A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY
Abstract
:1. Introduction
- Anxiety is detected and monitored using a wearable smart belt and SAS. Bio-signals obtained from the chest-based sensors were implemented to generate high-level feature descriptions and generalization capabilities;
- The obtained signal undergoes various processing and analysis tasks using a machine learning approach, such as random forest, decision tree, and AdaBoost algorithms;
- Yoga is used as a tool to reduce anxiety by following a special protocol designed;
- Pre and post-yoga performance are taken for analysis through wearable smart belt data, and the Self-rating Anxiety Scale (SAS);
- All the results obtained illustrate that the MSY is able to reduce stress.
2. Experimental Data Collection
2.1. Smart Belt
2.2. Participants
2.3. Study Design and Procedure
2.4. Psychometric Scales
3. Methods
3.1. Assessment Schedule
3.2. Electrocardiogram
3.3. Minimum Redundancy Maximum Relevance (mRMR)
3.4. Analysis of Variance (ANOVA)
3.5. Intelligent Approach
3.5.1. Decision Tree (DT)
3.5.2. Random Forest (RF)
3.5.3. Adaboost Classifier
- On a variety of weighed training instances, the classifier should be trained interactively;
- It strives to minimize training errors in order to offer a perfect fit for these examples in each iteration.
3.6. Evaluation Measures
- True Positive (TP): Diseased people correctly tested as diseased. Examples of training where the true class is positive and we hypothesized as positive. They are what is known as true positives, as shown in Table 2, represented by a.
- False Positive (FP): Healthy people incorrectly tested as diseased. This indicates that the examples are actually negative and that the learning algorithm is incorrectly classifying them as, as shown in Table 2, represented by b.
- False Negative (FN): Diseased people incorrectly tested as healthy. This indicates that the examples are in fact positive, but the learning algorithm incorrectly classifies them as negative, as shown in Table 2, represented by c.
- True Negative (TN): Healthy people correctly tested as healthy. Examples of training where the true class is negative and we hypothesized as Negative. They are referred to as true negatives, as shown in Table 2, represented by d.
- Specificity (): Specificity refers to the test’s ability to correctly reject healthy patients without a condition. Mathematically, this can be expressed as:
- Sensitivity (): Sensitivity refers to the test’s ability to correctly detect diseased patients who do have the condition. Mathematically, this can be expressed as:
- Accuracy (): Accuracy measures the complete rate of appropriate prediction.
- Precision: The parameter that states the proportion of the subjects model marked as benign are truly benign.
4. Results and Discussion
4.1. Detection and Improvement of Anxiety
4.2. Classification of Anxiety
4.2.1. Analysis and Feature Extraction
4.2.2. Classifications (Internal and External) Results
4.3. Comparison between Previous and Proposed Study
4.4. Applications and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozturk, F.O.; Kerman, K.T. The effect of laughter therapy on depression, anxiety, stress, and loneliness among nursing students during the Covid-19 pandemic. Arch. Psychiatr. Nurs. 2022, 41, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Dalpati, N.; Jena, S.; Jain, S.; Sarangi, P.P. Yoga and meditation, an essential tool to alleviate stress and enhance immunity to emerging infections: A perspective on the effect of COVID-19 pandemic on students. Brain Behav. Immun.-Health 2022, 20, 100420. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, R.P.; Mortier, P.; Bruffaerts, R.; Alonso, J.; Benjet, C.; Cuijpers, P.; Demyttenaere, K.; Ebert, D.D.; Green, J.G.; Hasking, P.; et al. WHO World Mental Health Surveys International College Student Project: Prevalence and distribution of mental disorders. J. Abnorm. Psychol. 2018, 127, 623. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, G.; Kavakci, M.; Gozugok, M.; Yalcinkaya, S.; Kucukay, A.; Sahutogullari, B. A survey of attitudes, anxiety status, and protective behaviors of the university students during the COVID-19 outbreak in Turkey. Front. Psychiatry 2020, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ping, S.; Gao, W. Changes in undergraduate students’ psychological well-being as they experience university life. Int. J. Environ. Res. Public Health 2019, 16, 2864. [Google Scholar] [CrossRef] [Green Version]
- Dol, K.S. Effects of a yoga nidra on the life stress and self-esteem in university students. Complement. Ther. Clin. Pract. 2019, 35, 232–236. [Google Scholar] [CrossRef]
- Parajuli, N.; Pradhan, B.; Bapat, S. Effect of yoga on cognitive functions and anxiety among female school children with low academic performance: A randomized control trial. Complement. Ther. Clin. Pract. 2022, 48, 101614. [Google Scholar] [CrossRef]
- Pal, R.; Bin Heyat, M.B.; You, Z.; Pardhan, B.; Akhtar, F.; Jafar Abbas, S.; Guragai, B.; Acharya, K. Effect of Maha Mrityunjaya HYMN Recitation on Human Brain for the Analysis of Single EEG Channel C4-A1 Using Machine Learning Classifiers on Yoga Practitioner. In Proceedings of the 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15–20 December 2020; pp. 89–92. [Google Scholar] [CrossRef]
- Brinsley, J.; Schuch, F.; Lederman, O.; Girard, D.; Smout, M.; Immink, M.A.; Stubbs, B.; Firth, J.; Davison, K.; Rosenbaum, S. Effects of yoga on depressive symptoms in people with mental disorders: A systematic review and meta-analysis. Br. J. Sport. Med. 2021, 55, 992–1000. [Google Scholar] [CrossRef]
- Tillu, G.; Chaturvedi, S.; Chopra, A.; Patwardhan, B. Public health approach of ayurveda and yoga for COVID-19 prophylaxis. J. Altern. Complement. Med. 2020, 26, 360–364. [Google Scholar] [CrossRef]
- Yousafzai, B.K.; Khan, S.A.; Rahman, T.; Khan, I.; Ullah, I.; Ur Rehman, A.; Baz, M.; Hamam, H.; Cheikhrouhou, O. Student-performulator: Student academic performance using hybrid deep neural network. Sustainability 2021, 13, 9775. [Google Scholar] [CrossRef]
- Choi, A.N.; Payakachat, N.; Harrington, H.P.; Compadre, C. Yoga therapy knowledge in third-year pharmacy students: An education intervention. Curr. Pharm. Teach. Learn. 2021, 13, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, H.P. YogaHelp: Leveraging Motion Sensors for Learning Correct Execution of Yoga With Feedback. IEEE Trans. Artif. Intell. 2021, 2, 362–371. [Google Scholar] [CrossRef]
- Sundholm, M.; Cheng, J.; Zhou, B.; Sethi, A.; Lukowicz, P. Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 373–382. [Google Scholar]
- Gochoo, M.; Tan, T.H.; Huang, S.C.; Batjargal, T.; Hsieh, J.W.; Alnajjar, F.S.; Chen, Y.F. Novel IoT-Based Privacy-Preserving Yoga Posture Recognition System Using Low-Resolution Infrared Sensors and Deep Learning. IEEE Internet Things J. 2019, 6, 7192–7200. [Google Scholar] [CrossRef]
- Pei, R.; Leach, M.P.; Lim, E.G.; Wang, Z.; Song, C.; Wang, J.; Zhang, W.; Jiang, Z.; Huang, Y. Wearable EBG-backed belt antenna for smart on-body applications. IEEE Trans. Ind. Inform. 2020, 16, 7177–7189. [Google Scholar] [CrossRef]
- Tlili, F.; Haddad, R.; Bouallegue, R.; Shubair, R. Design and architecture of smart belt for real time posture monitoring. Internet Things 2022, 17, 100472. [Google Scholar] [CrossRef]
- Bin Heyat, M.B.; Akhtar, F.; Abbas, S.J.; Al-Sarem, M.; Alqarafi, A.; Stalin, A.; Abbasi, R.; Muaad, A.Y.; Lai, D.; Wu, K. Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal. Biosensors 2022, 12, 427. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Zeming, F.; Rehman, A.U.; Ullah, I.; Li, G.; Xiao, G. Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces. IEEE Access 2019, 7, 171431–171451. [Google Scholar] [CrossRef]
- Mehrrotraa, R.; Ansari, M.; Agrawal, R.; Tripathi, P.; Heyat, M.B.B.; Al-Sarem, M.; Muaad, A.Y.M.; Nagmeldin, W.A.E.; Abdelmaboud, A.; Saeed, F. Ensembling of Efficient Deep Convolutional Networks and Machine Learning Algorithms for Resource Effective Detection of Tuberculosis Using Thoracic (Chest) Radiography. IEEE Access 2022, 10, 85442–85458. [Google Scholar] [CrossRef]
- Shohani, M.; Badfar, G.; Nasirkandy, M.P.; Kaikhavani, S.; Rahmati, S.; Modmeli, Y.; Soleymani, A.; Azami, M. The effect of yoga on stress, anxiety, and depression in women. Int. J. Prev. Med. 2018, 9, 21. [Google Scholar]
- Simon, N.M.; Hofmann, S.G.; Rosenfield, D.; Hoeppner, S.S.; Hoge, E.A.; Bui, E.; Khalsa, S.B.S. Efficacy of yoga vs. cognitive behavioral therapy vs. stress education for the treatment of generalized anxiety disorder: A randomized clinical trial. JAMA Psychiatry 2021, 78, 13–20. [Google Scholar] [CrossRef]
- Sahni, P.S.; Singh, K.; Sharma, N.; Garg, R. Yoga an effective strategy for self-management of stress-related problems and wellbeing during COVID19 lockdown: A cross-sectional study. PLoS ONE 2021, 16, e0245214. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, L.; Bapatla, A.K.; Mohanty, S.P.; Kougianos, E. SaYoPillow: Blockchain-integrated privacy-assured IoMT framework for stress management considering sleeping habits. IEEE Trans. Consum. Electron. 2020, 67, 20–29. [Google Scholar] [CrossRef]
- Bressington, D.; Yu, C.; Wong, W.; Ng, T.C.; Chien, W.T. The effects of group-based Laughter Yoga interventions on mental health in adults: A systematic review. J. Psychiatr. Ment. Health Nurs. 2018, 25, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Tolahunase, M.R.; Sagar, R.; Faiq, M.; Dada, R. Yoga-and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: A randomized controlled trial. Restor. Neurol. Neurosci. 2018, 36, 423–442. [Google Scholar] [CrossRef]
- Zung, W.W. A rating instrument for anxiety disorders. Psychosom. J. Consult. Liaison Psychiatry 1971, 12, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Hassan, M.F.U.; Lai, D. The embedding of flexible conductive silver-coated electrodes into ECG monitoring garment for minimizing motion artefacts. IEEE Sens. J. 2020, 21, 14454–14465. [Google Scholar] [CrossRef]
- Hassan, M.F.u.; Lai, D.; Bu, Y. Characterization of single lead continuous ecg recording with various dry electrodes. In Proceedings of the 2019 3rd International Conference on Computational Biology and Bioinformatics, Nagoya, Japan, 17–19 October 2019; pp. 76–79. [Google Scholar]
- Ölmez, S.B.; Sarıgedik, E.; Ataoğlu, A. The Relationships Between Separation Anxiety Disorder, Childhood Traumas, and Anxiety Sensitivity in a Sample of Medical Students. J. Affect. Disord. Rep. 2022, 100367. [Google Scholar] [CrossRef]
- Tomczak, M.; Kleka, P.; Walczak, A.; Bojkowski, Ł.; Gracz, J.; Walczak, M. Validation of Sport Anxiety Scale-2 (SAS-2) among Polish athletes and the relationship between anxiety and goal orientation in sport. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Yang, N.; Yang, X. Anxiety and depression in graduating university students during the COVID-19 pandemic: A longitudinal study. Am. J. Transl. Res. 2022, 14, 2668. [Google Scholar]
- Lyneham, H.J.; Street, A.K.; Abbott, M.J.; Rapee, R.M. Psychometric properties of the school anxiety scale—Teacher report (SAS-TR). J. Anxiety Disord. 2008, 22, 292–300. [Google Scholar] [CrossRef]
- Ullah, H.; Bin Heyat, M.B.; AlSalman, H.; Khan, H.M.; Akhtar, F.; Gumaei, A.; Mehdi, A.; Muaad, A.Y.; Islam, M.S.; Ali, A.; et al. An Effective and Lightweight Deep Electrocardiography Arrhythmia Recognition Model Using Novel Special and Native Structural Regularization Techniques on Cardiac Signal. J. Healthc. Eng. 2022, 2022, 3408501. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Bin Heyat, M.B.; Akhtar, F.; Muaad, A.Y.; Islam, M.S.; Abbas, Z.; Pan, T.; Gao, M.; Lin, Y.; Lai, D. An End-to-End Cardiac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal. Comput. Intell. Neurosci. 2022, 2022, 9475162. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Zhang, X.; Zhang, Y.; Heyat, M.B.B. Convolutional neural network based detection of atrial fibrillation combing RR intervals and F-wave frequency spectrum. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4897–4900. [Google Scholar]
- Nemesure, M.D.; Heinz, M.V.; Huang, R.; Jacobson, N.C. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Vest, A.N.; Da Poian, G.; Li, Q.; Liu, C.; Nemati, S.; Shah, A.J.; Clifford, G.D. An open source benchmarked toolbox for cardiovascular waveform and interval analysis. Physiol. Meas. 2018, 39, 105004. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Nawabi, A.K.; Jinfang, S.; Abbasi, R.; Iqbal, M.S.; Heyat, M.B.B.; Akhtar, F.; Wu, K.; Twumasi, B.A. Segmentation of Drug-Treated Cell Image and Mitochondrial-Oxidative Stress Using Deep Convolutional Neural Network. Oxidative Med. Cell. Longev. 2022, 2022, 5641727. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, A.; Febrero, M.; Fraiman, R. An anova test for functional data. Comput. Stat. Data Anal. 2004, 47, 111–122. [Google Scholar] [CrossRef]
- Adhikari, D.; Jiang, W.; Zhan, J.; Rawat, D.B.; Aickelin, U.; Khorshidi, H.A. A Comprehensive Survey on Imputation of Missing Data in Internet of Things. ACM Comput. Surv. (CSUR) 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Heyat, M.; Lai, D.; Zhang, F. Sleep Bruxism Detection Using Decision Tree Method by the Combination of C4-P4 and C4-A1 Channels of Scalp EEG. IEEE Access 2019, 7, 102542–102553. [Google Scholar] [CrossRef]
- Lai, D.; Zhang, Y.; Zhang, X.; Su, Y.; Heyat, M. An Automated Strategy for Early Risk Identification of Sudden Cardiac Death by Using Machine Learning Approach on Measurable Arrhythmic Risk Markers. IEEE Access 2019, 7, 94701–94716. [Google Scholar] [CrossRef]
- Lai, D.; Heyat, M.B.B.; Khan, F.I.; Zhang, Y. Prognosis of sleep bruxism using power spectral density approach applied on EEG signal of both EMG1-EMG2 and ECG1-ECG2 channels. IEEE Access 2019, 7, 82553–82562. [Google Scholar] [CrossRef]
- Tripathi, P.; Ansari, M.; Gandhi, T.K.; Mehrotra, R.; Heyat, M.B.B.; Akhtar, F.; Ukwuoma, C.C.; Muaad, A.Y.; Kadah, Y.M.; Al-Antari, M.A.; et al. Ensemble Computational Intelligent for Insomnia Sleep Stage Detection via the Sleep ECG Signal. IEEE Access 2022, 10, 108710–108721. [Google Scholar] [CrossRef]
- Žižka, J.; Dařena, F.; Svoboda, A. Text Mining with Machine Learning: Principles and Techniques; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Ukwuoma, C.C.; Qin, Z.; Heyat, M.B.B.; Akhtar, F.; Bamisile, O.; Muaad, A.Y.; Addo, D.; Al-Antari, M.A. A Hybrid Explainable Ensemble Transformer Encoder for Pneumonia Identification from Chest X-ray Images. J. Adv. Res. 2022; In Press. [Google Scholar] [CrossRef]
- Ukwuoma, C.C.; Zhiguang, Q.; Heyat, M.B.B.; Khan, H.M.; Akhtar, F.; Masadeh, M.S.; Bamisile, O.; AlShorman, O.; Nneji, G.U. Detection of Oral Cavity Squamous Cell Carcinoma from Normal Epithelium of the Oral Cavity using Microscopic Images. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 29–36. [Google Scholar]
- Ukwuoma, C.C.; Urama, G.C.; Qin, Z.; Heyat, M.B.B.; Khan, H.M.; Akhtar, F.; Masadeh, M.S.; Ibegbulam, C.S.; Delali, F.L.; AlShorman, O. Boosting Breast Cancer Classification from Microscopic Images Using Attention Mechanism. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 258–264. [Google Scholar]
- Chola, C.; Heyat, M.B.B.; Akhtar, F.; Al Shorman, O.; JV, B.B.; Muaad, A.Y.M.; Masadeh, M.; Alkahatni, F. IoT based intelligent computer-aided diagnosis and decision making system for health care. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 184–189. [Google Scholar]
- Ali, L.; He, Z.; Cao, W.; Rauf, H.T.; Imrana, Y.; Bin Heyat, M.B. MMDD-Ensemble: A Multimodal Data–Driven Ensemble Approach for Parkinson’s Disease Detection. Front. Neurosci. 2021, 15, 754058. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Ansari, M.; Akhtar, F.; Heyat, M.B.B.; Mehrotra, R.; Yatoo, A.H.; Teelhawod, B.N.; Asfaw, A.B.; Baig, A.A. Automatic Epileptic Seizure Detection Based on the Discrete Wavelet Transform Approach Using an Artificial Neural Network Classifier on the Scalp Electroencephalogram Signal. In Computational Intelligence in Healthcare Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 157–173. [Google Scholar]
- Sultana, A.; Rahman, K.; Heyat, M.B.B.; Akhtar, F.; Muaad, A.Y. Role of inflammation, oxidative stress, and mitochondrial changes in premenstrual psychosomatic behavioral symptoms with anti-inflammatory, antioxidant herbs, and nutritional supplements. Oxidative Med. Cell. Longev. 2022, 2022, 3599246. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Begum, W.; Saeedi, R.; Rahman, K.; Bin Heyat, M.B.; Akhtar, F.; Son, N.T.; Ullah, H. Experimental and computational approaches for the classification and correlation of temperament (Mizaj) and uterine dystemperament (Su’-I-Mizaj Al-Rahim) in abnormal vaginal discharge (Sayalan Al-Rahim) based on clinical analysis using support vector machine. Complexity 2022, 2022, 5718501. [Google Scholar]
- Heyat, B.B.; Akhtar, F.; Khan, A.; Noor, A.; Lai, D. A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals. Appl. Sci. 2020, 10, 7410. [Google Scholar]
- Li, S.H.; Graham, B.M. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 2017, 4, 73–82. [Google Scholar] [CrossRef]
- van Honk, J.; Bos, P.A.; Terburg, D.; Heany, S.; Stein, D.J. Neuroendocrine models of social anxiety disorder. Dialogues Clin. Neurosci. 2022, 17, 287–293. [Google Scholar] [CrossRef]
- Miranda, D.; Calderón, M.; Favela, J. Anxiety detection using wearable monitoring. In Proceedings of the 5th Mexican Conference on Human-Computer Interaction, Oaxaca, Mexico, 3–5 November 2014; pp. 34–41. [Google Scholar]
- Iqbal, T.; Elahi, A.; Shahzad, A.; Wijns, W. Review on Classification Techniques used in Biophysiological Stress Monitoring. arXiv 2022, arXiv:2210.16040. [Google Scholar]
- Arsalan, A.; Majid, M. Human stress classification during public speaking using physiological signals. Comput. Biol. Med. 2021, 133, 104377. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Yang, Q.; Ullah, I.; Rehman, A.U.; Tufail, A.B.; Noor, A.; Rehman, A.; Cengiz, K. 3D convolutional neural networks based automatic modulation classification in the presence of channel noise. IET Commun. 2022, 16, 497–509. [Google Scholar] [CrossRef]
- Adhikari, D.; Jiang, W.; Zhan, J. Iterative Imputation Using Ratio-based Imputation for High Missing Gap. In Proceedings of the 2021 International Conference on Intelligent Technology and Embedded Systems (ICITES), Huzhou, China, 27–30 October 2021; pp. 1–6. [Google Scholar]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 230–236. [Google Scholar] [CrossRef]
- Urizar Jr, G.G.; Milazzo, M.; Le, H.N.; Delucchi, K.; Sotelo, R.; Muñoz, R.F. Impact of stress reduction instructions on stress and cortisol levels during pregnancy. Biol. Psychol. 2004, 67, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.P.; Gerbarg, P.L. Sudarshan Kriya Yogic breathing in the treatment of stress, anxiety, and depression: Part II—clinical applications and guidelines. J. Altern. Complement. Med. 2005, 11, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Chiu, C.F.; Wang, C.K.; Wu, C.T.; Liu, L.C.; Wu, Y.C. Short-term effect of internet-delivered mindfulness-based stress reduction on mental health, self-efficacy, and body image among women with breast cancer during the COVID-19 pandemic. Front. Psychol. 2022, 13, 949446. [Google Scholar] [CrossRef]
- Bokma, W.A.; Zhutovsky, P.; Giltay, E.J.; Schoevers, R.A.; Penninx, B.W.; Van Balkom, A.L.; Batelaan, N.M.; Van Wingen, G.A. Predicting the naturalistic course in anxiety disorders using clinical and biological markers: A machine learning approach. Psychol. Med. 2022, 52, 57–67. [Google Scholar] [CrossRef]
- Rdmsj, A.; Icp, A.; Js, B.; Gb, C.; Es, A.; Lstm, D.; Acuk, D.; Lg, D.; Af, A.; Art, A. Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders. J. Psychiatr. Res. 2020, 121, 207–213. [Google Scholar]
- Portugal, L.; Schrouff, J.; Stiffler, R.; Bertocci, M.; Mourao-Miranda, J. Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: A machine learning approach. NeuroImage Clin. 2019, 23, 101813. [Google Scholar] [CrossRef]
- Wallert, J.; Gustavson, E.; Held, C.; Madison, G.; Norlund, F.; Von Essen, L.; Olsson, E. P5407 Predicting adherence to internet-delivered cognitive behaviour therapy for comorbid symptoms of depression and anxiety after myocardial infarction. Eur. Heart J. 2018, 39, ehy566-P5407. [Google Scholar] [CrossRef]
Headings | Steps | Sanskrit Name | English Name | Repeat | Hold Time |
---|---|---|---|---|---|
Beginning | B_1 | Vajrasana | Thunderbolt pose | Sitting slient | 3 Min. |
B_2 | Pada shakti | Ankle stretch | 10 Rounds (R,L) | Last round 15 Sec. | |
B_3 | Kati Vakra | Back twisting | 10 Rounds (R,L) | Last round 15 Sec. | |
B_4 | Kati chakra | Side stretch | 10 Rounds (R,L) | Last round 15 Sec. | |
Sun Salutation | SS_1 | Samastithi | Stand Straight | 3 | 15 Sec. |
SS_2 | Ardha chakra | Half moon pose | 3 | 15 Sec. | |
SS_3 | Padahastasna | Hand to feet | 3 | 15 Sec. | |
SS_4 | Ashwachalan | Horse ride pose (Rt leg Back) | 3 | 15 Sec. | |
SS_5 | Chaturangasana | Plank pose | 3 | 15 Sec. | |
SS_6 | Sashtanga namaskar | Eight limbs to floor | 3 | 15 Sec. | |
SS_7 | Bhujangasana | Cobra pose | 3 | 15 Sec. | |
SS_8 | Parvatasana | Mountain pose | 3 | 15 Sec. | |
SS_9 | Ashwachalana | Horse riding pose (RtLeg Fwd) | 3 | 15 Sec. | |
SS_10 | Padahastasana | Hands to feet | 3 | 15 Sec. | |
SS_11 | Ardhachakra | Half Wheel | 3 | 15 Sec. | |
SS_12 | Samastithi | Stand straight | 3 | 15 Sec. | |
Standing | K_1 | Ardhakati chakrasana | Half moon | 1 | R-L sides 30 Sec. |
K_2 | Vrikshasana | Tree pose | 1 | R-L sides 30 Sec. | |
K_3 | Ardhachakrasana | Half wheel | 1 | 20 Sec. | |
K_4 | Padahastasana | Hand to feet | 1 | 20 Sec. | |
K_5 | Parsavakonasana | Side stretch | 1 | 20 Sec. | |
K_6 | Padottanasana | Legs apart forward stretch | 1 | 20 Sec. | |
Sitting | S_1 | Vakrasana | Back twist | 1 | 20 Sec. |
S_2 | Ustrasana | Camel pose | 1 | 20 Sec. | |
S_3 | Pachimottanasana | Back stretch | 1 | 20 Sec. | |
S_4 | Purvottanasana | Forward stretch | 1 | 20 Sec. | |
S_5 | Navasana | Boat pose | 1 | 20 Sec. | |
Laying | L_1 | Stimulate & Relax | Stimulation, relaxation tech | 3 × 2 | 6 Min |
L_2 | Savasana | Corpse pose | 1 | 8 Min | |
Yogic Breathing | YB1 | Bhramari | Humming breath | 5 × 1 | 3 Min. |
Meditation | M_1 | Dhyana | Breath awareness | 1 | 5 Min. |
Ending | E_1 | Vajrasana | Thunderbolt pose | 1 | 3 Min. |
Disease Present | Disease Absent | |
---|---|---|
Test Positive | a (TP) | b (FP) |
Test Negative | c (FN) | d (TN) |
External (Control vs. Yoga) | Internal (Pre vs. Post) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Classifier | AUC | Acc. | Precision | AUC | Acc. | Precision | ||||
Leave One Out | DT | 0.77 | 0.67 | 0.69 | 0.67 | 0.67 | 0.78 | 0.73 | 0.74 | 0.73 | 0.73 |
RF | 0.82 | 0.80 | 0.80 | 0.80 | 0.73 | 0.71 | 0.62 | 0.62 | 0.62 | 0.62 | |
AB | 0.70 | 0.72 | 0.72 | 0.72 | 0.68 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | |
CV-3 | DT | 0.80 | 0.79 | 0.79 | 0.79 | 0.77 | 0.68 | 0.65 | 0.65 | 0.65 | 0.66 |
RF | 0.84 | 0.78 | 0.77 | 0.78 | 0.72 | 0.72 | 0.67 | 0.67 | 0.67 | 0.67 | |
AB | 0.69 | 0.72 | 0.72 | 0.72 | 0.67 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |
CV-5 | DT | 0.80 | 0.79 | 0.79 | 0.79 | 0.77 | 0.68 | 0.59 | 0.59 | 0.59 | 0.59 |
RF | 0.84 | 0.78 | 0.77 | 0.78 | 0.72 | 0.71 | 0.64 | 0.64 | 0.64 | 0.64 | |
AB | 0.69 | 0.72 | 0.72 | 0.72 | 0.67 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | |
Mean | 0.77 | 0.75 | 0.75 | 0.75 | 0.71 | 0.71 | 0.66 | 0.67 | 0.66 | 0.67 | |
Standard Deviation | 0.057 | 0.041 | 0.036 | 0.041 | 0.038 | 0.039 | 0.051 | 0.050 | 0.051 | 0.051 | |
Variance | 0.003 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.003 | 0.003 | 0.003 | 0.003 |
Ref. | Par. | Scoring Techniques | Classifier | Performance Measure | |||
---|---|---|---|---|---|---|---|
AUC | Acc. | ||||||
[37] | 4184 | HADS, PHQ | XGBoost | 0.73 | 0.66 | 0.7 | |
[69] | 887 | NESDA | RF | 0.67 | 0.62 | 0.63 | |
[70] | 200 | PSWQ, HDRS, YMRS, CGI-S | SVM | 0.82 | 0.75 | 0.71 | |
RF | 0.82 | 0.76 | 0.71 | ||||
ANN | 0.81 | 0.76 | 0.72 | ||||
[71] | 154 | STAI, MASQ-D, HDRS, HAM-A | Pattern regression | 0.58 | |||
[72] | 90 | CAQ. HADS | RF | 0.64 | |||
Proposed | 66 | SAS | RF | 0.82 | 0.80 | 0.73 | 0.80 |
DT | 0.80 | 0.79 | 0.77 | 0.79 | |||
AB | 0.70 | 0.72 | 0.68 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, R.; Adhikari, D.; Heyat, M.B.B.; Guragai, B.; Lipari, V.; Brito Ballester, J.; De la Torre Díez, I.; Abbas, Z.; Lai, D. A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering 2022, 9, 793. https://doi.org/10.3390/bioengineering9120793
Pal R, Adhikari D, Heyat MBB, Guragai B, Lipari V, Brito Ballester J, De la Torre Díez I, Abbas Z, Lai D. A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering. 2022; 9(12):793. https://doi.org/10.3390/bioengineering9120793
Chicago/Turabian StylePal, Rishi, Deepak Adhikari, Md Belal Bin Heyat, Bishal Guragai, Vivian Lipari, Julien Brito Ballester, Isabel De la Torre Díez, Zia Abbas, and Dakun Lai. 2022. "A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY" Bioengineering 9, no. 12: 793. https://doi.org/10.3390/bioengineering9120793
APA StylePal, R., Adhikari, D., Heyat, M. B. B., Guragai, B., Lipari, V., Brito Ballester, J., De la Torre Díez, I., Abbas, Z., & Lai, D. (2022). A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering, 9(12), 793. https://doi.org/10.3390/bioengineering9120793