burguera, J.L.; Burguera, M. Analytical applications of emulsions and microemulsions. Talanta 2012, 96, 11–20. [Google Scholar] [CrossRef]
- Pharma Info—Pharmaceutical Industry News. Available online: http://www.pharmainfo.net/ (accessed on 30 May 2012).
- Delmas, T.; Piraux, H.; Couffin, A.C.; Texier, I.; Vinet, F.; Poulin, P.; Cates, M.E.; Bibette, J. How to prepare and stabilize very small nanoemulsions. Langmuir ACS J. Surf. Colloids 2011, 27, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Simões, S.; Ribeiro, H.M.; Almeida, A.J.; Souto, E.B.; Lopes, C.M. Micro e Nanoemulsões. In Novas Formas Farmacêuticas Para Administração de Fármacos; Pessoa, E.U.F., Ed.; Edições Universidade Fernando Pessoa: Porto, Portugal, 2012; pp. 271–295. [Google Scholar]
- Oliveira, A.G.; Scarpa, M.V.; Correa, M.A.; Cera, L.F.R.; Formariz, T.P. Microemulsões: Estrutura e aplicações como sistema de libertação de fármacos. Química Nova 2004, 27, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Chang, R. Physical properties of solutions: Colloids. In Chemistry, 7th ed.; Hill, M., Ed.; McGraw-Hill: New York, NY, USA, 2002; pp. 493–503. [Google Scholar]
- Ivanov, I.B.; Kralchevsky, P.A. Stability of emulsions under equilibrium and dynamic conditions. Colloids Surf. A 1997, 128, 155–175. [Google Scholar] [CrossRef]
- Lombardi Borgia, S.; Regehly, M.; Sivaramakrishnan, R.; Mehnert, W.; Korting, H.C.; Danker, K.; Röder, B.; Kramer, K.D.; Schäfer-Korting, M. Lipid nanoparticles for skin penetration enhancement—correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release 2005, 110, 151–163. [Google Scholar] [CrossRef]
- Ruckenstein, E. Thermodynamic insights on macroemulsion stability. Adv. Colloid Interface Sci. 1999, 79, 59–76. [Google Scholar] [CrossRef]
- Kakumanu, S.; Tagne, J.B.; Wilson, T.A.; Nicolosi, R.J. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 277–283. [Google Scholar] [CrossRef]
- Abdulrazik, M.; Tamilvanan, S.; Khoury, K.; Benita, S. Ocular delivery of cyclosporin A. II. Effect of submicron emulsion’s surface charge on ocular distribution of topical cyclosporin A. STP Pharm. Sci. 2001, 11, 427–432. [Google Scholar]
- Rao, J.; McClements, D.J. Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & nanoemulsion formation. Food Hydrocoll. 2012, 26, 268–276. [Google Scholar] [CrossRef]
- Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J. 2011, 19, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers–A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Freitas, R.A., Jr. What is nanomedicine? Nanomed Nanotechnol. Biol. Med. 2005, 1, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Boisseau, P.; Loubaton, B. Nanomedicine, nanotechnology in medicine. Comptes Rendus. Phys. 2011, 12, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomed Nanotechnol. Biol. Med. 2007, 3, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.S.; Anderson, B.D. What determines drug solubility in lipid vehicles: Is it predictable? Adv. Drug Deliv. Rev. 2008, 60, 638–656. [Google Scholar] [CrossRef] [PubMed]
- Sanna, V.; Pintus, G.; Roggio, A.M.; Punzoni, S.; Posadino, A.M.; Arca, A.; Marceddu, S.; Bandiera, P.; Uzzau, S.; Sechi, M. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J. Med. Chem. 2011, 54, 1321–1332. [Google Scholar] [CrossRef]
- Sanna, V.; Sechi, M. Nanoparticle therapeutics for prostate cancer treatment. Maturitas 2012, 73, 27–32. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Nanochemoprevention: Sustained release of bioactive food components for cancer prevention. Nutr. Cancer 2010, 62, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, I.A.; Adhami, V.M.; Bharali, D.J.; Hafeez, B.B.; Asim, M.; Khwaja, S.I.; Ahmad, N.; Cui, H.; Mousa, S.A.; Mukhtar, H. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 2009, 69, 1712–1716. [Google Scholar] [CrossRef] [Green Version]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Derakhshandeh, K.; Erfan, M.; Dedashzadeh, S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. Eur. J. Pharm. Biopharm. 2007, 66, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007, 28, 4600–4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer-Korting, M.; Mehnert, W.; Korting, H.-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 2007, 59, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Gradzielski, M. Recent developments in the characterisation of microemulsions. Curr. Opin. Colloid Interface Sci. 2008, 13, 263–269. [Google Scholar] [CrossRef]
- Júnior, A.S.; Fialho, S.L.; Carneiro, L.B.; Oréfice, F. Microemulsões como veículo de drogas para administração ocular tópica. Arq. Bras. Oftalmol. 2003, 66, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Hoar, T.P.; Schulman, J.H. Transparent water in oil dispersions: Oleopathic hydromicelle. Nature 1943, 152, 102–103. [Google Scholar] [CrossRef]
- Formariz, T.P.; Urban, M.C.C.; Júnior, A.A.S.; Gremião, M.P.D.; Oliveira, A.G. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Braz. J. Pharm. Sci. 2005, 41, 301–313. [Google Scholar] [CrossRef]
- López-Quintela, M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003, 8, 137–144. [Google Scholar] [CrossRef]
- Sintov, A.C.; Shapiro, L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J. Control. Release 2004, 95, 173–183. [Google Scholar] [CrossRef]
- Kogan, A.; Garti, N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006, 123–126, 369–385. [Google Scholar] [CrossRef]
- López-Quintela, M.A.; Tojo, C.; Blanco, M.C.; García Rio, L.; Leis, J.R. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 264–278. [Google Scholar] [CrossRef]
- Rosano, H.L.; Cavallo, J.L.; Chang, D.L.; Whittam, J.H. Microemulsions: A commentary on their preparation. J. Soc. Cosmet. Chem. 1988, 39, 201–209. [Google Scholar]
- Zhu, W.; Yu, A.; Wang, W.; Dong, R.; Wu, J.; Zhai, G. Formulation design of microemulsion for dermal delivery of penciclovir. Int. J. Pharm. 2008, 360, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cui, Y.; Zhu, S.; Feng, F.; Zheng, X. Characterization and antimicrobial activity of a pharmaceutical microemulsion. Int. J. Pharm. 2010, 395, 154–160. [Google Scholar] [CrossRef]
- Kentish, S.; Wooster, T.J.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 2008, 9, 170–175. [Google Scholar] [CrossRef]
- Singh, R.; Husseini, G.A.; Pitt, W.G. Phase transitions of nanoemulsions using ultrasound: Experimental observations. Ultrason. Sonochem. 2012, 19, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Anton, N.; Benoit, J.-P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release 2008, 128, 185–199. [Google Scholar] [CrossRef]
- Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. S1), S77–S98. [Google Scholar] [CrossRef]
- Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsions: A pharmaceutical review. Syst. Rev. Pharm. 2010, 1, 24–32. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Zhang, G.; Dong, J.; Eastoe, J. Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci. 2007, 314, 230–235. [Google Scholar] [CrossRef]
- Troncoso, E.; Aguilera, J.M.; McClements, D.J. Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocoll. 2012, 27, 355–363. [Google Scholar] [CrossRef]
- Fronza, T.; Campos, A.; Teixeira, H. Nanoemulsões como sistemas de liberação para fármacos oftálmicos. Acta Farm. Bonaer. 2004, 23, 558–566. [Google Scholar]
- Amnuaikit, T.; Pichayakorn, W.; Boonme, P. Nanoemulsions vs. Emulsions in the Delivery of Coenzyme Q10 and Tocopheryl Acetate. Cosmet. Toilet. 2011, 126, 278–283. [Google Scholar]
- Pal, R. Rheology of simple and multiple emulsions. Curr. Opin. Colloid Interface Sci. 2011, 16, 41–60. [Google Scholar] [CrossRef]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- McClements, D.J.; Li, Y. Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 2010, 159, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nanoemulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Wu, H.; Ramachandran, C.; Weiner, N.D.; Roessler, B.J. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm. 2001, 220, 63–75. [Google Scholar] [CrossRef]
- Muller, R.H.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs–A review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 2004, 113, 151–170. [Google Scholar] [CrossRef]
- Tang, S.Y.; Sivakumar, M.; Ng, A.M.-H.; Shridharan, P. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. Int. J. Pharm. 2012, 430, 299–306. [Google Scholar] [CrossRef]
- Schalbart, P.; Kawaji, M.; Fumoto, K. Formation of tetradecane nanoemulsion by low-energy emulsification methods. Int. J. Refrig. 2010, 33, 1612–1624. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, Y.; Liu, G.; Li, Y.; Zhang, J.; Gong, Q.; Yan, Z.; Duan, M. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res. Lett. 2009, 5, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anissimov, Y.G.; Jepps, O.G.; Dancik, Y.; Roberts, M.S. Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Adv. Drug Deliv. Rev. 2012, 65, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Peters, K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int. J. Pharm. 1998, 160, 229–237. [Google Scholar] [CrossRef]
- Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm. 2007, 342, 231–239. [Google Scholar] [CrossRef]
- Sonoda, T.; Takata, Y.; Uemo, S.; Sato, K. Effects of emulsifiers on crystallization behaviour of lipid crystals in nanometer-size oil-in-water emulsion droplets. Cryst. Growth Des. 2006, 6, 306–312. [Google Scholar] [CrossRef]
- Baspinar, Y.; Borchert, H.-H. Penetration and release studies of positively and negatively charged nanoemulsions—Is there a benefit of the positive charge? Int. J. Pharm. 2012, 430, 247–252. [Google Scholar] [CrossRef]
- Shakeel, F.; Ramadan, W.; Ahmed, M.A. Investigation of true nanoemulsions for transdermal potential of indomethacin: Characterization, rheological characteristics, and ex vivo skin permeation studies. J. Drug Target. 2009, 17, 435–441. [Google Scholar] [CrossRef]
- Joe, M.M.; Bradeeba, K.; Parthasarathi, R.; Sivakumaar, P.K.; Chauhan, P.S.; Tipayno, S.; Benson, A.; Sa, T. Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J. Taiwan Inst. Chem. Eng. 2012, 43, 172–180. [Google Scholar] [CrossRef]
- Prakash, U.R.T.; Thiagarajan, P. Nanoemulsions for drug delivery through different routes. Res. Biotechnol. 2011, 2, 1–13. [Google Scholar]
- Anton, N.; Gayet, P.; Benoit, J.-P.; Saulnier, P. Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm. 2007, 344, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Alvarez, J.; Boyd, D.; Marchal, P.; Tribet, C.; Perrin, P.; Marie-Bégué, E.; Durand, A.; Sadtler, V. Miniemulsion polymerization templates: A systematic comparison between low energy emulsification (Near-PIT) and ultrasound emulsification methods. Colloids Surf. A 2011, 374, 134–141. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll. 2011, 25, 1413–1423. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Coutinho, T.E.; Fangueiro, J.F.; Sanchez-Lopez, E.; Pashirova, T.N.; Andreani, T.; Souto, E.B. Soft Cationic Nanoparticles for Drug Delivery: Production and Cytotoxicity of Solid Lipid Nanoparticles (SLNs). Appl. Sci. 2019, 9, 4438. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, G.Z.; Abdulkarim, M.F.; Salman, I.M.; Ameer, O.Z.; Yam, M.F.; Mutee, A.F.; Chitneni, M.; Mahdi, E.S.; Basri, M.; Sattar, M.A.; et al. In vitro permeation and in vivo anti-inflammatory and analgesic properties of nanoscaled emulsions containing ibuprofen for topical delivery. Int. J. Nanomed. 2011, 6, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, F.; Baharifar, H.; Amani, A. Improved Anti-inflammatory Activity and Minimum Systemic Absorption from Topical Gels of Ibuprofen Formulated by Micelle or Nanoemulsion. J. Pharm. Innov. 2022, 1–8. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Silva-Abreu, M.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Fábrega, M.-J.; Garduño-Ramírez, M.L.; Clares, B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomed. Nanotechnol. Biol. Med. 2019, 19, 115–125. [Google Scholar] [CrossRef]
- Clares, B.; Calpena, A.C.; Parra, A.; Abrego, G.; Alvarado, H.; Fangueiro, J.F.; Souto, E.B. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 2014, 473, 591–598. [Google Scholar] [CrossRef]
- Ghiasi, Z.; Esmaeli, F.; Aghajani, M.; Ghazi-Khansari, M.; Faramarzi, M.A.; Amani, A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int. J. Pharm. 2019, 559, 341–347. [Google Scholar] [CrossRef]
- Dehelean, C.A.; Feflea, S.; Gheorgheosu, D.; Ganta, S.; Cimpean, A.M.; Muntean, D.; Amiji, M.M. Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in Balb/c mice. J. Biomed. Nanotechnol. 2013, 9, 577–589. [Google Scholar] [CrossRef]
- Ahmad, N.; Alam, M.A.; Ahmad, F.J.; Sarafroz, M.; Ansari, K.; Sharma, S.; Amir, M. Ultrasonication techniques used for the preparation of novel Eugenol-Nanoemulsion in the treatment of wounds healings and anti-inflammatory. J. Drug Deliv. Sci. Technol. 2018, 46, 461–473. [Google Scholar] [CrossRef]
- Esmaeili, F.; Rajabnejhad, S.; Partoazar, A.R.; Mehr, S.E.; Faridi-Majidi, R.; Sahebgharani, M.; Syedmoradi, L.; Rajabnejhad, M.R.; Amani, A. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm. Dev. Technol. 2016, 21, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Lala, R.R.; Awari, N.G. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl. Nanosci. 2014, 4, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Pleguezuelos-Villa, M.; Nácher, A.; Hernández, M.J.; Ofelia Vila Buso, M.A.; Ruiz Sauri, A.; Díez-Sales, O. Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration. Int. J. Pharm. 2019, 564, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Ali, M.S.; Alam, N.; Siddiqui, M.R.; Shamim, M.; Safhi, M.M. In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Inven. Today 2013, 5, 8–12. [Google Scholar] [CrossRef]
- Sarfaraz Alam, M.; Ali, M.S.; Zakir, F.; Alam, N.; Intakhab Alam, M.; Ahmad, F.; Siddiqui, M.R.; Ali, M.D.; Ansari, M.S.; Ahmad, S.; et al. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel. Iran. J. Pharm. Res. 2016, 15, 35–52. [Google Scholar]
- Lucca, L.G.; de Matos, S.P.; Kreutz, T.; Teixeira, H.F.; Veiga, V.F.; de Araújo, B.V.; Limberger, R.P.; Koester, L.S. Anti-inflammatory Effect from a Hydrogel Containing Nanoemulsified Copaiba oil (Copaifera multijuga Hayne). AAPS PharmSciTech 2018, 19, 522–530. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S.E.; Fita, I.Z.; Khalid, M.S.; Pottoo, F.H. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 2019, 9, 20192–20206. [Google Scholar] [CrossRef] [Green Version]
- Yousef, S.A.; Mohammed, Y.H.; Namjoshi, S.; Grice, J.E.; Benson, H.A.E.; Sakran, W.; Roberts, M.S. Mechanistic Evaluation of Enhanced Curcumin Delivery through Human Skin In Vitro from Optimised Nanoemulsion Formulations Fabricated with Different Penetration Enhancers. Pharmaceutics 2019, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Ali, J.; Baboota, S. Enhanced anti-psoriatic activity of tacrolimus loaded nanoemulsion gel via omega 3-Fatty acid (EPA and DHA) rich oils-fish oil and linseed oil. J. Drug Deliv. Sci. Technol. 2021, 63, 102458. [Google Scholar] [CrossRef]
- Poonia, N.; Lather, V.; Kaur, B.; Kirthanashri, S.V.; Pandita, D. Optimization and Development of Methotrexate-and Resveratrol-Loaded Nanoemulsion Formulation Using Box–Behnken Design for Rheumatoid Arthritis. ASSAY Drug Dev. Technol. 2020, 18, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Ruiz, J.L.; Calpena-Capmany, A.C.; Cañadas-Enrich, C.; Febrer, N.B.-d.; Suñer-Carbó, J.; Souto, E.B.; Clares-Naveros, B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int. J. Pharm. 2019, 554, 105–115. [Google Scholar] [CrossRef]
- Ngan, C.L.; Basri, M.; Tripathy, M.; Abedi Karjiban, R.; Abdul-Malek, E. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur. J. Pharm. Sci. 2015, 70, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, C.; Wan, X.; Fang, L. Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti–aging component α–lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation. Eur. J. Pharm. Sci. 2020, 141, 105042. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Liu, T.; Ma, H.; Tian, Y.; Li, L.; Li, Z.; Gao, M.; Zhang, J.; Tang, Z. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin. AAPS PharmSciTech 2017, 18, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622. [Google Scholar] [CrossRef]
- Ryu, K.-A.; Park, P.J.; Kim, S.-B.; Bin, B.-H.; Jang, D.-J.; Kim, S.T. Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration. Pharmaceutics 2020, 12, 332. [Google Scholar] [CrossRef] [Green Version]
- El-Leithy, E.S.; Makky, A.M.; Khattab, A.M.; Hussein, D.G. Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Dev. Ind. Pharm. 2018, 44, 316–328. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Al-Dhfyan, A.; Alanazi, F.K.; Alsarra, I.A. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: A preliminary study. Drug Deliv. 2015, 22, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.L.M.; Reis, M.Y.F.A.; Silva, G.C.L.; Ramalho, Í.M.M.; Guimarães, G.P.; Silva, J.A.; Saraiva, K.L.A.; Damasceno, B.P.G.L. Microemulsion for topical application of pentoxifylline: In vitro release and in vivo evaluation. Int. J. Pharm. 2016, 506, 351–360. [Google Scholar] [CrossRef]
- Parashar, P.; Pal, S.; Dwivedi, M.; Saraf, S.A. Augmented Therapeutic Efficacy of Naringenin Through Microemulsion-Loaded Sericin Gel Against UVB-Induced Photoaging. AAPS PharmSciTech 2020, 21, 215. [Google Scholar] [CrossRef] [PubMed]
- Harwansh, R.K.; Mukherjee, P.K.; Bahadur, S.; Biswas, R. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci. 2015, 141, 202–211. [Google Scholar] [CrossRef]
- Cerqueira-Coutinho, C.; Santos-Oliveira, R.; dos Santos, E.; Mansur, C.R. Development of a photoprotective and antioxidant nanoemulsion containing chitosan as an agent for improving skin retention. Eng. Life Sci. 2015, 15, 593–604. [Google Scholar] [CrossRef]
- Sharma, B.; Iqbal, B.; Kumar, S.; Ali, J.; Baboota, S. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: From in vitro to in vivo investigation of antioxidant activity enhancement. Arch. Dermatol. Res. 2019, 311, 773–793. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Schmidt, S.; Buttle, I.; Akkar, A.; Schmitt, J.; Brömer, S. SolEmuls®—novel technology for the formulation of i.v. emulsions with poorly soluble drugs. Int. J. Pharm. 2004, 269, 293–302. [Google Scholar] [CrossRef]
- Junghanns, J.U.; Buttle, I.; Muller, R.H.; Araujo, I.B.; Silva, A.K.; Egito, E.S.; Damasceno, B.P. SolEmuls technology: A way to overcome the drawback of parenteral administration of insoluble drugs. Pharm. Dev. Technol. 2007, 12, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thünemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int. J. Pharm. 2006, 317, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Akkar, A.; Namsolleck, P.; Blaut, M.; Muller, R.H. Solubilizing poorly soluble antimycotic agents by emulsification via a solvent-free process. AAPS PharmSciTech 2004, 5, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Merisko-Liversidge, E. Nanocrystal: Resolving pharmaceutical formulation issues associated with poorly water soluble compounds. Particles 2002, 45, 49. [Google Scholar]
- Akkar, A.; Muller, R.H. Formulation of intravenous carbamazepine emulsions by SolEmuls technology. Eur. J. Pharm. Biopharm. 2003, 55, 305–312. [Google Scholar] [CrossRef]
- Doktorovova, S.; Morsy, T.; Balcão, V.; Souto, E.B. The role of lipids in drug absorption through the GIT. Rev. Da Fac. De Ciências Da Saúde 2008, 5, 192–199. [Google Scholar]
- Ponte, B.M.; Santos, I.S.; Souto, E.B. Applications of SolEmulsions® Technology in drug delivery. Nova Sci. Publ. 2012. Submitted. [Google Scholar]
- Akkar, A.; Muller, R.H. Intravenous itraconazole emulsions produced by SolEmuls technology. Eur. J. Pharm. Biopharm. 2003, 56, 29–36. [Google Scholar] [CrossRef]
- Durán, N.; Durán, M.; Tasik, L.; Marcato, P.D. Tecnologia de nanocristais em fármacos. Quim Nova 2010, 33, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Basalious, E.B.; Shawky, N.; Badr-Eldin, S.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int. J. Pharm. 2010, 391, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Holm, R.; Müllertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J. Control. Release 2012, 160, 25–32. [Google Scholar] [CrossRef]
- Shanmugam, S.; Baskaran, R.; Balakrishnan, P.; Thapa, P.; Yong, C.S.; Yoo, B.K. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur. J. Pharm. Biopharm. 2011, 79, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 2009, 330, 443–448. [Google Scholar] [CrossRef]
- Rao, S.V.R.; Agarwal, P.; Shao, J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: II. In vitro transport study. Int. J. Pharm. 2008, 362, 10–15. [Google Scholar] [CrossRef]
- Shah, R.B.; Zidan, A.S.; Funck, T.; Tawakkul, M.A.; Nguyenpho, A.; Khan, M.A. Quality by design: Characterization of self-nano-emulsified drug delivery systems (SNEDDs) using ultrasonic resonator technology. Int. J. Pharm. 2007, 341, 189–194. [Google Scholar] [CrossRef]
- Karami, Z.; Saghatchi Zanjani, M.R.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today 2019, 24, 1104–1115. [Google Scholar] [CrossRef] [PubMed]
- Sonneville-Aubrun, O.; Yukuyama, M.N.; Pizzino, A. Chapter 14-Application of Nanoemulsions in Cosmetics. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 435–475. [Google Scholar] [CrossRef]
Drugs | Skin Cream | Application | |
---|---|---|---|
Nanoemulsion | Lipophilic fraction of cocoa beans | NanoCacao Mibelle Biochemistry | Antiaging |
Coenzyme Q10 Tocopherol Vitamin C derivative | Nano-Lipobelle™ DN CoQ10 oA Mibelle Biochemistry | Collagen production Protects against photoaging Antiaging | |
Omegas 3, 6, 7 and 9 | NanoVit oA Mibelle Biochemistry | Antiaging Regenerate Photo protection | |
Coenzyme Q10 Vitamin C and E | NanoMax Mibelle Biochemistry | Antiaging Antioxidant | |
Emulsion | Vitamin B3 | SkinCeuticals Metacell Renewal B3 Serum | Protects against photoaging Antiwrinkle Antiaging |
Bamboo extract Green tea extract | Thera Emulsion DR ORACLE | Antiacne Moisturizer | |
Hyaluronic Acid Urea | Hyluronic Urea Emulsion Dalton | Moisturizer Antiaging Antiwrinkle | |
Jojoba Oil | Jordan Dead Sea Salt Moisturizing Emulsion | Moisturizer Against skin rash | |
Crambe Maritima | S.E.A. EMULSION Marine Stem Cell System Dalton | Moisturizer Antiaging Antiwrinkle Antioxidant | |
Trolamine | Biafine | Wound healing Burnt skin and solar erythema treatment | |
Diclofenac | Voltaren Emugel | Anti-inflammatory Analgesic | |
APG Gluco-glycerol Hyaluronic acid | Eucerin DermatoCLEAN Cleansing Milk | Moisturizer | |
Zinc oxide Vitamin E | Isdin Phoyo Eryfotona Actinica | Solar protection Antioxidant | |
Coenzyme Q10 | Lightweight Q10 Anti-Aging Moisturizer to Boost Cell Activity—DALTON | Moisturizer Antiwrinkle Antioxidant | |
Not specified | Hydrance LIGHT Hydrating Emulsion Avène | Moisturizer | |
Not specified | PhysioLift DAY Smoothing Emulsion Avène | Antiaging Antiwrinkle Antioxidant | |
Not specified | Cicalfate Post-Procedure Emulsion Avène | Moisturizer Wound Care | |
Not specified | Tolérance Extrême Emulsion Avène | Moisturizer | |
Not specified | Normaderm Phytosolution VICHY | Skin cleanser | |
Not specified | Capital Soleil Dry Touch SPF 50 VICHY | Photoaging |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. https://doi.org/10.3390/bioengineering9040158
Souto EB, Cano A, Martins-Gomes C, Coutinho TE, Zielińska A, Silva AM. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering. 2022; 9(4):158. https://doi.org/10.3390/bioengineering9040158
Chicago/Turabian StyleSouto, Eliana B., Amanda Cano, Carlos Martins-Gomes, Tiago E. Coutinho, Aleksandra Zielińska, and Amélia M. Silva. 2022. "Microemulsions and Nanoemulsions in Skin Drug Delivery" Bioengineering 9, no. 4: 158. https://doi.org/10.3390/bioengineering9040158
APA StyleSouto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering, 9(4), 158. https://doi.org/10.3390/bioengineering9040158