Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties
Abstract
:1. Introduction
2. Physical, Chemical and Biological Properties of Nanostructured Material
2.1. Particle Size and Surface Area
2.2. Surface Charge
2.3. Surface Hydrophobicity
2.4. Thermal Stability
2.5. Antimicrobial Property
3. Nanomaterial Characterisation by Microscopy
3.1. Scanning Electron Microscopy
3.2. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM)
3.3. Atomic Force Microscopy (AFM)
3.4. Scanning Tunnelling Microscope
4. Nanomaterials Characterisation by Spectroscopy
4.1. Raman Spectroscopy
4.2. Ultraviolet–Visible Spectroscopy
4.3. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
- Faster sampling;
- Improving sample-to-sample reproducibility;
- Minimising spectral variance.
4.4. Dynamic Light Scattering Spectroscopy (DLS)
4.5. Zeta Potential Spectroscopy
4.6. X-ray Photoelectron Spectroscopy (XPS)
5. Applications
5.1. Nanofood
5.2. Nanoencapsulated Probiotics
5.3. Edible Nanocoatings
5.4. Nanocoatings for Food Contact Surfaces
5.5. Active and Smart Packaging
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lövestam, G.; Rauscher, H.; Roebben, G.; Klüttgen, B.S.; Gibson, N.; Putaud, J.-P.; Stamm, H. Considerations on a Definition of Nanomaterial for Regulatory Purposes; Joint Research Centre (JRC): Luxembourg, 2010; p. 80004-1. [Google Scholar]
- Boverhof, D.R.; Bramante, C.M.; Butala, J.H.; Clancy, S.F.; Lafranconi, M.; West, J.; Gordon, S.C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q. Nanotechnology in the Food, Beverage and Nutraceutical Industries; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hett, A. Nanotechnology: Small Matter, Many Unknowns; Swiss Reinsurance Company: Zürich, Switzerland, 2004. [Google Scholar]
- Liang, S.-S.; Makamba, H.; Huang, S.-Y.; Chen, S.-H. Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr. A 2006, 1116, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010, 399, 129–139. [Google Scholar] [CrossRef]
- Betancor, L.; Luckarift, H.R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008, 26, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Amador, C.; Martin de Juan, L. Chapter 19—Strategies for Structured Particulate Systems Design. In Computer Aided Chemical Engineering; Martín, M., Eden, M.R., Chemmangattuvalappil, N.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 39, pp. 509–579. [Google Scholar]
- Tohver, V.; Chan, A.; Sakurada, O.; Lewis, J.A. Nanoparticle engineering of complex fluid behavior. Langmuir 2001, 17, 8414–8421. [Google Scholar] [CrossRef]
- Pochard, I.; Boisvert, J.P.; Persello, J.; Foissy, A. Surface charge, effective charge and dispersion/aggregation properties of nanoparticles. Polym. Int. 2003, 52, 619–624. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Kurth, D.G.; Möhwald, H. Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chem. Int. Ed. 2004, 43, 5639–5642. [Google Scholar] [CrossRef] [PubMed]
- Kickelbick, G. Hybrid Materials: Synthesis, Characterization, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Astruc, D. Nanoparticles and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bhatia, S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In Natural Polymer Drug Delivery Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 33–93. [Google Scholar]
- de Britto, D.; de Moura, M.R.; Aouada, F.A.; Mattoso, L.H.; Assis, O.B. N,N,N-trimethyl chitosan nanoparticles as a vitamin carrier system. Food Hydrocoll. 2012, 27, 487–493. [Google Scholar] [CrossRef]
- Chen, C.-C.; Wagner, G. Vitamin E nanoparticle for beverage applications. Chem. Eng. Res. Des. 2004, 82, 1432–1437. [Google Scholar] [CrossRef]
- Xiao, Y.; Wiesner, M.R. Characterization of surface hydrophobicity of engineered nanoparticles. J. Hazard. Mater. 2012, 215, 146–151. [Google Scholar] [CrossRef]
- Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.-P.; Muller, S. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108–113. [Google Scholar] [CrossRef]
- Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D.J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588–595. [Google Scholar] [CrossRef]
- Sagadevan, S.; Janarthanan, B. A review on influence of thermal studies of Nanomaterials. Int. J. Mater. Sci. Appl. 2014, 3, 370–377. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol. 2013, 48, 1127–1134. [Google Scholar]
- Woranuch, S.; Yoksan, R. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr. Polym. 2013, 96, 578–585. [Google Scholar] [CrossRef]
- Santos, C.; Albuquerque, A.; Sampaio, F.; Keyson, D. Nanomaterials with antimicrobial properties: Applications in health sciences. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Formatex Research Center: Badajoz, Spain, 2013; Volume 4, p. 2. [Google Scholar]
- Allaker, R. The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 2010, 89, 1175–1186. [Google Scholar] [CrossRef]
- Taylor, E.; Webster, T.J. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomed. 2011, 6, 1463–1473. [Google Scholar] [Green Version]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- Lellouche, J.; Friedman, A.; Lahmi, R.; Gedanken, A.; Banin, E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomed. 2012, 7, 1175–1188. [Google Scholar] [Green Version]
- Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004, 275, 496–502. [Google Scholar] [CrossRef]
- Joshi, M.; Bhattacharyya, A.; Ali, S.W. Characterization techniques for nanotechnology applications in textiles. Indian J. Fibre Text. Res. 2008, 33, 304–317. [Google Scholar]
- Charurvedi, S.; Dave, P.N. Microscopy in Nanotechnology. In Current Microscopy Contributions to Advances in Science and Technology; Formatex Research Center: Badajoz, Spain, 2012. [Google Scholar]
- Buckley AGoldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Romig, A.D., Jr.; Lyman, C.E.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis. A Text for Biologists, Materials Scientists, and Geologists; Plenum Press: New York, NY, USA; London, UK, 1992. [Google Scholar]
- Hanada, N.; Hirotoshi, E.; Ichikawa, T.; Akiba, E.; Fujii, H. SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5. J. Alloys Compd. 2008, 450, 395–399. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, S.; Gunasekaran, S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 2009, 74, N50–N56. [Google Scholar] [CrossRef]
- Biddeci, G.; Cavallaro, G.; Di Blasi, F.; Lazzara, G.; Massaro, M.; Milioto, S.; Parisi, F.; Riela, S.; Spinelli, G. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr. Polym. 2016, 152, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Mock, J.; Barbic, M.; Smith, D.; Schultz, D.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930. [Google Scholar] [CrossRef]
- Stipp, S.; Eggleston, C.; Nielsen, B. Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim. Cosmochim. Acta 1994, 58, 3023–3033. [Google Scholar] [CrossRef]
- De Moura, M.R.; Mattoso, L.H.; Zucolotto, V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng. 2012, 109, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Curri, M.; Agostiano, A.; Leo, G.; Mallardi, A.; Cosma, P.; Della Monica, M. Development of a novel enzyme/semiconductor nanoparticles system for biosensor application. Mater. Sci. Eng. C 2002, 22, 449–452. [Google Scholar] [CrossRef]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [Google Scholar] [CrossRef]
- Fan, Y.; Lai, K.; Rasco, B.A.; Huang, Y. Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis. LWT Food Sci. Technol. 2015, 60, 352–357. [Google Scholar] [CrossRef]
- Luo, H.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control 2016, 68, 229–235. [Google Scholar] [CrossRef]
- Baldock, B.; Hutchison, J. UV-visible spectroscopy-based quantification of biomolecules bound to nanoparticles. Anal. Chem. 2016, 88, 12072–17080. [Google Scholar] [CrossRef]
- Souza, M.P.; Vaz, A.F.; Correia, M.T.; Cerqueira, M.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol. 2014, 7, 1149–1159. [Google Scholar] [CrossRef]
- Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.-M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT Food Sci. Technol. 2011, 44, 2166–2172. [Google Scholar] [CrossRef]
- Elmer, P. FT-IR Spectroscopy Attenuated Total Reflectance (ATR); Technical Note; PerkinElmer Life and Analytical Science: Shelton, CT, USA, 2005; Volume 27. [Google Scholar]
- Shankar, S.; Rhim, J.-W.; Won, K. Preparation of poly (lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int. J. Biol. Macromol. 2018, 107, 1724–1731. [Google Scholar] [CrossRef]
- Shankar, S.; Reddy, J.P.; Rhim, J.-W.; Kim, H.-Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr. Polym. 2015, 117, 468–475. [Google Scholar] [CrossRef]
- Dalgleish, D.; Hallett, F. Dynamic light scattering: Applications to food systems. Food Res. Int. 1995, 28, 181–193. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.; Kelmann, R.; Araújo, B.; Finatto, R.; Teixeira, H.; Koester, L. Development and characterization of parenteral nanoemulsions containing thalidomide. Eur. J. Pharm. Sci. 2011, 42, 238–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalgleish, D.G. Measurement of electrophoretic mobilities and zeta-potentials of particles from milk using laser Doppler electrophoresis. J. Dairy Res. 1984, 51, 425–438. [Google Scholar] [CrossRef]
- Liang, J.; Yan, H.; Wang, X.; Zhou, Y.; Gao, X.; Puligundla, P.; Wan, X. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 2017, 231, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Linford, M. X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy: Comparison and Basic Principles; Vacuum Technology & Coating: Weston, CT, USA, 2015. [Google Scholar]
- Barros, W.R.; Steter, J.R.; Lanza, M.R.; Tavares, A.C. Catalytic activity of Fe3−xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Appl. Catal. B Environ. 2016, 180, 434–441. [Google Scholar] [CrossRef]
- Sekhon, B.S. Food nanotechnology—An overview. Nanotechnol. Sci. Appl. 2010, 3. [Google Scholar] [CrossRef]
- Boumans, H. Release on command: Bio-switch, in leads in life sciences. Newsl. TNO Nutr. Food Res. 2003, 22, 4–5. [Google Scholar]
- Das, M.; Saxena, N.; Dwivedi, P.D. Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology 2009, 3, 10–18. [Google Scholar] [CrossRef]
- Vidhyalakshmi, R.; Bhakyaraj, R.; Subhasree, R. Encapsulation “the future of probiotics”—A review. Adv. Biol. Res. 2009, 3, 96–103. [Google Scholar]
- Kalal, A.Y.; Hiregoudar, D.S.; Nidoni, U. Nanoencapsulation of Probiotic Bitter Gourd Juice Powder. Int. J. Agric. Sci. Res. 2016, 6, 9–20. [Google Scholar]
- Dhital, R.; Joshi, P.; Becerra-Mora, N.; Umagiliyage, A.; Chai, T.; Kohli, P.; Choudhary, R. Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. LWT Food Sci. Technol. 2017, 80, 257–264. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Hung, Y.-C. Photocatalytic TiO2 coating of plastic cutting board to prevent microbial cross-contamination. Food Control 2017, 77, 88–95. [Google Scholar] [CrossRef]
- Ghoshal, G. Recent Trends in Active, Smart, and Intelligent Packaging for Food Products. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–374. [Google Scholar]
- Food Safety Authority of Ireland. The Relevance for Food Safety of Applications of Nanotechnology in the Food and Feed Industries: Food Additives, Chemical Contaminants & Residues; Food Safety Authority of Ireland: Dublin, Ireland, 2008. [Google Scholar]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef]
Nanocomposite | Properties | Product |
---|---|---|
Silver | Food supplement, Antimicrobial promote cytotoxicity | Maternal Water (La Posta del Aguila), MesoSilver, Nano Silver dispersion, ASAP Health Max 30, Colloidal silver, Silver Biotics, Silver-22 TM |
Gold | Food supplement | MesoGold® |
Zinc oxide | Food supplement | MesoZinc, LifePak® Nano |
Titanium dioxide | Packaging materials, increased shelf life of food, antimicrobial | Hershey’s Chocolate Syrup, Albertson Chocolate Syrup, Cadbury Milk Chocolate Bar, parmesan cheese (Kraft Foods), M&M’s Chocolate Candy (Mars), Mentos Fresh Mint Gum, Nestlé Original Coffee Creamer, Best Food Mayonnaise, Lemon Lime Powerade (Coca-Cola), Oreo (Nabisco), Eclipse Spearmint Gum, Tic Tac Mints, Silk Original Soy Milk. |
Lycopene | Nutraceutical | Synthetic lycopene |
Silicon | Food and beverage supplement | MesoSilica ™ (Purest Colloids, Inc.), Microhydrin® Products, Nanosiliceo Kapseln (Neosino), Nano-2 Bio-Sim |
Calcium and magnesium | Stable and sustained release | 24Hr Microactive® CoQ10 |
Selenium | Antimicrobial protection | Nanotea (Shenzhen Become Industry & Trade Co., Ltd.) |
Nanoemulsions | Antioxidant | Nanoemulsion (β-Carotene; α-Tocopherol) based ice-cream (Nestle, Unilever), Fabuless™ |
Micelles | Liquid carrier | Canola Active Oil (Shemen Industries), NovaSOL, Encapsome™, Aquanova® Novasol®, Encapsome™ |
RBC’s NanoClusters | Delivery System | Nanoceuticals™ Slim Shake Chocolate |
Bioregulators | Supplements | C.L.E.A.N. Products (SportMedix Inc.), B12 Rapid Shot™ (Priority one) |
Nanoparticle | Properties | Product |
---|---|---|
Silver | Antimicrobial protection | Oso fresh food storage container, Kinetic Go Green basic nanosilver food storage container, FresherLonger™ Miracle Food Storage, Fresher LongerTM plastic storage bags, Primea Ring, Antibacterial Table Ware (Nano Care Technology, Ltd.), Daewoo® Refrigerator, Nano Silver Cutting Board, Nurser |
Ceramic | Hardness and strength | Bialetti® Aeternum Saute Pan |
Nanoclay | Hardness and strength, catalyst | Beer Bottle Plastics (Voridian), Nano flagon—Moon drunker, Durethan, Imperm (Nanocor) |
Bentonite | Gas barrier | Nanoclay–polymer composites |
Nanocomposites | Oxygen barrier | Aegis nylon 6 (Honeywell) |
Luminesent protein | Microbial detection on surface | NanoBioluminescence (AgroMicron Ltd.) |
Starch Nanosphere | Lower temperature of heat activation, adhesive containers | Ecosynthetix Adhesive |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Jaiswal, S.; Duffy, B.; Jaiswal, A.K. Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering 2019, 6, 26. https://doi.org/10.3390/bioengineering6010026
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering. 2019; 6(1):26. https://doi.org/10.3390/bioengineering6010026
Chicago/Turabian StyleSharma, Shubham, Swarna Jaiswal, Brendan Duffy, and Amit K. Jaiswal. 2019. "Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties" Bioengineering 6, no. 1: 26. https://doi.org/10.3390/bioengineering6010026
APA StyleSharma, S., Jaiswal, S., Duffy, B., & Jaiswal, A. K. (2019). Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering, 6(1), 26. https://doi.org/10.3390/bioengineering6010026