Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances
Abstract
:1. Introduction
2. UASB Reactor: Substrate Characteristics and Operating Conditions
2.1. Substrate Characteristics
2.2. Influence of Operating Conditions
2.3. Advanced High-Rate Reactors
3. UASB Hydrodynamics and Microbial Community
4. Two-Stage UASB Anaerobic Digestion
5. UASB Co-Digestion
6. UASB Application as Anammox Process
7. Modified UASB Systems for Bio-Hydrogen, Volatile Fatty Acids and Methane Production
8. UASB Treatment of Municipal Wastewater
9. UASB Pre- and Post-Treatment
10. UASB Reactor and Wastewater Toxicity
11. Critical Aspects and Future Perspectives
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Rasapoor, M.; Young, B.; Brar, R.; Sarmah, A.; Zhuang, W.-Q.; Baroutian, S. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 2020, 261, 116497. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Gunes, B.; Stokes, J.; Davis, P.; Connolly, C.; Lawler, J. Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review. Renew. Sustain. Energy Rev. 2019, 113, 109281. [Google Scholar] [CrossRef]
- Misson, G.; Mainardis, M.; Incerti, G.; Goi, D.; Peressotti, A. Preliminary evaluation of potential methane production from anaerobic digestion of beach-cast seagrass wrack: The case study of high-adriatic coast. J. Clean. Prod. 2020, 254, 120131. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, R.; Rojas-Sossa, J.-P.; Isaguirre, C.; Mashburn, A.; Marsh, T.; Liu, Y.; Liao, W. Anaerobic co-digestion of energy crop and agricultural wastes to prepare uniform-format cellulosic feedstock for biorefining. Renew. Energy 2020, 147, 1358–1370. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.-C.; Zhang, J. Food waste enhanced anaerobic digestion of biologically pretreated yard waste: Analysis of cellulose crystallinity and microbial communities. Waste Manag. 2018, 79, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Flaibani, S.; Trigatti, M.; Goi, D. Techno-economic feasibility of anaerobic digestion of cheese whey in small Italian dairies and effect of ultrasound pre-treatment on methane yield. J. Environ. Manag. 2019, 246, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of renewable energy sources market and biofuels in the European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The performance enhancements of Upflow Anaerobic Sludge Blanket (UASB) reactors for domestic sludge treatment—A state-of-the-art review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef]
- Latif, M.A.; Ghufran, R.; Wahid, Z.A.; Ahmad, A. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res. 2011, 45, 4683–4699. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, T.-H. Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 2014, 60, 189–202. [Google Scholar] [CrossRef]
- Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. Energy recovery from wastewaters with high-rate anaerobic digesters. Renew. Sustain. Energy Rev. 2013, 19, 704–741. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Formation and impact of granules in fostering clean energy production and wastewater treatment in Upflow Anaerobic Sludge Blanket (UASB) reactors. Renew. Sustain. Energy Rev. 2012, 16, 1696–1708. [Google Scholar] [CrossRef]
- Vassalle, L.; Díez-Montero, R.; Machado, A.T.R.; Moreira, C.; Ferrer, I.; Mota, C.R.; Passos, F. Upflow anaerobic sludge blanket in microalgae-based sewage treatment: Co-digestion for improving biogas production. Bioresour. Technol. 2020, 300, 122677. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Goi, D. Pilot-UASB reactor tests for anaerobic valorisation of high-loaded liquid substrates in Friulian mountain area. J. Environ. Chem. Eng. 2019, 7, 103348. [Google Scholar] [CrossRef]
- Enitan, A.M.; Kumari, S.; Odiyo, J.O.; Bux, F.; Swalaha, F.M. Principal component analysis and characterization of methane community in a full-scale bioenergy producing UASB reactor treating brewery wastewater. Phys. Chem. Earth Parts A B C 2018, 108, 1–8. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Meza-Gordillo, R.; Rosales-Quintero, A.; Ventura-Canseco, C.; Lagunas-Rivera, S.; Carrasco-Cervantes, J. Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel 2017, 198, 170–174. [Google Scholar] [CrossRef]
- Mainardis, M.; Cabbai, V.; Zannier, G.; Visintini, D.; Goi, D. Characterization and BMP tests of liquid substrates for high-rate anaerobic digestion. Chem. Biochem. Eng. Q. 2018, 31, 508–518. [Google Scholar] [CrossRef]
- Prateep Na Talang, R.; Sirivithayapakorn, S. Environmental impacts and economic benefits of different wastewater management schemes for molasses-based ethanol production: A case study of Thailand. J. Clean. Prod. 2020, 247, 119141. [Google Scholar] [CrossRef]
- Kong, Z.; Li, L.; Xue, Y.; Yang, M.; Li, Y.-Y. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. J. Clean. Prod. 2019, 231, 913–927. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Q.; Yoza, B.A.; Li, Q.X.; Chen, C.; Ming, J.; Yu, J.; Li, J.; Ke, M. Rapid granulation using calcium sulfate and polymers for refractory wastewater treatment in up-flow anaerobic sludge blanket reactor. Bioresour. Technol. 2020, 305, 123084. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kong, Z.; Xue, Y.; Wang, T.; Kato, H.; Li, Y.-Y. A comparative long-term operation using Up-flow Anaerobic Sludge Blanket (UASB) and Anaerobic Membrane Bioreactor (AnMBR) for the upgrading of anaerobic treatment of N, N-Dimethylformamide-containing wastewater. Sci. Total Environ. 2020, 699, 134370. [Google Scholar] [CrossRef] [PubMed]
- Geißler, A.; Schwan, B.; Dornack, C. Developing a high-performance methane stage for biomass with high nitrogen loads. Renew. Energy 2019, 143, 1744–1754. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Y.; Xie, C.; Wang, H.; Chang, S.; Xiong, Y.; Du, C.; Xiao, B.; Yu, G. Anaerobic treatment of glutamate-rich wastewater in a continuous UASB reactor: Effect of hydraulic retention time and methanogenic degradation pathway. Chemosphere 2020, 245, 125672. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Y.; Liang, P.; Wang, C.; Hu, Y.; Xie, M.; Wang, Y.; Xiao, B.; Du, C.; Tian, H.; et al. Performance and microbial community variations of a Upflow Anaerobic Sludge Blanket (UASB) reactor for treating monosodium glutamate wastewater: Effects of organic loading rate. J. Environ. Manag. 2020, 253, 109691. [Google Scholar] [CrossRef]
- Ribeiro, F.R.; Passos, F.; Gurgel, L.V.A.; Baêta, B.E.L.; de Aquino, S.F. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Sci. Total Environ. 2017, 584–585, 1108–1113. [Google Scholar] [CrossRef]
- Bakraoui, M.; Karouach, F.; Ouhammou, B.; Aggour, M.; Essamri, A.; El Bari, H. Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions. Biotechnol. Rep. 2020, 25, e00402. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Q.; Yoza, B.A.; Li, Q.X.; Ke, M.; Chen, C. Degradation of guar in an up-flow anaerobic sludge blanket reactor: Impacts of salinity on performance robustness, granulation and microbial community. Chemosphere 2019, 232, 327–336. [Google Scholar] [CrossRef]
- Ni, C.-H.; Chang, C.-Y.; Lin, Y.-C.; Lin, J.C.-T. Simultaneous biodegradation of Tetrahydrofuran, 3-Buten-1-Ol and 1,4-Butanediol in real wastewater by a pilot high-rate UASB reactor. Int. Biodeterior. Biodegrad. 2019, 143, 104698. [Google Scholar] [CrossRef]
- Gür, E.; Demirer, G.N. Anaerobic digestability and biogas production capacity of pistachio processing wastewater in UASB reactors. J. Environ. Eng. 2019, 145, 04019042. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Zhang, Y.; Lian, J.; Guo, Y.; Song, Y.; Wang, S.; Yang, Q. Anaerobic granule sludge formation and perchlorate reduction in an Upflow Anaerobic Sludge Blanket (UASB) reactor. Bioresour. Technol. Rep. 2018, 4, 123–128. [Google Scholar] [CrossRef]
- Vidal, J.; Carvajal, A.; Huiliñir, C.; Salazar, R. Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-fenton process performed in semicontinuous operation. Chem. Eng. J. 2019, 378, 122097. [Google Scholar] [CrossRef]
- Esparza-Soto, M.; Jacobo-López, A.; Lucero-Chávez, M.; Fall, C. Anaerobic treatment of chocolate-processing industry wastewater at different organic loading rates and temperatures. Water Sci. Technol. 2019, 79, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.; Montes, J.A.; Rico, J.L. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors. Bioresour. Technol. 2017, 238, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; He, C.; Tian, T.; Liu, Z.; Gu, Z.; Zhang, G.; Wang, W. UASB-modified bardenpho process for enhancing bio-treatment efficiency of leachate from a municipal solid waste incineration plant. Waste Manag. 2020, 102, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, B.; Pan, S.; Yang, K.; Hu, Z.; Yuan, S. Performance robustness of the UASB reactors treating saline phenolic wastewater and analysis of microbial community structure. J. Hazard. Mater. 2017, 331, 21–27. [Google Scholar] [CrossRef]
- Nakasaki, K.; Nguyen, K.K.; Ballesteros, F.C.; Maekawa, T.; Koyama, M. Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas. Anaerobe 2020, 61, 102082. [Google Scholar] [CrossRef]
- Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah; Khan, S.U.; Farooqi, I.H. Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef]
- Mannacharaju, M.; Kannan Villalan, A.; Shenbagam, B.; Karmegam, P.M.; Natarajan, P.; Somasundaram, S.; Arumugam, G.; Ganesan, S. Towards sustainable system configuration for the treatment of fish processing wastewater using bioreactors. Environ. Sci. Pollut. Res. Int. 2020, 27, 353–365. [Google Scholar] [CrossRef]
- Barrera, E.L.; Spanjers, H.; Romero, O.; Rosa, E.; Dewulf, J. A successful strategy for start-up of a laboratory-scale UASB reactor treating sulfate-rich sugar cane vinasse. J. Chem. Technol. Biotechnol. 2020, 95, 205–212. [Google Scholar] [CrossRef]
- Lu, X.; Zhen, G.; Ni, J.; Hojo, T.; Kubota, K.; Li, Y.-Y. Effect of influent COD/SO42—Ratios on biodegradation behaviors of starch wastewater in an Upflow Anaerobic Sludge Blanket (UASB) reactor. Bioresour. Technol. 2016, 214, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Lafuente, J.; Gabriel, D. Influence of crude glycerol load and pH shocks on the granulation and microbial diversity of a sulfidogenic upflow anaerobic sludge blanket reactor. Process Saf. Environ. Prot. 2020, 133, 159–168. [Google Scholar] [CrossRef]
- Li, H.; Han, K.; Li, Z.; Zhang, J.; Li, H.; Huang, Y.; Shen, L.; Li, Q.; Wang, Y. Performance, granule conductivity and microbial community analysis of Upflow Anaerobic Sludge Blanket (UASB) reactors from mesophilic to thermophilic operation. Biochem. Eng. J. 2018, 133, 59–65. [Google Scholar] [CrossRef]
- Tassew, F.A.; Bergland, W.H.; Dinamarca, C.; Bakke, R. Influences of temperature and substrate particle content on granular sludge bed anaerobic digestion. Appl. Sci. 2020, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ban, Q.; Li, J.; Wan, C. Functional bacterial and archaeal dynamics dictated by pH stress during sugar refinery wastewater in a UASB. Bioresour. Technol. 2019, 288, 121464. [Google Scholar] [CrossRef]
- Vasconcelos, E.A.F.; Santaella, S.T.; Viana, M.B.; dos Santos, A.B.; Pinheiro, G.C.; Leitão, R.C. Composition and ecology of bacterial and archaeal communities in anaerobic reactor fed with residual glycerol. Anaerobe 2019, 59, 145–153. [Google Scholar] [CrossRef]
- Debik, E.; Coskun, T. Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresour. Technol. 2009, 100, 2777–2782. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Z.; Ruan, W.; Zhao, M.; Shao, Y.; Miao, H. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system. J. Environ. Sci. 2018, 64, 227–234. [Google Scholar] [CrossRef]
- Diamantis, V.; Aivasidis, A. Performance of an ECSB reactor for high-rate anaerobic treatment of cheese industry wastewater: Effect of pre-acidification on process efficiency and calcium precipitation. Water Sci. Technol. 2018, 78, 1893–1900. [Google Scholar] [CrossRef]
- Hendrickx, T.L.G.; Pessotto, B.; Prins, R.; Habets, L.; Vogelaar, J. Biopaq®ICX: The next generation high rate anaerobic reactor proves itself at full scale. Water Pract. Technol. 2019, 14, 802–807. [Google Scholar] [CrossRef]
- Parker, W.J. Application of the ADM1 model to advanced anaerobic digestion. Bioresour. Technol. 2005, 96, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Llanes, J.; Pagés-Díaz, J.; Kalogirou, E.; Contino, F. Development and application in aspen plus of a process simulation model for the anaerobic digestion of vinasses in UASB reactors: Hydrodynamics and biochemical reactions. J. Environ. Chem. Eng. 2019, 103540. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Mu, Y.; Huo, Y.-C.; Zhang, Z.; Kotsopoulos, T.A.; Zeng, R.J. Mathematical modeling of Upflow Anaerobic Sludge Blanket (UASB) reactors: Simultaneous accounting for hydrodynamics and bio-dynamics. Chem. Eng. Sci. 2015, 137, 677–684. [Google Scholar] [CrossRef]
- Brito, M.G.S.L.; Nunes, F.C.B.; Magalhães, H.L.F.; Lima, W.M.P.B.; Moura, F.L.C.; Farias Neto, S.R.; Lima, A.G.B. Hydrodynamics of Uasb reactor treating domestic wastewater: A three-dimensional numerical study. Water 2020, 12, 279. [Google Scholar] [CrossRef] [Green Version]
- Tsui, T.-H.; Ekama, G.A.; Chen, G.-H. Quantitative characterization and analysis of granule transformations: Role of intermittent gas sparging in a super high-rate anaerobic system. Water Res. 2018, 139, 177–186. [Google Scholar] [CrossRef]
- Owusu-Agyeman, I.; Eyice, Ö.; Cetecioglu, Z.; Plaza, E. The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. Bioresour. Technol. 2019, 290, 121733. [Google Scholar] [CrossRef]
- Callejas, C.; Fernández, A.; Passeggi, M.; Wenzel, J.; Bovio, P.; Borzacconi, L.; Etchebehere, C. Microbiota adaptation after an alkaline pH perturbation in a full-scale UASB anaerobic reactor treating dairy wastewater. Bioprocess Biosyst. Eng. 2019, 42, 2035–2046. [Google Scholar] [CrossRef]
- Show, K.-Y.; Yan, Y.; Yao, H.; Guo, H.; Li, T.; Show, D.-Y.; Chang, J.-S.; Lee, D.-J. Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications. Bioresour. Technol. 2020, 300, 122751. [Google Scholar] [CrossRef]
- Na, J.-G.; Lee, M.-K.; Yun, Y.-M.; Moon, C.; Kim, M.-S.; Kim, D.-H. Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing. Biochem. Eng. J. 2016, 112, 241–248. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Wu, H.; Song, B.; Liu, S.-S.; Bhardwaj, A.; Wong, J.W.C. Food waste leachate treatment using an Upflow Anaerobic Sludge Bed (UASB): Effect of conductive material dosage under low and high organic loads. Bioresour. Technol. 2020, 304, 122738. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y. Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study. Renew. Energy 2019, 136, 846–855. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Yang, G.; Fang, H.; Wang, J.; Jia, H.; Zhang, H. Enhanced anaerobic digestion of Up-Flow Anaerobic Sludge Blanket (UASB) by Blast Furnace Dust (BFD): Feasibility and mechanism. Int. J. Hydrogen Energy 2019, 44, 17709–17719. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Nandhini Devi, G. Critical considerations in two-stage anaerobic digestion of food waste—A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Sun, C.; Liu, F.; Song, Z.; Li, L.; Pan, Y.; Sheng, T.; Ren, G. Continuous hydrogen and methane production from the treatment of herbal medicines wastewater in the two-phase ‘UASBH-ICM’ system. Water Sci. Technol. 2019, 80, 1134–1144. [Google Scholar] [CrossRef]
- Rajendran, K.; Mahapatra, D.; Venkatraman, A.V.; Muthuswamy, S.; Pugazhendhi, A. Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renew. Sustain. Energy Rev. 2020, 123, 109746. [Google Scholar] [CrossRef]
- Kamyab, B.; Zilouei, H.; Rahmanian, B. Investigation of the effect of hydraulic retention time on anaerobic digestion of potato leachate in two-stage mixed-UASB system. Biomass Bioenergy 2019, 130, 105383. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, B.; Feng, B.; Li, L.; Moideen, S.N.F.; Chen, H.; Mribet, C.; Li, Y.-Y. Pre-acidification greatly improved granules physicochemical properties and operational stability of Upflow Anaerobic Sludge Blanket (UASB) reactor treating low-strength starch wastewater. Bioresour. Technol. 2020, 302, 122810. [Google Scholar] [CrossRef]
- Diamantis, V.I.; Kapagiannidis, A.G.; Ntougias, S.; Tataki, V.; Melidis, P.; Aivasidis, A. Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem. Eng. J. 2014, 84, 45–52. [Google Scholar] [CrossRef]
- Alpay, T.; Karabey, B.; Azbar, N.; Ozdemir, G. Purified terephthalic acid wastewater treatment using modified two-stage UASB bioreactor systems. Curr. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jiraprasertwong, A.; Maitriwong, K.; Chavadej, S. Production of biogas from cassava wastewater using a three-stage Upflow Anaerobic Sludge Blanket (UASB) reactor. Renew. Energy 2019, 130, 191–205. [Google Scholar] [CrossRef]
- Chavadej, S.; Wangmor, T.; Maitriwong, K.; Chaichirawiwat, P.; Rangsunvigit, P.; Intanoo, P. Separate production of hydrogen and methane from cassava wastewater with added cassava residue under a thermophilic temperature in relation to digestibility. J. Biotechnol. 2019, 291, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. J. Environ. Chem. Eng. 2019, 7, 103184. [Google Scholar] [CrossRef]
- Siddique, N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Chan, P.C.; Lu, Q.; de Toledo, R.A.; Gu, J.-D.; Shim, H. Improved anaerobic co-digestion of food waste and domestic wastewater by copper supplementation—Microbial community change and enhanced effluent quality. Sci. Total Environ. 2019, 670, 337–344. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef]
- Kumari, K.; Suresh, S.; Arisutha, S.; Sudhakar, K. Anaerobic co-digestion of different wastes in a UASB reactor. Waste Manag. 2018, 77, 545–554. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, L.; Liu, Y. High-loading food waste and blackwater anaerobic co-digestion: Maximizing bioenergy recovery. Chem. Eng. J. 2020, 394, 124911. [Google Scholar] [CrossRef]
- Sampaio, G.F.; Dos Santos, A.M.; da Costa, P.R.; Rodriguez, R.P.; Sancinetti, G.P. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source. Water Environ. Res. 2020, 92, 245–254. [Google Scholar] [CrossRef]
- Montes, J.A.; Leivas, R.; Martínez-Prieto, D.; Rico, C. Biogas production from the liquid waste of distilled gin production: Optimization of UASB reactor performance with increasing organic loading rate for co-digestion with swine wastewater. Bioresour. Technol. 2019, 274, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.; Muñoz, N.; Fernández, J.; Rico, J.L. High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: Limits in co-substrates ratio and organic loading rate. Chem. Eng. J. 2015, 262, 794–802. [Google Scholar] [CrossRef]
- Junior, A.E.S.; Duda, R.M.; De Oliveira, R.A. Improving the energy balance of ethanol industry with methane production from vinasse and molasses in two-stage anaerobic reactors. J. Clean. Prod. 2019, 238, 117577. [Google Scholar] [CrossRef]
- Ma, H.; Niu, Q.; Zhang, Y.; He, S.; Li, Y.-Y. Substrate inhibition and concentration control in an UASB-anammox process. Bioresour. Technol. 2017, 238, 263–272. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wang, Z.; Jiang, H.; Ren, S.; Peng, Y. Simultaneous ammonium oxidation denitrifying (SAD) in an innovative three-stage process for energy-efficient mature landfill leachate treatment with external sludge reduction. Water Res. 2020, 169, 115156. [Google Scholar] [CrossRef]
- Li, X.; Lu, M.; Qiu, Q.; Huang, Y.; Li, B.; Yuan, Y.; Yuan, Y. the effect of different denitrification and partial nitrification-anammox coupling forms on nitrogen removal from mature landfill leachate at the pilot-scale. Bioresour. Technol. 2020, 297, 122430. [Google Scholar] [CrossRef]
- Li, M.-C.; Song, Y.; Shen, W.; Wang, C.; Qi, W.-K.; Peng, Y.; Li, Y.-Y. The performance of an anaerobic ammonium oxidation upflow anaerobic sludge blanket reactor during natural periodic temperature variations. Bioresour. Technol. 2019, 293, 122039. [Google Scholar] [CrossRef]
- Pekyavas, G.; Yangin-Gomec, C. Response of anammox bacteria to elevated nitrogen and organic matter in pre-digested chicken waste at a long-term operated UASB reactor initially seeded by methanogenic granules. Bioresour. Technol. Rep. 2019, 7, 100222. [Google Scholar] [CrossRef]
- Mahmod, S.S.; Azahar, A.M.; Tan, J.P.; Jahim, J.M.; Abdul, P.M.; Mastar, M.S.; Anuar, N.; Mohammed Yunus, M.F.; Asis, A.J.; Wu, S.-Y.; et al. Operation performance of Up-flow Anaerobic Sludge Blanket (UASB) bioreactor for biohydrogen production by self-granulated sludge using pre-treated Palm Oil Mill Effluent (POME) as carbon source. Renew. Energy 2019, 134, 1262–1272. [Google Scholar] [CrossRef]
- Moreno Dávila, I.M.M.; Tamayo Ordoñez, M.C.; Morales Martínez, T.K.; Soria Ortiz, A.I.; Gutiérrez Rodríguez, B.; Rodríguez de la Garza, J.A.; Ríos González, L.J. Effect of fermentation time/hydraulic retention time in a UASB reactor for hydrogen production using surface response methodology. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Buitrón, G.; Muñoz-Páez, K.M.; Quijano, G.; Carrillo-Reyes, J.; Albarrán-Contreras, B.A. Biohydrogen production from winery effluents: Control of the homoacetogenesis through the headspace gas recirculation. J. Chem. Technol. Biotechnol. 2020, 95, 544–552. [Google Scholar] [CrossRef]
- Eregowda, T.; Kokko, M.E.; Rene, E.R.; Rintala, J.; Lens, P.N.L. Volatile fatty acid production from kraft mill foul condensate in upflow anaerobic sludge blanket reactors. Environ. Technol. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shen, J.; Shi, H.; Su, G.; Jiang, X.; Li, J.; Liu, X.; Mu, Y.; Wang, L. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. Environ. Int. 2019, 131, 105020. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liang, J.; Yoza, B.A.; Li, Q.X.; Zhan, Y.; Wang, Q. Evaluation of an Up-Flow Anaerobic Sludge Bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater. Bioresour. Technol. 2017, 243, 620–627. [Google Scholar] [CrossRef]
- El-Khateeb, M.A.; Emam, W.M.; Darweesh, W.A.; El-Sayed, E.S.A. Integration of UASB and down flow hanging non-woven fabric (DHNW) reactors for the treatment of sewage water. Desalin. Water Treat. 2019, 164, 48–55. [Google Scholar] [CrossRef]
- Gonzalez-Tineo, P.A.; Durán-Hinojosa, U.; Delgadillo-Mirquez, L.R.; Meza-Escalante, E.R.; Gortáres-Moroyoqui, P.; Ulloa-Mercado, R.G.; Serrano-Palacios, D. Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater. J. Water Process Eng. 2020, 34, 101164. [Google Scholar] [CrossRef]
- Carvalho, J.R.S.; Amaral, F.M.; Florencio, L.; Kato, M.T.; Delforno, T.P.; Gavazza, S. Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye direct black 22. Chemosphere 2020, 242, 125157. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S.; Harun, M.R.; Tuan Mohd Marzuki, T.F.; Abdul Wahab, A.M. A comparative study of biogas production from cattle slaughterhouse wastewater using conventional and modified Upflow Anaerobic Sludge Blanket (UASB) reactors. Int. J. Environ. Res. Public Health 2020, 17, 283. [Google Scholar] [CrossRef] [Green Version]
- Wambugu, C.W.; Rene, E.R.; van de Vossenberg, J.; Dupont, C.; van Hullebusch, E.D. Role of biochar in anaerobic digestion based biorefinery for food waste. Front. Energy Res. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, Q.; Feng, B.; Kong, Z.; Jiang, B.; Li, Y.-Y. Temperature effects on the methanogenesis enhancement and sulfidogenesis suppression in the UASB treatment of sulfate-rich methanol wastewater. Int. Biodeterior. Biodegrad. 2019, 142, 182–190. [Google Scholar] [CrossRef]
- Zhang, L.; Hendrickx, T.L.G.; Kampman, C.; Temmink, H.; Zeeman, G. Co-digestion to support low temperature anaerobic pretreatment of municipal sewage in a UASB–digester. Bioresour. Technol. 2013, 148, 560–566. [Google Scholar] [CrossRef]
- Zhang, L.; De Vrieze, J.; Hendrickx, T.L.G.; Wei, W.; Temmink, H.; Rijnaarts, H.; Zeeman, G. Anaerobic treatment of raw domestic wastewater in a UASB-digester at 10 °C and microbial community dynamics. Chem. Eng. J. 2018, 334, 2088–2097. [Google Scholar] [CrossRef]
- McAteer, P.G.; Christine Trego, A.; Thorn, C.; Mahony, T.; Abram, F.; O’Flaherty, V. Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour. Technol. 2020, 123221. [Google Scholar] [CrossRef] [PubMed]
- Crone, B.C.; Garland, J.L.; Sorial, G.A.; Vane, L.M. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Res. 2016, 104, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Rongwong, W.; Goh, K.; Sethunga, G.S.M.D.P.; Bae, T.-H. Fouling formation in membrane contactors for methane recovery from anaerobic effluents. J. Membr. Sci. 2019, 573, 534–543. [Google Scholar] [CrossRef]
- Hasan, M.N.; Khan, A.A.; Ahmad, S.; Lew, B. Anaerobic and aerobic sewage treatment plants in Northern India: Two years intensive evaluation and perspectives. Environ. Technol. Innov. 2019, 15, 100396. [Google Scholar] [CrossRef]
- Saavedra, O.; Escalera, R.; Heredia, G.; Montoya, R.; Echeverría, I.; Villarroel, A.; Brito, L.L. Evaluation of a domestic wastewater treatment plant at an intermediate city in Cochabamba, Bolivia. Water Pract. Technol. 2019, 14, 908–920. [Google Scholar] [CrossRef]
- Lijó, L.; Malamis, S.; González-García, S.; Moreira, M.T.; Fatone, F.; Katsou, E. Decentralised schemes for integrated management of wastewater and domestic organic waste: The case of a small community. J. Environ. Manag. 2017, 203, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Zhang, L.; Guo, B.; Zhang, Y.; Liu, Y. Enhancing biomethane recovery from source-diverted blackwater through hydrogenotrophic methanogenesis dominant pathway. Chem. Eng. J. 2019, 378, 122258. [Google Scholar] [CrossRef]
- Prado, L.O.; Souza, H.H.S.; Chiquito, G.M.; Paulo, P.L.; Boncz, M.A. A comparison of different scenarios for on-site reuse of blackwater and kitchen waste using the life cycle assessment methodology. Environ. Impact Assess. Rev. 2020, 82, 106362. [Google Scholar] [CrossRef]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Yu, N.; Liu, Y. Biomethane recovery from source-diverted household blackwater: Impacts from feed sulfate. Process Saf. Environ. Prot. 2020, 136, 28–38. [Google Scholar] [CrossRef]
- Slompo, N.D.M.; Quartaroli, L.; Zeeman, G.; da Silva, G.H.R.; Daniel, L.A. Black water treatment by an Upflow Anaerobic Sludge Blanket (UASB) reactor: A pilot study. Water Sci. Technol. 2019, 80, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Liu, Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. Water Res. 2019, 160, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, J.R.; Lohani, S.P. Design, installation, operation and experimentation of septic tank—UASB wastewater treatment system. Renew. Energy 2019, 143, 1406–1415. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Huang, S.; Zeeman, G.; Rijnaarts, H.; Liu, Y. Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment. Biochem. Eng. J. 2018, 135, 71–78. [Google Scholar] [CrossRef]
- Cunha, J.R.; Schott, C.; van der Weijden, R.D.; Leal, L.H.; Zeeman, G.; Buisman, C. Recovery of calcium phosphate granules from black water using a hybrid upflow anaerobic sludge bed and gas-lift reactor. Environ. Res. 2019, 178, 108671. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef]
- Ouhammou, B.; Aggour, M.; Frimane, Â.; Bakraoui, M.; El Bari, H.; Essamri, A. A new system design and analysis of a solar bio-digester unit. Energy Convers. Manag. 2019, 198, 111779. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Rajagopal, R.; Choudhury, M.R.; Anwar, N.; Goyette, B.; Rahaman, M.S. Influence of pre-hydrolysis on sewage treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) reactor: A review. Water 2019, 11, 372. [Google Scholar] [CrossRef] [Green Version]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Cardelli, V.; Corti, G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Maldonado, J.A.; Alzate-Gaviria, L.; Milquez-Sanabria, H.A.; Tapia-Tussell, R.; Leal-Bautista, R.M.; España-Gamboa, E.I. Chemical pretreatments to enrich the acidogenic phase in a system coupled packed bed reactor with a UASB reactor using peels and rotten onion waste. Waste Biomass Valorization 2019. [Google Scholar] [CrossRef]
- Paulista, L.O.; Boaventura, R.A.R.; Vilar, V.J.P.; Pinheiro, A.L.N.; Martins, R.J.E. Enhancing methane yield from crude glycerol anaerobic digestion by coupling with ultrasound or A. Niger/E. Coli biodegradation. Environ. Sci. Pollut. Res. 2020, 27, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Eftaxias, A.; Diamantis, V.; Michailidis, C.; Stamatelatou, K.; Aivasidis, A. The role of emulsification as pre-treatment on the anaerobic digestion of oleic acid: Process performance, modeling, and sludge metabolic properties. Biomass Convers Biorefinery 2020. [Google Scholar] [CrossRef]
- Uddin, M.N.; Rahman, M.A.; Taweekun, J.; Techato, K.; Mofijur, M.; Rasul, M. Enhancement of biogas generation in Up-Flow Sludge Blanket (UASB) bioreactor from Palm Oil Mill Effluent (POME). Energy Procedia 2019, 160, 670–676. [Google Scholar] [CrossRef]
- Zhang, L. Advanced treatment of oilfield wastewater by a combination of DAF, yeast bioreactor, UASB, and BAF processes. Sep. Sci. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Gadow, S.I.; Li, Y.-Y. Development of an integrated anaerobic/aerobic bioreactor for biodegradation of recalcitrant azo dye and bioenergy recovery: HRT effects and functional resilience. Bioresour. Technol. Rep. 2020, 9, 100388. [Google Scholar] [CrossRef]
- Owaes, M.; Gaur, R.Z.; Hasan, M.N.; Gani, K.M.; Kumari, S.; Bux, F.; Khan, A.A.; Kazmi, A. Performance assessment of aerobic granulation for the post treatment of anaerobic effluents. Environ. Technol. Innov. 2020, 17, 100588. [Google Scholar] [CrossRef]
- Leite, L.d.S.; Hoffmann, M.T.; Daniel, L.A. Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J. Water Process Eng. 2019, 31, 100821. [Google Scholar] [CrossRef]
- Walia, R.; Kumar, P.; Mehrotra, I. Post-treatment of effluent from UASB reactor by surface aerator. Int. J. Environ. Sci. Technol. 2020, 17, 983–992. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Alfonsín, C.; Hospido, A.; Azapagic, A. Life cycle environmental impacts of sewage sludge treatment methods for resource recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products. J. Environ. Manag. 2020, 260, 109643. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Gogoi, A.; Mukherjee, S. Metal removal, partitioning and phase distributions in the wastewater and sludge: Performance evaluation of conventional, upflow anaerobic sludge blanket and downflow hanging sponge treatment systems. J. Clean. Prod. 2020, 249, 119426. [Google Scholar] [CrossRef]
- de Souza Celente, G.; Colares, G.S.; da Silva Araújo, P.; Machado, Ê.L.; Lobo, E.A. Acute ecotoxicity and genotoxicity assessment of two wastewater treatment units. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.F.M.; Zaiat, M.; Silva, G.H.R.; Fermoso, F.G. Metal fractionation in sludge from sewage UASB treatment. J. Environ. Manag. 2017, 193, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, T.; Rene, E.R.; Hu, Q.; Lens, P.N.L. Continuous biological removal of selenate in the presence of cadmium and zinc in UASB reactors at psychrophilic and mesophilic conditions. Biochem. Eng. J. 2019, 141, 102–111. [Google Scholar] [CrossRef]
- Hou, J.; Chen, Z.; Gao, J.; Xie, Y.; Li, L.; Qin, S.; Wang, Q.; Mao, D.; Luo, Y. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Res. 2019, 159, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Buttazzoni, M.; De Bortoli, N.; Mion, M.; Goi, D. Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. J. Clean. Prod. 2020, 258, 120781. [Google Scholar] [CrossRef]
- Qian, M.; Yang, L.; Chen, X.; Li, K.; Xue, W.; Li, Y.; Zhao, H.; Cao, G.; Guan, X.; Shen, G.; et al. The treatment of veterinary antibiotics in swine wastewater by biodegradation and fenton-like oxidation. Sci. Total Environ. 2020, 710, 136299. [Google Scholar] [CrossRef]
- Freitas, F.F.; De Souza, S.S.; Ferreira, L.R.A.; Otto, R.B.; Alessio, F.J.; De Souza, S.N.M.; Venturini, O.J.; Ando Junior, O.H. The Brazilian market of distributed biogas generation: Overview, technological development and case study. Renew. Sustain. Energy Rev. 2019, 101, 146–157. [Google Scholar] [CrossRef]
- Meneses-Jácome, A.; Diaz-Chavez, R.; Velásquez-Arredondo, H.I.; Cárdenas-Chávez, D.L.; Parra, R.; Ruiz-Colorado, A.A. Sustainable energy from agro-industrial wastewaters in Latin-America. Renew. Sustain. Energy Rev. 2016, 56, 1249–1262. [Google Scholar] [CrossRef]
- Bressani-Ribeiro, T.; Chamhum-Silva, L.A.; Chernicharo, C.A.L. Constraints, performance and perspectives of anaerobic sewage treatment: Lessons from full-scale sewage treatment plants in Brazil. Water Sci. Technol. 2019, 80, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.Z.; Khan, A.A.; Lew, B.; Diamantis, V.; Kazmi, A.A. Performance of full-scale UASB reactors treating low or medium strength municipal wastewater. Environ. Process. 2017, 4, 137–146. [Google Scholar] [CrossRef]
- Lopes, T.A.S.; Queiroz, L.M.; Torres, E.A.; Kiperstok, A. Low complexity wastewater treatment process in developing countries: A LCA approach to evaluate environmental gains. Sci. Total Environ. 2020, 720, 137593. [Google Scholar] [CrossRef]
- Maharjan, N.; Nomoto, N.; Tagawa, T.; Okubo, T.; Uemura, S.; Khalil, N.; Hatamoto, M.; Yamaguchi, T.; Harada, H. Assessment of UASB-DHS technology for sewage treatment: A comparative study from a sustainability perspective. Environ. Technol. 2019, 40, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.P.; Chernicharo, C.A.L.; Lobato, L.C.S.; Silva, R.V.; Padilha, R.F.; Borges, J.M. Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renew. Energy 2018, 124, 21–26. [Google Scholar] [CrossRef]
- Oliveira, J.F.d.; Fia, R.; Fia, F.R.L.; Rodrigues, F.N.; Matos, M.P.d.; Siniscalchi, L.A.B. Principal component analysis as a criterion for monitoring variable organic load of swine wastewater in integrated biological reactors UASB, SABF and HSSF-CW. J. Environ. Manag. 2020, 262, 110386. [Google Scholar] [CrossRef]
Substrate | Temperature (°C) | Influent Chemical Oxygen Demand (g/L) | Chemical Oxygen Demand Removal (%) | Hydraulic Retention Time (h) | Organic Loading Rate (g COD/L·d) | Methane Yield | Reference |
---|---|---|---|---|---|---|---|
Glutamate-rich wastewater | 35 | 2.0 | 95.5–96.5 | 4.5–6 | 8.26–10.82 | 0.31 1 | [25] |
Monosodium glutamate | 35 | 7.9 | 97 | 24 | 8 | 2.3 2 | [26] |
Sugarcane bagasse hydrolysate | 20–30 | 1.82 | 86 | 18.4 | 2.4 | 0.27 1 | [27] |
Recycled paper mill wastewater | 37 | 5.7 | 80.6 | 15.14 | 5.18 | 0.89 2 | [28] |
Vinasse | Ambient | 120.2 | 91–93 | 40 | 72.1 | 0.46–0.53 2 | [18] |
Guar | 37 | 1.1 | 79–84 | 10 | 2.78 | 0.15–0.16 3 | [29] |
Synthetic fiber wastewater | 13.9–32.1 | 1.7–30.7 | 75.8 | 24 | 1.3–21.5 | 0.4–2 2 | [30] |
Pistachio wastewater | 35 | 49.8 | 89.8 | 5.4 d | 4.56 | 0.33 1 | [31] |
Perchlorate | 30 | - | 84.7 | 2.2 | 9.96 | - | [32] |
Synthetic slaughterhouse wastewater | 37 | 1.7 | 70 | 10 | 3.94–8.15 | 0.35 2 | [33] |
Chocolate wastewater | 15–30 | 6.2 | 39–94 | 6 | 2–6 | 0.3–1.9 4 | [34] |
Pig slurry | 36 | 21.5 | - | 1.5 d | 14.3–16.4 | 0.25 1 | [35] |
Leachate from waste incineration | 35 | 36.8 | 97.5–99.5 | 1.3–3 d | 1.86–7.43 | - | [36] |
Advantages | Drawbacks |
---|---|
Improved process stability | Increased capital costs |
Increased pollutant abatement | Not standardized operating conditions (Hydraulic Retention Time, Organic Loading Rate, total solids (TS)/ volatile solids (VS) |
Augmented methane yield | |
Need for a second digester | |
Optimal operating conditions for diverse microorganism consortia | Biogas surplus typically not sufficient to cover expenses |
Better process control | Need for an extra process control |
Reduced fatty acid and ammonia inhibition | Economic sustainability not always favorable |
Augmented buffering capacity | |
Improved control of byproducts | |
Enhanced sludge stabilization | |
Reduced biomass floatation and disintegration | |
Effective in readily biodegradable substrate treatment |
Substrate | Co-Substrate | Adjuvant | Temperature (°C) | Hydraulic Retention Time (d) | Organic Loading Rate (kg COD/m3d) | Chemical Oxygen Demand Removal (%) | Yield | Reference |
---|---|---|---|---|---|---|---|---|
Food waste | Domestic wastewater | Cu2+ | 35 | 10 | 3.8 | >90 | 0.3 1 | [76] |
Food waste | Liquid slaughterhouse waste | Clinoptiolite | 40 | 28 | - | - | - | [77] |
Cheese whey | Manure liquid fraction | None | 35 | 2.2 | 19.4 | 95 | 6.4 2 | [82] |
Distilled gin | Swine wastewater | None | 36 | 3.3 | 28.5 | 97 | 8.4 2 | [81] |
Sewage sludge-cow manure | Kitchen waste, yard waste, floral waste, dairy wastewater | None | 36 | 1 | - | 78–86 | 4.5 2 | [78] |
Acid mine drainage | Cheese whey | None | 30 | 1 | - | 68–84 | - | [80] |
Source-diverted blackwater | Food waste | None | 35 | 2.6 | 10.0 | 82–84 | 2.42 3 | [79] |
Substrate | Reactor | Temperature (°C) | Product | Hydraulic Retention Time (d) | Organic Loading Rate (kg COD/m3d) | Yield | Reference |
---|---|---|---|---|---|---|---|
Palm oil mill effluent | UASB | 55 | H2 | 0.25 | - | 11.75 1 | [89] |
Winery wastewater | UASB | 37 | H2 | 0.23 | - | 62 2 | [91] |
Synthetic media | UASB | - | H2 | 0.25 | - | 4.34 1 | [90] |
Foul condensate from Kraft mill | UASB | 22–55 | VFA | 3.13 | 8.6 | 52–70 3 | [92] |
Nitrobenzene | UASB with nanoscale zero-valent iron addition | 35 | CH4 | 1 | 0.2 4 | - | [93] |
Petroleum wastewater | UASB with diatomite and maifanite addition | 36 | CH4 | 10–20 | 11 | 1.61–2.2 5 | [94] |
Sewage water | Packed UASB reactor | Ambient | CH4 | 0.21–0.25 | 1.8 | - | [95] |
Swine wastewater | UASB+ aerobic packed bed reactor | 37 | CH4 | 0.79 | 3.26–10.14 | 0.26–0.81 6 | [96] |
Textile wastewater | Micro-aerated UASB | 25 | CH4 | - | 1.27–1.5 | - | [97] |
Cattle slaughterhouse wastewater | UASB with synthetic grass packing | 35 | CH4 | 1 | 10 | 2.0 5 | [98] |
Diluted food waste paste | UASB with biochar addition | 30 | CH4 | 1 | 6.9–7.8 | 0.86 7 | [99] |
Advantages | Critical Aspects |
---|---|
Possibility to get clean energy in decentralized areas | Not efficient disinfection and nutrient removal |
Proved efficiency on high-loaded biodegradable streams | Residual effluent toxicity in the sludge to be carefully evaluated |
Low-temperature operations not efficient on diluted streams | |
Modified UASB systems allow to efficiently treat refractory streams | Limited integration with other renewable energy sources |
Co-digestion of complementary substrates in the same territory increases plant sustainability | Need for a post-treatment to abate pollutants under required law limits |
Possibility to produce hydrogen and volatile fatty acids | Limited biogas valorization in developing countries |
Possibility to abate N through granular Anammox process | UASB start-up phase is particularly critical |
Significant reduction of excess sludge in comparison with traditional flocculent processes | Pre-treatments to increase biogas yield are not very applied at full-scale |
Improved microbial understanding and use of modeling tools helps to optimize performances | Need for an efficient odor abatement |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainardis, M.; Buttazzoni, M.; Goi, D. Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering 2020, 7, 43. https://doi.org/10.3390/bioengineering7020043
Mainardis M, Buttazzoni M, Goi D. Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering. 2020; 7(2):43. https://doi.org/10.3390/bioengineering7020043
Chicago/Turabian StyleMainardis, Matia, Marco Buttazzoni, and Daniele Goi. 2020. "Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances" Bioengineering 7, no. 2: 43. https://doi.org/10.3390/bioengineering7020043
APA StyleMainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering, 7(2), 43. https://doi.org/10.3390/bioengineering7020043