Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Tests
2.3. Anlaytical Methods
3. Results
3.1. Methane Production
3.2. TA, VFA and pH
4. Discussion
4.1. CH4 Production by Methanogens
4.2. CO Consumption by Methanogens
4.3. Effect of VFA on Syngas Fermentation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rusmanis, D.; O’Shea, R.; Wall, D.M.; Murphy, J.D. Biological hydrogen methanation systems–an overview of design and efficiency. Bioengineered 2019, 10, 604–634. [Google Scholar] [CrossRef] [Green Version]
- Enzmann, F.; Mayer, F.; Rother, M.; Holtmann, D. Methanogens: Biochemical background and biotechnological applications. AMB Express 2018, 8, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.R.; Huhnke, R.L.; Atiyeh, H.K. Syngas fermentation: A microbial conversion process of gaseous substrates to various products. Fermentation 2017, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Vlap, H.; Mellema, R.; Verhaegh, N.; Aalfs, D.; Zeijlmaker, R.; Van Halen, B.; Postma, F. METHANATION Technical Fundamentals and Market; DNV GL: Arnhem, The Netherlands, 2019. [Google Scholar]
- Grimalt-Alemany, A.; Skiadas, I.V.; Gavala, H.N. Syngas biomethanation: State-of-the-art review and perspectives. Biofuels Bioprod. Biorefining 2018, 12, 139–158. [Google Scholar] [CrossRef]
- Sokolova, T.G.; Henstra, A.M.; Sipma, J.; Parshina, S.N.; Stams, A.J.M.; Lebedinsky, A.V. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol. Ecol. 2009, 68, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diender, M.; Uhl, P.S.; Bitter, J.H.; Stams, A.J.M.; Sousa, D.Z. High rate biomethanation of carbon monoxide-rich gases via a thermophilic synthetic coculture. ACS Sustain. Chem. Eng. 2018, 6, 2169–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lackner, N.; Hintersonnleitner, A.; Wagner, A.O.; Illmer, P. Hydrogenotrophic methanogenesis and autotrophic growth of methanosarcina thermophila. Archaea 2018, 2018, 4712608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.; Reis, N.M.; Guiot, S.R.; Navarro, S.S.; Cimpoia, R.; Bruant, G. Biomethanation of syngas using anaerobic sludge: Shift in the catabolic routes with the CO partial pressure increase. Front. Microbiol. 2016, 7, 1188. [Google Scholar]
- Sipma, J. Microbial Hydrogenogenic CO Conversions: Applications in Synthesis Gas Purification and Biodesulfurization. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2006. [Google Scholar]
- Luo, G.; Jing, Y.; Lin, Y.; Zhang, S.; An, D. A novel concept for syngas biomethanation by two-stage process: Focusing on the selective conversion of syngas to acetate. Sci. Total Environ. 2018, 645, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Stams, A.J.M.; Van Dijk, J.B.; Dijkema, C.; Plugge, C.M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 1993, 59, 1114–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwede, S.; Bruchmann, F.; Thorin, E.; Gerber, M. Biological syngas methanation via immobilized methanogenic archaea on biochar. Energy Procedia 2017, 105, 823–829. [Google Scholar] [CrossRef]
- Mohd, N.S.; Husnain, T.; Li, B.; Rahman, A.; Riffat, R. Investigation of the performance and kinetics of anaerobic digestion at 45 °C. J. Water Resour. Prot. 2015, 7, 1099–1100. [Google Scholar] [CrossRef] [Green Version]
- Arantes, A.L.; Alves, J.I.; Stams, A.J.M.; Alves, M.M.; Sousa, D.Z. Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor. Microb. Biotechnol. 2018, 11, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Bowen, S.H.; Lewis, R.S. A thermodynamic analysis of electron production during syngas fermentation. Bioresour. Technol. 2011, 102, 8071–8076. [Google Scholar] [CrossRef] [PubMed]
- Stams, A.J.M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoe 1994, 66, 271–294. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achinas, S.; Mulder, S.J.; Euverink, G.J.W. Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach. Bioengineering 2020, 7, 138. https://doi.org/10.3390/bioengineering7040138
Achinas S, Mulder SJ, Euverink GJW. Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach. Bioengineering. 2020; 7(4):138. https://doi.org/10.3390/bioengineering7040138
Chicago/Turabian StyleAchinas, Spyridon, Sytse Jelmer Mulder, and Gerrit Jan Willem Euverink. 2020. "Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach" Bioengineering 7, no. 4: 138. https://doi.org/10.3390/bioengineering7040138
APA StyleAchinas, S., Mulder, S. J., & Euverink, G. J. W. (2020). Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach. Bioengineering, 7(4), 138. https://doi.org/10.3390/bioengineering7040138