Increased Cervical Disc Height and Decreased Neck Pain and Disability Following Improvement in Cervical Lordosis and Posture Using Chiropractic BioPhysics
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
- Physical examination revealed neck pain (International Classification of Diseases, Tenth Revision (ICD-10) M54.2), abnormal cervical posture (ICD-10 R29.3), reduced neck mobility (ICD-10 Z74.09), and cervical spine dysfunction (ICD-10 M99.01).
- Health history revealed the patients reported that they sought medical treatment, traditional chiropractic adjustments, and(or) physical therapy (PT) previously and that their symptoms had not improved.
- Patient-reported outcomes (PRO) using the NP numeric rating scale (NRS) and neck disability index (NDI) revealed moderate-to-severe NP and disability.
- NLC radiographs including C2 to C7 revealed cervical hypolordosis (ICD-10 M95.3), degeneration of the cervical spine (ICD-10 M47.892), and cervical disc degeneration (ICD-10 M50.30).
- Compliance with treatment recommendations, including CBP® spinal rehabilitation, Mirror Image® (MI) chiropractic adjustments, therapeutic spinal exercises, and mechanical spinal traction, followed by post-treatment neutral lateral cervical (NLC) radiographs for comparison to pre-treatment radiographs.
- Presence of red flags or contraindications for chiropractic adjustments, therapeutic spinal exercises, or mechanical spinal traction to the cervical spine.
- Presence of cervical or cervicothoracic scoliosis or lateral translations of C2 with respect to T4 (Tx C2–C4) measuring 7 mm or greater [13].
2.2. Patient Reported Outcomes
2.2.1. Neck Pain Numeric Rating Scale
2.2.2. Neck Disability Index
2.3. Radiographic Analysis
2.4. Interventions and Outcomes
2.5. Statistical Analyses
3. Results
3.1. Pretreatment
3.2. Post-Treatment
3.3. Statistical Analyses
4. Discussion
4.1. Spinal Alignment and Posture
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NP | neck pain |
| YLD | years lived with disability |
| ROM | range of motion |
| HA | headache |
| DDD | degenerative disc disease |
| CBP® | Chiropractic BioPhysics® |
| ICD-10 | International Classification of Diseases, Tenth Revision |
| PT | physical therapy |
| PRO | patient-reported outcome |
| NRS | numeric rating scale |
| NDI | neck disability index |
| MI | Mirror Image® |
| NLC | neutral lateral cervical |
| C2-C7 | second through seventh cervical vertebrae |
| IRB | institutional review board |
| PROM | patient-reported outcome measure |
| MCID | minimal clinically important difference |
| CI | confidence interval |
| ° | degree |
| mm | millimeter |
| ADL | activities of daily living |
| HPTM | Harrison posterior tangent method |
| ARA | absolute rotation angle |
| ADH | anterior disc height |
| PDH | posterior disc height |
| MAD | mean absolute deviation |
| T,R | Translation, Rotation |
| x,y,z | x-, y-, z-axes |
| H,T,P | Head, Thorax, Pelvis |
| EHR | electronic health records |
| P-A | posterior-to-anterior |
| CNS | central nervous system |
| DV | dependent variables |
| IVi | independent variables |
| εi | the idiosyncratic error term |
| βi | average effect |
| MRI | magnetic resonance imaging |
| CT | computed tomography |
| US | United States |
References
- Safiri, S.; Kolahi, A.A.; Hoy, D.; Buchbinder, R.; Mansournia, M.A.; Bettampadi, D.; Ashrafi-Asgarabad, A.; Almasi-Hashiani, A.; Smith, E.; Sepidarkish, M.; et al. Global, regional, and national burden of neck pain in the general population, 1990–2017: Systematic analysis of the Global Burden of Disease Study 2017. BMJ 2020, 368, m791. [Google Scholar] [CrossRef]
- Shin, D.W.; Shin, J.I.; Koyanagi, A.; Jacob, L.; Smith, L.; Lee, H.; Chang, Y.; Song, T.J. Global, regional, and national neck pain burden in the general population, 1990–2019: An analysis of the global burden of disease study 2019. Front. Neurol. 2022, 13, 955367. [Google Scholar] [CrossRef]
- Peng, B.; DePalma, M.J. Cervical disc degeneration and neck pain. J. Pain Res. 2018, 11, 2853–2857. [Google Scholar] [CrossRef] [PubMed]
- Katsuura, A.; Hukuda, S.; Saruhashi, Y.; Mori, K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur. Spine J. 2001, 10, 320–324. [Google Scholar] [CrossRef]
- Ozer, E.; Yücesoy, K.; Yurtsever, C.; Seçil, M. Kyphosis one level above the cervical disc disease: Is the kyphosis cause or effect? J. Spinal Disord. Tech. 2007, 20, 14–19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Di Martino, A.; Papalia, R.; Albo, E.; Cortesi, L.; Denaro, L.; Denaro, V. Cervical spine alignment in disc arthroplasty: Should we change our perspective? Eur. Spine. J. 2015, 24, 810–825. [Google Scholar] [CrossRef]
- Ames, C.P.; Blondel, B.; Scheer, J.K.; Schwab, F.J.; Le Huec, J.C.; Massicotte, E.M.; Patel, A.A.; Traynelis, V.C.; Kim, H.J.; Shaffrey, C.I.; et al. Cervical radiographical alignment: Comprehensive assessment techniques and potential importance in cervical myelopathy. Spine 2013, 38, S149–S160. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, J.; Lai, J.; Liu, W.; Lyu, H.; Wu, Y.; Lin, Z.; Cao, Y. Correlation between cervical lordosis and cervical disc herniation in young patients with neck pain. Medicine 2019, 98, e16545. [Google Scholar] [CrossRef]
- Liu, W.; Rong, Y.; Chen, J.; Luo, Y.; Tang, P.; Zhou, Z.; Fan, J.; Cai, W. Cervical sagittal alignment as a predictor of adjacent-level ossification development. J. Pain Res. 2018, 11, 1359–1366. [Google Scholar] [CrossRef]
- Ro, H.; Gong, W.; Ma, S. Correlations between and Absolute Rotation Angle, Anterior Weight Bearing, Range of Flexion and Extension Motion in Cervical Herniated Nucleus Pulposus. J. Phys. Ther. Sci. 2010, 22, 447–450. [Google Scholar] [CrossRef][Green Version]
- Hyun, S.J.; Kim, K.J.; Jahng, T.A.; Kim, H.J. Clinical Impact of T1 Slope Minus Cervical Lordosis After Multilevel Posterior Cervical Fusion Surgery: A Minimum 2-Year Follow Up Data. Spine 2017, 42, 1859–1864. [Google Scholar] [CrossRef]
- Oakley, P.A.; Harrison, D.D.; Harrison, D.E.; Haas, J.W. Evidence-based protocol for structural rehabilitation of the spine and posture: Review of clinical biomechanics of posture (CBP) publications. J. Can. Chiropr. Assoc. 2005, 49, 270–296. [Google Scholar]
- Harrison, D.E.; Cailliet, R.; Betz, J.; Haas, J.W.; Harrison, D.D.; Janik, T.J.; Holland, B. Conservative methods for reducing lateral translation postures of the head: A nonrandomized clinical control trial. J. Rehabil. Res. Dev. 2004, 41, 631–639. [Google Scholar] [CrossRef]
- Weldring, T.; Smith, S.M. Patient-Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). Health Serv. Insights 2013, 6, 61–68. [Google Scholar] [CrossRef]
- Young, I.A.; Dunning, J.; Butts, R.; Cleland, J.A.; Fernández-de-Las-Peñas, C. Psychometric properties of the Numeric Pain Rating Scale and Neck Disability Index in patients with cervicogenic headache. Cephalalgia 2019, 3, 944–951. [Google Scholar] [CrossRef]
- MacDermid, J.C.; Walton, D.M.; Avery, S.; Blanchard, A.; Etruw, E.; McAlpine, C.; Goldsmith, C.H. Measurement properties of the neck disability index: A systematic review. J. Orthop. Sports Phys. Ther. 2009, 39, 400–417. [Google Scholar] [CrossRef]
- Young, B.A.; Walker, M.J.; Strunce, J.B.; Boyles, R.E.; Whitman, J.M.; Childs, J.D. Responsiveness of the Neck Disability Index in patients with mechanical neck disorders. Spine J. 2009, 9, 802–808. [Google Scholar] [CrossRef]
- Oakley, P.A.; Cuttler, J.M.; Harrison, D.E. X-ray imaging is essential for contemporary chiropractic and manual therapy spinal rehabilitation: Radiography increases benefits and reduces risks. Dose-Response 2018, 16, 1559325818781437. [Google Scholar] [CrossRef] [PubMed]
- Frobin, W.; Leivseth, G.; Biggemann, M.; Brinckmann, P. Vertebral height, disc height, posteroanterior displacement and dens-atlas gap in the cervical spine: Precision measurement protocol and normal data. Clin. Biomech. 2002, 17, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Frobin, W.; Brinckmann, P.; Biggemann, M.; Tillotson, M.; Burton, K. Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin. Biomech. 1997, 12, S1–S63. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.K.; Jou, J.Y.; Lee, H.M.; Chen, H.Y.; Su, F.C.; Kuo, L.C. The reproducibility comparison of two intervertebral translation measurements in cervical flexion–extension. Spine J. 2015, 15, 1083–1091. [Google Scholar] [CrossRef]
- Lafage, R.; Ferrero, E.; Henry, J.K.; Challier, V.; Diebo, B.; Liabaud, B.; Lafage, V.; Schwab, F. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015, 15, 2493–2502. [Google Scholar] [CrossRef]
- Jackson, B.L.; Harrison, D.D.; Robertson, G.A.; Barker, W.F. Chiropractic biophysics lateral cervical film analysis reliability. J. Manip. Physiol. Ther. 1993, 16, 384–391. [Google Scholar]
- Harrison, D.E.; Harrison, D.D.; Colloca, C.J.; Betz, J.; Janik, T.J.; Holland, B. Repeatability over time of posture, radiograph positioning, and radiograph line drawing: An analysis of six control groups. J. Manip. Physiol. Ther. 2003, 26, 87–98. [Google Scholar] [CrossRef]
- Harrison, D.D.; Janik, T.J.; Troyanovich, S.J.; Holland, B. Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine. Spine 1996, 21, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.E.; Harrison, D.D.; Cailliet, R.; Troyanovich, S.J.; Janik, T.J.; Holland, B. Cobb method or Harrison posterior tangent method: Which to choose for lateral cervical radiographic analysis. Spine 2000, 25, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.E.; Holland, B.; Harrison, D.D.; Janik, T.J. Further reliability analysis of the Harrison radiographic line-drawing methods: Crossed ICCs for lateral posterior tangents and modified Risser-Ferguson method on AP views. J. Manip. Physiol. Ther. 2002, 25, 93–98. [Google Scholar] [CrossRef]
- Harrison, D.D.; Janik, T.J.; Troyanovich, S.J.; Harrison, D.E.; Colloca, C.J. Evaluation of the assumptions used to derive an ideal normal cervical spine model. J. Manip. Physiol. Ther. 1997, 20, 246–256. [Google Scholar]
- Harrison, D.D.; Harrison, D.E.; Janik, T.J.; Cailliet, R.; Ferrantelli, J.R.; Haas, J.W.; Holland, B. Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: Results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine 2004, 29, 2485–2492. [Google Scholar] [CrossRef]
- McAviney, J.; Schulz, D.; Bock, R.; Harrison, D.E.; Holland, B. Determining the relationship between cervical lordosis and neck complaints. J. Manip. Physiol. Ther. 2005, 28, 187–193. [Google Scholar] [CrossRef]
- Troyanovich, S.J.; Harrison, D.; Harrison, D.D.; Harrison, S.O.; Janik, T.; Holland, B. Chiropractic biophysics digitized radiographic mensuration analysis of the anteroposterior cervicothoracic view: A reliability study. J. Manip. Physiol. Ther. 2000, 23, 476–482. [Google Scholar] [CrossRef]
- Jenickova, E.; Andrén Aronsson, C.; Mascellani Bergo, A.; Cinek, O.; Havlik, J.; Agardh, D. Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the faecal metabolome in children with coeliac disease autoimmunity: A randomised, double-blinded placebo-controlled clinical trial. Front. Nutr. 2023, 10, 1183963. [Google Scholar] [CrossRef]
- Wan, F. Statistical analysis of two-arm randomized pre-post designs with one post-treatment measurement. BMC Med. Res. Methodol. 2021, 21, 150. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z. Complex heatmap visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Hoffer, K.J.; Savini, G. Update on Intraocular Lens Power Calculation Study Protocols: The Better Way to Design and Report Clinical Trials. Ophthalmology 2021, 128, e115–e120. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, B.; Rosenzweig, D.H.; Krock, E.; Roughley, P.J.; Beckman, L.; Steffen, T.; Weber, M.H.; Ouellet, J.A.; Haglund, L. Acute mechanical injury of the human intervertebral disc: Link to degeneration and pain. Eur. Cell. Mater. 2014, 28, 98–111. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L. t-Test and ANOVA for data with ceiling and/or floor effects. Behav. Res. Methods 2021, 53, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.D.; Croft, A.C.; Nicodemus, C.N.; Centeno, C.J.; Elkins, W.L. Significant spinal injury resulting from low-level accelerations: A case series of roller coaster injuries. Arch. Phys. Med. Rehabil. 2005, 86, 2126–2130. [Google Scholar] [CrossRef]
- Ivancic, P.C.; Coe, M.P.; Ndu, A.B.; Tominaga, Y.; Carlson, E.J.; Rubin, W.; Dipl-Ing, F.H.; Panjabi, M.M. Dynamic mechanical properties of intact human cervical spine ligaments. Spine J. 2007, 7, 659–665. [Google Scholar] [CrossRef]
- Dave, B.R.; Krishnan, A.; Rai, R.R.; Degulmadi, D.; Mayi, S. The effect of head loading on cervical spine in manual laborers. Asian Spine J. 2021, 15, 17–22. [Google Scholar] [CrossRef]
- Elmaazi, A.; Morse, C.I.; Lewis, S.; Qureshi, S.; McEwan, I. The acute response of the nucleus pulposus of the cervical intervertebral disc to three supine postures in an asymptomatic population. Musculoskelet. Sci. Pract. 2019, 44, 102038. [Google Scholar] [CrossRef]
- Chow, N.; Gregory, D.E. The effect of intervertebral disc damage on the mechanical strength of the annulus fibrosus in the adjacent segment. Spine J. 2023, 23, 1935–1940. [Google Scholar] [CrossRef]
- Frost, H.M. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar] [CrossRef]
- Cyron, C.J.; Humphrey, J.D. Growth and remodeling of load-bearing biological soft tissues. Meccanica 2017, 52, 645–664. [Google Scholar] [CrossRef] [PubMed]
- Bartoníček, J.; Naňka, O. The true history of the Hueter–Volkmann law. Int. Orthop. 2024, 48, 2755–2762. [Google Scholar] [CrossRef]
- Gilbert, H.T.J.; Hoyland, J.A.; Millward-Sadler, S.J. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration. Arthritis Rheumatol. 2010, 62, 3385–3394. [Google Scholar] [CrossRef] [PubMed]
- Gawri, R.; Moir, J.; Ouellet, J.; Beckman, L.; Steffen, T.; Roughley, P.; Haglund, L. Physiological loading can restore the proteoglycan content in a nucleotomized intervertebral disc. PLoS ONE 2014, 9, e101233. [Google Scholar] [CrossRef]
- Miyagi, M.; Ishikawa, T.; Orita, S.; Eguchi, Y.; Kamoda, H.; Arai, G.; Suzuki, M.; Inoue, G.; Aoki, Y.; Toyone, T.; et al. Disk injury in rats produces persistent inflammation and pain-related behavior. Spine 2012, 37, 200–207. [Google Scholar]
- Bergström, G.; Persson, M.; Adiels, M.; Björnson, E.; Bonander, C.; Ahlström, H.; Alfredsson, J.; Angerås, O.; Berglund, G.; Blomberg, A.; et al. Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation 2021, 144, 916–929. [Google Scholar] [CrossRef]
- Nasir, K.; Ziffer, J.A.; Cainzos-Achirica, M.; Ali, S.S.; Feldman, D.I.; Arias, L.; Saxena, A.; Feldman, T.; Cury, R.; Budoff, M.J.; et al. The Miami Heart Study (MiHeart) at Baptist Health South Florida, A prospective study of subclinical cardiovascular disease and emerging cardiovascular risk factors in asymptomatic young and middle-aged adults: The Miami Heart Study: Rationale and Design. Am. J. Prev. Cardiol. 2021, 7, 100202. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Hirose, M.; Suzuki, R.; Suzumiya, J.; Igawa, M. How asymptomatic are early cancer patients of five organs based on registry data in Japan. Int. J. Clin. Oncol. 2018, 23, 999–1006. [Google Scholar] [CrossRef]
- Dattani, S.; Spooner, F.; Ritchie, H.; Roser, M. “Causes of Death” Published Online at OurWorldinData.org. 2023. Available online: https://ourworldindata.org/causes-of-death (accessed on 2 February 2026).
- Emmerich, S.D.; Fryar, C.D.; Stierman, B.; Ogden, C.L. Obesity and Severe Obesity Prevalence in Adults: United States, August 2021-August 2023. NCHS Data Brief 2024, 508, 10-15620. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Statistics. National Cancer Institute. February 2025. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 3 February 2026).
- Essa, M.; Malik, D.; Lu, Y.; Yang, H.; Spatz, E.S.; Krumholz, H.M.; Faridi, K.F. Hypertension Prevalence, Awareness, and Control in US Adults Before and After the COVID-19 Pandemic. J. Clin. Hypertens. 2025, 27, e70093. [Google Scholar] [CrossRef] [PubMed]
- Charles, Y.P.; Prost, S.; Pesenti, S.; Ilharreborde, B.; Bauduin, E.; Laouissat, F.; Riouallon, G.; Wolff, S.; Challier, V.; Obeid, I.; et al. Variation of cervical sagittal alignment parameters according to gender, pelvic incidence and age. Eur. Spine J. 2022, 31, 1228–1240. [Google Scholar] [CrossRef]
- Harrison, D.E.; Harrison, D.D.; Janik, T.J.; William Jones, E.; Cailliet, R.; Normand, M. Comparison of axial and flexural stresses in lordosis and three buckled configurations of the cervical spine. Clin. Biomech. 2001, 16, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, T.H.; Bok, D.H.; Jang, C.; Yang, M.H.; Lee, S.; Yoo, J.H.; Kwak, Y.H.; Oh, J.K. Analysis of cervical spine alignment in currently asymptomatic individuals: Prevalence of kyphotic posture and its relationship with other spinopelvic parameters. Spine J. 2018, 18, 797–810. [Google Scholar] [CrossRef]
- Yukawa, Y.; Kato, F.; Suda, K.; Yamagata, M.; Ueta, T. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: Radiographic data from over 1200 asymptomatic subjects. Eur. Spine J. 2012, 21, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.C.; Demezon, H.; Aunoble, S. Sagittal parameters of global cervical balance using EOS imaging: Normative values from a prospective cohort of asymptomatic volunteers. Eur. Spine J. 2015, 24, 63–71. [Google Scholar] [CrossRef]
- Oakley, P.A.; Kallan, S.Z.; Harrison, D.E. Structural rehabilitation of the cervical lordosis and forward head posture: A selective review of Chiropractic BioPhysics® case reports. J. Phys. Ther. Sci. 2022, 34, 759–771. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.A.; Taha, S.; Harrison, D.E. Addition of a Sagittal Cervical Posture Corrective Orthotic Device to a Multimodal Rehabilitation Program Improves Short- and Long-Term Outcomes in Patients With Discogenic Cervical Radiculopathy. Arch. Phys. Med. Rehabil. 2016, 97, 2034–2044. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.A.; Harrison, D.E. The effect of normalizing the sagittal cervical configuration on dizziness, neck pain, and cervicocephalic kinesthetic sensibility: A 1-year randomized controlled study. Eur. J. Phys. Rehabil. Med. 2017, 53, 57–71. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.A.M.; Hegazy, F.A.; Harrison, D.E. Does rehabilitation of cervical lordosis influence sagittal cervical spine flexion extension kinematics in cervical spondylotic radiculopathy subjects? J. Back Musculoskelet. Rehabil. 2017, 30, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, I.; Youssef, A.S.A.; Ahbouch, A.; Harrison, D. Demonstration of Autonomic Nervous Function and Cervical Sensorimotor Control After Cervical Lordosis Rehabilitation: A Randomized Controlled Trial. J. Athl. Train. 2021, 56, 427–436. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.; Shousha, T.; Harrison, D.E. Does restoration of sagittal cervical alignment improve cervicogenic headache pain and disability: A 2-year pilot randomized controlled trial. Heliyon 2021, 7, e06467. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.A.; Hegazy, F.; Harrison, D.E. Demonstration of central conduction time and neuroplastic changes after cervical lordosis rehabilitation in asymptomatic subjects: A randomized, placebo-controlled trial. Sci. Rep. 2021, 11, 15379. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Diab, A.A.; Harrison, D.E. The Efficacy of Cervical Lordosis Rehabilitation for Nerve Root Function and Pain in Cervical Spondylotic Radiculopathy: A Randomized Trial with 2-Year Follow-Up. J. Clin. Med. 2022, 11, 6515. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, I.M.; Diab, A.A.M.; Harrison, D.E. Does Improvement towards a Normal Cervical Sagittal Configuration Aid in the Management of Lumbosacral Radiculopathy: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 5768. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.D.; Jackson, B.L.; Troyanovich, S.; Robertson, G.; de George, D.; Barker, W.F. The efficacy of cervical extension-compression traction combined with diversified manipulation and drop table adjustments in the rehabilitation of cervical lordosis: A pilot study. J. Manip. Physiol. Ther. 1994, 17, 454–464. [Google Scholar]
- Harrison, D.E.; Harrison, D.D.; Betz, J.J.; Janik, T.J.; Holland, B.; Colloca, C.J.; Haas, J.W. Increasing the cervical lordosis with chiropractic biophysics seated combined extension-compression and transverse load cervical traction with cervical manipulation: Nonrandomized clinical control trial. J. Manip. Physiol. Ther. 2003, 26, 139–151. [Google Scholar] [CrossRef]
- Harrison, D.E.; Cailliet, R.; Harrison, D.D.; Janik, T.J.; Holland, B. A new 3-point bending traction method for restoring cervical lordosis and cervical manipulation: A nonrandomized clinical controlled trial. Arch. Phys. Med. Rehabil. 2002, 83, 447–453. [Google Scholar] [CrossRef]





| Patient Information | |
|---|---|
| Patients (n) | 64 |
| Males | 19 (29.7%) |
| Females | 45 (70.3%) |
| Mean Height (cm) | 171.93 ± 1.85 |
| Mean Weight (kg) | 68.12 ± 2.53 |
| Mean Age (y) | 49.05 ± 3.34 |
| Mean Treatment Visits (n) | 37.80 ± 2.44 |
| Mean Duration of Treatment (wk) | 19.53 ± 3.89 |
| Outcome Assessment | Pre-CBP Treatment (95% CI) | Post-CBP Treatment (95% CI) | Mean Difference (95% CI) | p-Value |
|---|---|---|---|---|
| ARA C2–C7 (°) | −6.18 ± 3.06 | −19.95 ± 3.05 | 13.77 ± 8.80 | <0.0001 |
| Tz C2–C7 (mm) | 22.03 ± 2.39 | 12.11 ± 2.34 | 9.91 ± 5.77 | <0.0001 |
| Anterior Disc Height C2–C7 (mm) | 3.68 ± 0.20 | 5.19 ± 0.21 | 1.52 ± 0.59 | <0.0001 |
| ADH C2–C3 (mm) | 3.96 ± 0.21 | 5.40 ± 0.27 | 1.45 ± 0.96 | <0.0001 |
| ADH C3–C4 (mm) | 4.04 ± 0.25 | 5.39 ± 0.27 | 1.35 ± 0.98 | <0.0001 |
| ADH C4–C5 (mm) | 3.70 ± 0.31 | 5.23 ± 0.28 | 1.53 ± 0.91 | <0.0001 |
| ADH C5–C6 (mm) | 3.33 ± 0.28 | 4.87 ± 0.32 | 1.54 ± 0.88 | <0.0001 |
| ADH C6–C7 (mm) ** | 3.36 ± 0.29 | 5.08 ± 0.31 | 1.72 ± 0.93 | <0.0001 |
| Posterior Disc Height C2–C7 (mm) | 3.22 ± 0.15 | 4.35 ± 0.16 | 1.14 ± 0.50 | <0.0001 |
| PDH C2–C3 (mm) | 3.60 ± 0.23 | 4.81 ± 0.26 | 1.21 ± 0.99 | <0.0001 |
| PDH C3–C4 (mm) | 3.49 ± 0.20 | 4.49 ± 0.24 | 1.01 ± 0.87 | <0.0001 |
| PDH C4–C5 (mm) | 3.28 ± 0.23 | 4.31 ± 0.21 | 1.03 ± 0.93 | <0.0001 |
| PDH C5–C6 (mm) | 2.86 ± 0.21 | 3.99 ± 0.20 | 1.13 ± 0.71 | <0.0001 |
| PDH C6–C7 (mm) ** | 2.83 ± 0.23 | 4.19 ± 0.23 | 1.36 ± 0.78 | <0.0001 |
| Neck Pain Numeric Rating Scale | 6.66 ± 0.27 | 1.52 ± 0.26 | 5.14 ± 0.56 | <0.0001 |
| Neck Disability Index (%) | 40.28 ± 1.42 | 12.66 ± 0.96 | 27.63 ± 4.46 | <0.0001 |
| Parameters | MODEL I: Outcome = ARA C2–C7 | MODEL I: Outcome = Tz C2–C7 | ||
|---|---|---|---|---|
| Estimate (95% CI) | p-Value | Estimate (95% CI) | p-Value | |
| Treatment: Post vs. Pre | 37.61 [29.1–46.11] | <0.0001 | 6.52 [−3.1–16.15] | 0.1838 |
| Metric | ||||
| Anterior Disc Height C2–C7 (mm) | −2.75 [−5.97–0.48] | 0.0950 | 1.09 [−2.56–4.73] | 0.5593 |
| Posterior Disc Height C2–C7 (mm) | 1.81 [−2.35–5.98] | 0.3940 | −3.03 [−7.74–1.68] | 0.2071 |
| Neck Pain Numeric Rating Scale | 5.36 [3.04–7.68] | <0.0001 | 3.16 [0.54–5.78] | 0.0183 |
| Neck Disability Index (%) | 0.79 [0.29–1.28] | 0.0019 | −0.06 [−0.62–0.5] | 0.8370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Katz, E.A.; Katz, S.B.; Katz, S.F.; Fedorchuk, C.A.; Fedorchuk, C.G.; Lightstone, D.F. Increased Cervical Disc Height and Decreased Neck Pain and Disability Following Improvement in Cervical Lordosis and Posture Using Chiropractic BioPhysics. Bioengineering 2026, 13, 229. https://doi.org/10.3390/bioengineering13020229
Katz EA, Katz SB, Katz SF, Fedorchuk CA, Fedorchuk CG, Lightstone DF. Increased Cervical Disc Height and Decreased Neck Pain and Disability Following Improvement in Cervical Lordosis and Posture Using Chiropractic BioPhysics. Bioengineering. 2026; 13(2):229. https://doi.org/10.3390/bioengineering13020229
Chicago/Turabian StyleKatz, Evan A., Seana B. Katz, Sophie F. Katz, Curtis A. Fedorchuk, Cole G. Fedorchuk, and Douglas F. Lightstone. 2026. "Increased Cervical Disc Height and Decreased Neck Pain and Disability Following Improvement in Cervical Lordosis and Posture Using Chiropractic BioPhysics" Bioengineering 13, no. 2: 229. https://doi.org/10.3390/bioengineering13020229
APA StyleKatz, E. A., Katz, S. B., Katz, S. F., Fedorchuk, C. A., Fedorchuk, C. G., & Lightstone, D. F. (2026). Increased Cervical Disc Height and Decreased Neck Pain and Disability Following Improvement in Cervical Lordosis and Posture Using Chiropractic BioPhysics. Bioengineering, 13(2), 229. https://doi.org/10.3390/bioengineering13020229

