Identification of Kinetic Abnormalities in Male Patients after Anterior Cruciate Ligament Deficiency Combined with Meniscal Injury: A Musculoskeletal Model Study of Lower Limbs during Jogging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection and Modeling Analysis
2.3. Statistics
3. Results
4. Discussion
4.1. Kinetics of Injured and Uninjured Knees
4.2. Interpatient Differences of ACLD Knees with or without Meniscal Injury
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wellsandt, E.; Gardinier, E.S.; Manal, K.; Axe, M.J.; Buchanan, T.; Snyder-Mackler, L. Decreased Knee Joint Loading Associated with Early Knee Osteoarthritis after Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2015, 44, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barenius, B.; Ponzer, S.; Shalabi, A.; Bujak, R.; Norlén, L.; Eriksson, K. Increased Risk of Osteoarthritis after Anterior Cruciate Ligament Reconstruction: A 14-year follow-up study of a randomized controlled trial. Am. J. Sport. Med. 2014, 42, 1049–1057. [Google Scholar] [CrossRef]
- Sigward, S.M.; Lin, P.; Pratt, K. Knee loading asymmetries during gait and running in early rehabilitation following anterior cruciate ligament reconstruction: A longitudinal study. Clin. Biomech. 2015, 32, 249–254. [Google Scholar] [CrossRef]
- Berchuck, M.; Andriacchi, T.P.; Bach, B.R.; Reider, B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Jt. Surg. 1990, 72, 871–877. [Google Scholar] [CrossRef]
- Hurd, W.J.; Snyder-Mackler, L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J. Orthop. Res. 2007, 25, 1369–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pairot-De-Fontenay, B.; Willy, R.W.; Elias, A.R.C.; Mizner, R.L.; Dubé, M.-O.; Roy, J.-S. Running Biomechanics in Individuals with Anterior Cruciate Ligament Reconstruction: A Systematic Review. Sport. Med. 2019, 49, 1411–1424. [Google Scholar] [CrossRef]
- Asaeda, M.; Deie, M.; Kono, Y.; Mikami, Y.; Kimura, H.; Adachi, N. The relationship between knee muscle strength and knee biomechanics during running at 6 and 12 months after anterior cruciate ligament reconstruction. Asia-Pac. J. Sport. Med. Arthrosc. Rehabil. Technol. 2019, 16, 14–18. [Google Scholar] [CrossRef]
- Bohn, M.B.; Petersen, A.K.; Nielsen, D.B.; Sørensen, H.; Lind, M. Three-dimensional kinematic and kinetic analysis of knee rotational stability in ACL-deficient patients during walking, running and pivoting. J. Exp. Orthop. 2016, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Théoret, D.; Lamontagne, M. Study on three-dimensional kinematics and electromyography of ACL deficient knee participants wearing a functional knee brace during running. Knee Surg. Sport. Traumatol. Arthrosc. 2006, 14, 555–563. [Google Scholar] [CrossRef]
- Waite, J.C.; Beard, D.J.; Dodd, C.A.F.; Murray, D.W.; Gill, H.S. In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surg. Sport. Traumatol. Arthrosc. 2005, 13, 377–384. [Google Scholar] [CrossRef]
- Koo, Y.-J.; Jung, Y.; Seon, J.K.; Koo, S. Anatomical ACL Reconstruction can Restore the Natural Knee Kinematics than Isometric ACL Reconstruction during the Stance Phase of Walking. Int. J. Precis. Eng. Manuf. 2020, 21, 1127–1134. [Google Scholar] [CrossRef]
- Sanford, B.A.; Williams, J.L.; Zucker-Levin, A.R.; Mihalko, W.M. Tibiofemoral Joint Forces during the Stance Phase of Gait after ACL Reconstruction. Open J. Biophys. 2013, 03, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Xin, H.; Chen, Z.; Zhang, Q.; Peng, Y.; Jin, Z. The role of menisci in knee contact mechanics and secondary kinematics during human walking. Clin. Biomech. 2019, 61, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhang, D.; Jiang, Y.; Yang, J.; Feng, T.; Gong, X.; Wang, J.; Ao, Y. Translation, Validation and Cross-Cultural Adaptation of a Simplified-Chinese Version of the Tegner Activity Score in Chinese Patients with Anterior Cruciate Ligament Injury. PLoS ONE 2016, 11, e0155463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.; Bencke, J.; Rasmussen, J. Triceps surae strength balancing as a management option for early-stage knee osteoarthritis: A patient case. Clin. Biomech. 2022, 95, 105651. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Yin, W.; Ren, S.; Rong, Q.; Ao, Y. Anterior cruciate ligament deficiency combined with lateral and/or medial meniscal injury results in abnormal kinematics and kinetics during level walking. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 234, 91–99. [Google Scholar] [CrossRef]
- Huang, H.; Yin, W.; Ren, S.; Yu, Y.; Zhang, S.; Rong, Q.; Ao, Y. Muscular Force Patterns during Level Walking in ACL-Deficient Patients with a Concomitant Medial Meniscus Tear. Appl. Bionics Biomech. 2019, 2019, 7921785. [Google Scholar] [CrossRef] [Green Version]
- Dupré, T.; Dietzsch, M.; Komnik, I.; Potthast, W.; David, S. Agreement of measured and calculated muscle activity during highly dynamic movements modelled with a spherical knee joint. J. Biomech. 2019, 84, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ziziene, J.; Daunoraviciene, K.; Juskeniene, G.; Raistenskis, J. Comparison of kinematic parameters of children gait obtained by inverse and direct models. PLoS ONE 2022, 17, e0270423. [Google Scholar] [CrossRef] [PubMed]
- Horsman, M.K.; Koopman, H.; van der Helm, F.; Prosé, L.P.; Veeger, H. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 2007, 22, 239–247. [Google Scholar] [CrossRef]
- Andersen, M.S.; Benoit, D.L.; Damsgaard, M.; Ramsey, D.K.; Rasmussen, J. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 2010, 43, 268–273. [Google Scholar] [CrossRef]
- Marra, M.A.; Vanheule, V.; Fluit, R.; Koopman, B.H.F.J.M.; Rasmussen, J.; Verdonschot, N.; Andersen, M.S. A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty. J. Biomech. Eng. 2015, 137, 020904. [Google Scholar] [CrossRef]
- Ren, S.; Yu, Y.; Shi, H.; Miao, X.; Jiang, Y.; Liang, Z.; Hu, X.; Huang, H.; Ao, Y. Three dimensional knee kinematics and kinetics in ACL-deficient patients with and without medial meniscus posterior horn tear during level walking. Gait Posture 2018, 66, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, W.-H.; Ma, L.; Lin, Z.; Huang, H.; Xia, H. Kinematic characteristics of anterior cruciate ligament deficient knees with concomitant meniscus deficiency during ascending stairs. J. Sport. Sci. 2016, 35, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Bowersock, C.D.; Willy, R.W.; DeVita, P.; Willson, J.D. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry. Clin. Biomech. 2017, 43, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.A.; Sigward, S.M. Knee Loading Deficits during Dynamic Tasks in Individuals Following Anterior Cruciate Ligament Reconstruction. J. Orthop. Sport. Phys. Ther. 2017, 47, 411–419. [Google Scholar] [CrossRef]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef]
- Sasimontonkul, S.; Bay, B.K.; Pavol, M.J. Bone contact forces on the distal tibia during the stance phase of running. J. Biomech. 2007, 40, 3503–3509. [Google Scholar] [CrossRef]
- DeVita, P.; Hortobagyi, T.; Barrier, J.; Torry, M.; Glover, K.L.; Speroni, D.L.; Money, J.; Mahar, M.T. Gait adaptations before and after anterior cruciate ligament reconstruction surgery. Med. Sci. Sport. Exerc. 1997, 29, 853–859. [Google Scholar] [CrossRef]
- Timoney, J.M.; Inman, W.S.; Quesada, P.M.; Sharkey, P.F.; Barrack, R.L.; Skinner, H.B.; Alexander, A.H. Return of normal gait patterns after anterior cruciate ligament reconstruction. Am. J. Sport. Med. 1993, 21, 887–889. [Google Scholar] [CrossRef]
- Papadonikolakis, A.; Cooper, L.; Stergiou, N.; Georgoulis, A.D.; Soucacos, P.N. Compensatory mechanisms in anterior cruciate ligament deficiency. Knee Surg. Sport. Traumatol. Arthrosc. 2003, 11, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Dyrby, C.O. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J. Biomech. 2005, 38, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, W.-H.; Yao, Z.; Ma, L.; Lin, Z.; Wang, S.; Huang, H. Anterior Cruciate Ligament Injuries Alter the Kinematics of Knees with or without Meniscal Deficiency. Am. J. Sport. Med. 2016, 44, 3132–3139. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Li, J.-S.; Gill, I.T.J.; Li, G. Meniscus Injuries Alter the Kinematics of Knees with Anterior Cruciate Ligament Deficiency. Orthop. J. Sport. Med. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, M.; Belgio, B.; Peretti, G.; Di Giancamillo, A.; Boschetti, F. Evolution of Meniscal Biomechanical Properties with Growth: An Experimental and Numerical Study. Bioengineering 2021, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Heo, J.-W.; Lee, D.-H. Comparative postural stability in patients with lateral meniscus versus medial meniscus tears. Knee 2018, 25, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P., III; Barrett, G.R. Medial and Lateral Meniscal Tear Patterns in Anterior Cruciate Ligament-Deficient Knees: A prospective analysis of 575 tears. Am. J. Sport. Med. 2001, 29, 415–419. [Google Scholar] [CrossRef]
Parameters | Control | ACLD | ACLDL | ACLDM | ACLDML |
---|---|---|---|---|---|
Age (years) | 29.33 ± 5.79 | 27.50 ± 1.98 | 26.60 ± 3.85 | 29.60 ± 5.41 | 27.71 ± 6.75 |
Height (cm) | 171.83 ± 3.69 | 178.08 ± 8.28 | 179.80 ± 4.87 | 178.20 ± 7.09 | 180.29 ± 7.30 |
Weight (kg) | 73.9 ± 6.75 | 82.58 ± 11.82 | 88.78 ± 23.46 | 85.70 ± 11.52 | 83.71 ± 14.37 |
BMI (kg/m2) | 25.09 ± 2.90 | 26.01 ± 2.90 | 27.26 ± 5.82 | 26.97 ± 3.01 | 25.64 ± 3.29 |
Pace(m/s) | 2.33 ± 0.16 | 2.40 ± 0.22 | 2.47 ± 0.28 | 2.13 ± 0.28 | 2.42 ± 0.17 |
Tegner score | / | 3.27 ± 0.75 | 4.60 ± 3.01 | 3.60 ± 1.02 | 5.33 ± 1.20 |
Time since injury (months) | / | 10.50 ± 6.47 | 9.60 ± 3.29 | 15.40 ± 8.11 | 14.14 ± 5.37 |
ACLD | ACLDL | ACLDM | ACLDML | |||||
---|---|---|---|---|---|---|---|---|
Injured | Uninjured | Injured | Uninjured | Injured | Uninjured | Injured | Uninjured | |
Maximum ML force | 0.18 | 0.49 | 0.70 | 1.05 | 0.50 | 0.94 | 1.79 | 1.60 |
Minimum PD force | 0.42 | 0.34 | 0.39 | 0.61 | 0.31 | 0.67 | 1.51 | 1.42 |
Minimum AP force | 0.44 | 0.59 | 0.85 | 1.27 | 0.59 | 1.20 | 1.90 | 1.54 |
Minimum axial moment | 0.62 | 0.58 | 0.80 | 1.05 | 0.42 | 1.17 | 1.45 | 1.00 |
Maximum lateral moment | 0.20 | 0.07 | 0.71 | 0.51 | 0.61 | 0.30 | 1.52 | 1.64 |
Minimum Flexion moment | 1.13 | 1.05 | 1.14 | 1.54 | 1.54 | 2.28 | 1.98 | 0.95 |
Control Group | Injured Groups | ||||||||
---|---|---|---|---|---|---|---|---|---|
ACLD | ACLDL | ACLDM | ACLDML | ||||||
Injured | Uninjured | Injured | Uninjured | Injured | Uninjured | Injured | Uninjured | ||
Joint reaction forces/Bw | |||||||||
Maximum ML force | 2.40(0.43) | 2.14(2.16) | 2.17(0.52) | 2.11(0.35) | 1.97(0.33) | 2.19(0.38) | 1.97(0.54) | 1.74(0.15) * | 1.74(0.37) * |
Minimum PD force | −8.60(1.30) | −7.94(1.87) | −8.10(1.65) | −8.10(1.16) | −7.86(0.88) | −8.21(1.04) | −7.64(1.83) | −6.90(0.54) * | −6.67(1.19) * |
Minimum AP force | −7.97(2.36) | −6.48(4.34) | −6.53(2.46) | −6.04(1.90) | −5.09(1.92)* | −6.63(1.97) | −5.23(1.98) | −4.13(0.75) * | −4.65(1.53) * |
Joint moment/(Bw × Bh) (×10−1) | |||||||||
Minimum axial moment | −0.68(0.26) | −0.49(0.36) | −0.53(0.25) | −0.49(0.13) | −0.41(0.25) | −0.58(0.14) | −0.40(0.14) | −0.32(0.22) * | −0.42(0.26) |
Maximum lateral moment | 0.60(0.14) | 0.56(0.26) | 0.59(0.13) | 0.50(0.14) | 0.53(0.13) | 0.68(0.09) | 0.56(0.11) | 0.40(0.11) * | 0.40(0.06) * |
Minimum Flexion moment | −1.21(0.21) | −0.82(0.46)* | −0.98(0.23) | −0.95(0.28) | −0.85(0.30)* | −0.89(0.20) | −0.73(0.21) * | −0.68(0.37) * | −0.97(0.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Liu, X.; Li, H.; Guo, Y.; Zhang, Y.; Liang, Z.; Zhang, S.; Huang, H.; Huang, X.; Ma, Z.; et al. Identification of Kinetic Abnormalities in Male Patients after Anterior Cruciate Ligament Deficiency Combined with Meniscal Injury: A Musculoskeletal Model Study of Lower Limbs during Jogging. Bioengineering 2022, 9, 716. https://doi.org/10.3390/bioengineering9110716
Ren S, Liu X, Li H, Guo Y, Zhang Y, Liang Z, Zhang S, Huang H, Huang X, Ma Z, et al. Identification of Kinetic Abnormalities in Male Patients after Anterior Cruciate Ligament Deficiency Combined with Meniscal Injury: A Musculoskeletal Model Study of Lower Limbs during Jogging. Bioengineering. 2022; 9(11):716. https://doi.org/10.3390/bioengineering9110716
Chicago/Turabian StyleRen, Shuang, Xiaode Liu, Haoran Li, Yufei Guo, Yuhan Zhang, Zixuan Liang, Si Zhang, Hongshi Huang, Xuhui Huang, Zhe Ma, and et al. 2022. "Identification of Kinetic Abnormalities in Male Patients after Anterior Cruciate Ligament Deficiency Combined with Meniscal Injury: A Musculoskeletal Model Study of Lower Limbs during Jogging" Bioengineering 9, no. 11: 716. https://doi.org/10.3390/bioengineering9110716
APA StyleRen, S., Liu, X., Li, H., Guo, Y., Zhang, Y., Liang, Z., Zhang, S., Huang, H., Huang, X., Ma, Z., Rong, Q., & Ao, Y. (2022). Identification of Kinetic Abnormalities in Male Patients after Anterior Cruciate Ligament Deficiency Combined with Meniscal Injury: A Musculoskeletal Model Study of Lower Limbs during Jogging. Bioengineering, 9(11), 716. https://doi.org/10.3390/bioengineering9110716