Evaluating SnapshotNIR for Tissue Oxygenation Measurement Across Skin Types After Mastectomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Enrollment
2.3. Study Subjects
- Patient age;
- BMI;
- Skin phenotype;
- History of prior breast surgery;
- Smoking history;
- Relevant medical history;
- Use of adjuvant therapy for breast cancer (e.g., hormonal therapy, target, immunotherapy or any type of adjuvant therapy);
- Perioperative data.
2.4. Image Capture
2.5. Image Analysis
2.6. Data Analysis
3. Results
3.1. Study Population, Measurements, and Associations with ΔStO2
3.2. Influence of Fitzpatrick Score on ΔStO2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Disclosures
Acknowledgments
Conflicts of Interest
Abbreviations
StO2 | tissue oxygenation |
ΔStO2 | change in tissue oxygenation, calculated as preoperative StO2 minus postoperative StO2 |
MSF | mastectomy skin flap |
NIRS | near-infrared spectroscopy |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Robertson, S.A.; Jeevaratnam, J.A.; Agrawal, A.; Cutress, R.I. Mastectomy skin flap necrosis: Challenges and solutions. Breast Cancer Targets Ther. 2017, 9, 141–152. [Google Scholar] [CrossRef]
- Sullivan, S.R.; Fletcher, D.R.; Isom, C.D.; Isik, F.F. True incidence of all complications following immediate and delayed breast reconstruction. Plast. Reconstr. Surg. 2008, 122, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Mlodinow, A.S.; Fine, N.A.; Khavanin, N.; Kim, J.Y. Risk factors for mastectomy flap necrosis following immediate tissue expander breast reconstruction. J. Plast. Surg. Hand Surg. 2014, 48, 322–326. [Google Scholar] [CrossRef]
- Ito, H.; Ueno, T.; Suga, H.; Shiraishi, T.; Isaka, H.; Imi, K.; Miyamoto, K.; Tada, M.; Ishizaka, Y.; Imoto, S. Risk factors for skin flap necrosis in breast cancer patients treated with mastectomy followed by immediate breast reconstruction. World J. Surg. 2019, 43, 846–852. [Google Scholar] [CrossRef]
- Kohler, L.H.; Köhler, H.; Kohler, S.; Langer, S.; Nuwayhid, R.; Gockel, I.; Spindler, N.; Osterhoff, G. Hyperspectral Imaging (HSI) as a new diagnostic tool in free flap monitoring for soft tissue reconstruction: A proof of concept study. BMC Surg. 2021, 21, 222. [Google Scholar] [CrossRef]
- Pachyn, E.; Aumiller, M.; Freymüller, C.; Linek, M.; Volgger, V.; Buchner, A.; Rühm, A.; Sroka, R. Investigation on the influence of the skin tone on hyperspectral imaging for free flap surgery. Sci. Rep. 2024, 14, 13979. [Google Scholar] [CrossRef]
- Olivier, W.-A.M.; Hazen, A.; Levine, J.P.; Soltanian, H.; Chung, S.; Gurtner, G.C. Reliable assessment of skin flap viability using orthogonal polarization imaging. Plast. Reconstr. Surg. 2003, 112, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.J.; Nguyen, M.-D.; Chen, C.; Colakoglu, S.; Curtis, M.S.; Tobias, A.M.; Lee, B.T. Tissue oximetry monitoring in microsurgical breast reconstruction decreases flap loss and improves rate of flap salvage. Plast. Reconstr. Surg. 2011, 127, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Polfer, E.M.; Sabino, J.M.; Fleming, I.C.; Means, K.R., Jr. Relative tissue oxygenation and temperature changes for detecting early upper extremity skin ischemia. Plast. Reconstr. Surg. 2019, 144, 907–910. [Google Scholar] [CrossRef]
- Irwin, M.; Thorniley, M.; Dore, C.; Green, C. Near infra-red spectroscopy: A non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br. J. Plast. Surg. 1995, 48, 14–22. [Google Scholar] [CrossRef]
- Berthelot, M.; Ashcroft, J.; Boshier, P.; Hunter, J.; Henry, F.P.; Lo, B.; Yang, G.-Z.; Leff, D. Use of near-infrared spectroscopy and implantable Doppler for postoperative monitoring of free tissue transfer for breast reconstruction: A systematic review and meta-analysis. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2437. [Google Scholar] [CrossRef]
- Kagaya, Y.; Miyamoto, S. A systematic review of near-infrared spectroscopy in flap monitoring: Current basic and clinical evidence and prospects. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Keller, A. A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann. Plast. Surg. 2009, 62, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Rwei, A.Y.; Lee, J.Y.; Ouyang, W.; Jacobson, L.; Shen, H.; Luan, H.; Xu, Y.; Park, J.B.; Kwak, S.S. A wireless near-infrared spectroscopy device for flap monitoring: Proof of concept in a porcine musculocutaneous flap model. J. Reconstr. Microsurg. 2022, 38, 96–105. [Google Scholar] [CrossRef]
- Westman, A.M.; Ribaudo, J.; Butler, M.; Shmuylovich, L.; Pet, M.A. Skin Pigmentation Affects ViOptix T.Ox Performance in Variably Pigmented Preclinical Model of Flap Ischemia and Congestion. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5865. [Google Scholar] [CrossRef]
- Khavanin, N.; Yesantharao, P.; Kraenzlin, F.; Darrach, H.; Sacks, J.M. Quantifying the effect of topical nitroglycerin on random pattern flap perfusion in a rodent model: An application of the ViOptix Intra. Ox for dynamic flap perfusion assessment and salvage. Plast. Reconstr. Surg. 2021, 148, 100–107. [Google Scholar] [CrossRef]
- Khavanin, N.; Darrach, H.; Kraenzlin, F.; Yesantharao, P.S.; Sacks, J.M. The Intra.Ox near-infrared spectrometer measures variations in flap oxygenation that correlate to flap necrosis in a preclinical rodent model. Plast. Reconstr. Surg. 2021, 147, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Sjoding, M.W.; Dickson, R.P.; Iwashyna, T.J.; Gay, S.E.; Valley, T.S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 2020, 383, 2477–2478. [Google Scholar] [CrossRef]
- Putcha, A.; Schichlein, K.; Nguyen, T.; Davis, B.; Choffin, R.; Malik, S.; Sharma, A.; Sosa, G.; Saffari, S.; Ribaudo, J. Characterizing the influence of skin pigmentation on pulse oximetry. Biophotonics Discov. 2025, 2, 032506. [Google Scholar] [CrossRef]
- Moritz, W.R.; Daines, J.; Christensen, J.M.; Myckatyn, T.; Sacks, J.M.; Westman, A.M. Point-of-care tissue oxygenation assessment with SnapshotNIR for alloplastic and autologous breast reconstruction. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5113. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S. Fitzpatrick skin typing: Applications in dermatology. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 93. [Google Scholar] [CrossRef]
- van den Heuvel, M.G.; Buurman, W.A.; Bast, A.; van der Hulst, R.R. ischaemia–reperfusion injury in flap surgery. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 721–726. [Google Scholar] [CrossRef]
- Rogoń, I.; Rogoń, A.; Kaczmarek, M.; Bujnowski, A.; Wtorek, J.; Lachowski, F.; Jankau, J. Flap Monitoring Techniques: A Review. J. Clin. Med. 2024, 13, 5467. [Google Scholar] [CrossRef]
- Bowen, R.; Treadwell, G.; Goodwin, M. Correlation of near infrared spectroscopy measurements of tissue oxygen saturation with transcutaneous pO2 in patients with chronic wounds. SM Vasc. Med. 2016, 1, 1006. [Google Scholar]
- Serena, T.E.; Yaakov, R.; Serena, L.; Mayhugh, T.; Harrell, K. Comparing near infrared spectroscopy and transcutaneous oxygen measurement in hard-to-heal wounds: A pilot study. J. Wound Care 2020, 29, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Landsman, A. Visualization of wound healing progression with near infrared spectroscopy: A retrospective study. Wounds 2020, 32, 265–271. [Google Scholar]
- Gopalakrishnan, S.; Niezgoda, J.; Hoffman, B.; Siddique, A.; Niezgoda, J.A. Using near infrared spectroscopy imaging to manage critical limb ischemia. Today’s Wound Clin. 2019, 13, 12–15. [Google Scholar]
- Jones, G.E.; Yoo, A.; King, V.A.; Sowa, M.; Pinson, D.M. Snapshot multispectral imaging is not inferior to SPY laser fluorescence imaging when predicting murine flap necrosis. Plast. Reconstr. Surg. 2020, 145, 85e–93e. [Google Scholar] [CrossRef]
- Hill, W.F.; Webb, C.; Monument, M.; McKinnon, G.; Hayward, V.; Temple-Oberle, C. Intraoperative near-infrared spectroscopy correlates with skin flap necrosis: A prospective cohort study. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2742. [Google Scholar] [CrossRef] [PubMed]
- Takaya, A.; Tsuge, I.; Nakano, T.; Yamanaka, H.; Katsube, M.; Sakamoto, M.; Morimoto, N. Flap viability evaluation using a tissue oximetry camera as an alternative to indocyanine green fluorescence imaging. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5235. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, Z.; Shao, Z.; Yu, P.; Wu, J. Free flap monitoring using near-infrared spectroscopy: A systemic review. Ann. Plast. Surg. 2016, 76, 590–597. [Google Scholar] [CrossRef]
- Bai, W.; Guo, H.; Ouyang, W.; Weng, Y.; Wu, C.; Liu, Y.; Zang, H.; Jacobson, L.; Xu, Y.; Lu, D. Intramuscular near-infrared spectroscopy for muscle flap monitoring in a porcine model. J. Reconstr. Microsurg. 2022, 38, 321–327. [Google Scholar] [CrossRef]
- Rao, R.; Saint-Cyr, M.; Ma, A.M.T.; Bowling, M.; Hatef, D.A.; Andrews, V.; Xie, X.-J.; Zogakis, T.; Rohrich, R. Prediction of post-operative necrosis after mastectomy: A pilot study utilizing optical diffusion imaging spectroscopy. World J. Surg. Oncol. 2009, 7, 1–6. [Google Scholar] [CrossRef]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics–methods and algorithms for the determination of tissue parameters. Biomed. Eng. Biomed. Tech. 2018, 63, 547–556. [Google Scholar] [CrossRef]
- Sood, B.G.; McLaughlin, K.; Cortez, J. Near-infrared spectroscopy: Applications in neonates. Semin. Fetal Neonatal Med. 2015, 20, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Li, S.; Yang, Q.; Arafa, H.M.; Xu, Y.; Yan, Y.; Ostojich, D.; Bai, W.; Guo, H.; Wu, C. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 2022, 206, 114145. [Google Scholar] [CrossRef] [PubMed]
- Knoedler, S.; Hoch, C.C.; Huelsboemer, L.; Knoedler, L.; Stögner, V.A.; Pomahac, B.; Kauke-Navarro, M.; Colen, D. Postoperative free flap monitoring in reconstructive surgery—Man or machine? Front. Surg. 2023, 10, 1130566. [Google Scholar] [CrossRef]
Fitzpatrick Skin Type | Description |
---|---|
Type I | White skin. Always burns, never tans. |
Type II | Fair skin. Always burns, tans with difficulty. |
Type III | Average skin color. Sometimes mild burn, tan about average. |
Type IV | Light-brown skin. Rarely burns. Tans easily. |
Type V | Brown skin. Never burns. Tans very easily. |
Type VI | Black skin. Heavily pigmented. Never burns, tans very easily. |
ΔStO2 (Mean ± SD) | |||||
Y:N | % | Y | N | p-value | |
Smoking | 7:26 | 21% | −1.5 ± 28.3 | 2.9 ± 21.7 | 0.658 |
Comorbidities | 15:18 | 45% | 0.8 ± 24.1 | 3.0 ± 22.3 | 0.787 |
Previous Breast Surgery | 20:13 | 61% | 3.4 ± 21.9 | −0.2 ± 24.9 | 0.665 |
Adjuvant Therapy | |||||
- Chemo | 10:23 | 30% | 4.3 ± 15.5 | 1.0 ± 25.6 | 0.711 |
- Hormonal | 2:31 | 6% | 37.9 ± 7.2 | −0.3 ± 21.5 | 0.019 |
- Target | 4:29 | 12% | −6.8 ± 7.9 | 3.2 ± 24.0 | 0.420 |
- Immunotherapy | 1:32 | 3% | 27.3 ± 0 | 1.2 ± 22.7 | 0.267 |
- (Any) Adjuvant | 11:22 | 33% | 7.8 ± 18.8 | −0.9 ± 24.5 | 0.309 |
Complications | 6:27 | 18% | 0.1 ± 32.6 | 2.4 ± 4.0 | 0.831 |
Correlation with ΔStO2 | |||||
n | median | IQR | ρ * | p-value | |
Temperature | 25 | 36.5 | [36.1–36.7] | 0.248 | 0.233 |
Systolic BP | 30 | 119.5 | [107–140] | 0.139 | 0.465 |
Diastolic BP | 30 | 75.0 | [64–85] | 0.355 | 0.054 |
Heart Rate | 20 | 75.0 | [64.5–83.3] | −0.130 | 0.586 |
Fitzpatrick Score | 30 | 2 | [2] | −0.086 | 0.650 |
* Spearman’s rho | |||||
Correlation with ΔStO2 | |||||
n | mean | STdev | ρ ** | p-value | |
Age | 33 | 49.0 | 11.7 | −0.125 | 0.489 |
** Pearson’s rho |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, S.; Saffari, S.; Moritz, W.R.; Skolnick, G.B.; Westman, A.M.; Pet, M.A.; Sacks, J.M. Evaluating SnapshotNIR for Tissue Oxygenation Measurement Across Skin Types After Mastectomy. Bioengineering 2025, 12, 892. https://doi.org/10.3390/bioengineering12080892
Badran S, Saffari S, Moritz WR, Skolnick GB, Westman AM, Pet MA, Sacks JM. Evaluating SnapshotNIR for Tissue Oxygenation Measurement Across Skin Types After Mastectomy. Bioengineering. 2025; 12(8):892. https://doi.org/10.3390/bioengineering12080892
Chicago/Turabian StyleBadran, Saif, Sara Saffari, William R. Moritz, Gary B. Skolnick, Amanda M. Westman, Mitchell A. Pet, and Justin M. Sacks. 2025. "Evaluating SnapshotNIR for Tissue Oxygenation Measurement Across Skin Types After Mastectomy" Bioengineering 12, no. 8: 892. https://doi.org/10.3390/bioengineering12080892
APA StyleBadran, S., Saffari, S., Moritz, W. R., Skolnick, G. B., Westman, A. M., Pet, M. A., & Sacks, J. M. (2025). Evaluating SnapshotNIR for Tissue Oxygenation Measurement Across Skin Types After Mastectomy. Bioengineering, 12(8), 892. https://doi.org/10.3390/bioengineering12080892