A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Buffers
2.2. Apparatus
2.3. Electrodes Pre-Treatment
2.4. Functionalization of the Au Electrodes
2.5. Characterization of the Immunosensor
2.6. Application of the Immunosensor for Tau-441 Detection
2.7. Selectivity, Reproducibility, and Stability
3. Results and Discussion
3.1. Sandwich Immunosensors Fabrication
3.2. Electrochemical Characterization of the Immunosensrs
3.3. Feasibility of the Sandwich-Type Impedimetric Immunosensors
3.4. Optimization of the Experimental Conditions
3.5. Dose Response of Sandwich Immunosensors Platform Toward Target Tau-441
3.6. Selectivity, Reproducibility, and Stability of the Developed Sandwich Immunosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.G.; Li, Y.; Ng, C.T.; Song, Y.Q. Inflammation in Alzheimer’s Disease and Molecular Genetics: Recent Update. Arch. Immunol. Ther. Exp. 2015, 63, 333–344. [Google Scholar] [CrossRef]
- Evans-Lacko, S.; Aguzzoli, E.; Read, S.; Comas-Herrera, V.; Farina, N. Global Changes in Attitudes to Dementia; World Alzheimer Report 2024; Alzheimer’s Disease International: London, UK, 2024. [Google Scholar]
- Li, D.; Scarano, S.; Lisi, S.; Palladino, P.; Minunni, M. Real-time tau protein detection by sandwich-based piezoelectric biosensing: Exploring tubulin as a mass enhancer. Sensors 2018, 18, 946. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M. Biosensing: The best alternative for conventional methods in detection of Alzheimer’s disease biomarkers. Int. J. Biol. Macromol. 2020, 161, 59–71. [Google Scholar] [CrossRef]
- Lloret, A.; Esteve, D.; Lioret, M.A.; Cervera-Ferri, A.; Lopez, B.; Nepomuceno, M.; Monllor, P. When does Alzheimer′s disease really start? The role of biomarkers. Int. J. Mol. Sci. 2019, 20, 5536. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.P.; Dubey, P.K.; Rachana, R.; Mani, S.; Yadav, D.; Agarwal, M.; Agarwal, S.; Agarwal, V.; Kaur, H. Advent of Proteomic Tools for Diagnostic Biomarker Analysis in Alzheimer’s Disease. Curr. Protein Pept. Sci. 2020, 21, 965–977. [Google Scholar] [CrossRef]
- Fialová, L.; Zima, T.; Bartoš, A. Overview of immunoanalytical methods for determination of alzheimer’s disease biomarkers’ triplet in cerebrospinal fluid and blood. Chem. List 2020, 114, 537–544. [Google Scholar]
- Delacourte, A.; Defossez, A. Alzheimer’s disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J. Neurol. Sci. 1986, 76, 173–186. [Google Scholar] [CrossRef]
- Jinchun, W.; Huiying, L.; Yunpeng, C. Tau protein and alzheimer’s disease. Chin. J. Tissue Eng. Res. 2020, 24, 2775–2781. [Google Scholar]
- Pérez-Ruiz, E.; Decrop, D.; Ven, K.; Tripodi, L.; Leirs, K.; Rosseels, J.; Van de Wouwer, M.; Geukens, N.; De Vos, A.; Vanmechelen, E.; et al. Digital ELISA for the quantification of attomolar concentrations of Alzheimer’s disease biomarker protein Tau in biological samples. Anal. Chim. Acta 2018, 1015, 74–81. [Google Scholar] [CrossRef]
- Oyarzún, M.P.; Tapia-Arellano, A.; Cabrera, P.; Jara-Guajardo, P.; Kogan, M.J. Plasmonic nanoparticles as optical sensing probes for the detection of alzheimer’s disease. Sensors 2021, 21, 2067. [Google Scholar] [CrossRef]
- Vu Nu, T.T.; Thi Tran, N.H.; Nam, E.; Nguyen, T.T.; Yoon, W.J.; Cho, S.; Kim, J.; Chang, K.A.; Ju, H. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. RSC Adv. 2018, 8, 7855–7862. [Google Scholar] [CrossRef]
- Yang, S.J.; Lee, J.U.; Jeon, M.J.; Sim, S.J. Highly sensitive surface-enhanced Raman scattering-based immunosensor incorporating half antibody-fragment for quantitative detection of Alzheimer’s disease biomarker in blood. Anal. Chim. Acta 2022, 1195, 339445. [Google Scholar] [CrossRef]
- Chen, L.; Lin, J.; Yi, J.; Weng, Q.; Zhou, Y.; Han, Z.; Li, C.; Chen, J.; Zhang, Q. A tyrosinase-induced fluorescence immunoassay for detection of tau protein using dopamine-functionalized CuInS2/ZnS quantum dots. Anal. Bioanal. Chem. 2019, 411, 5277–5285. [Google Scholar] [CrossRef]
- Giraud, G.; Schulze, H.; Bachmann, T.T.; Campbell, C.J.; Mount, A.R.; Ghazal, P.; Khondoker, M.R.; Ember, S.W.J.; Ciani, I.; Tlili, C.; et al. Solution state hybridization detection using time-resolved fluorescence anisotropy of quantum dot-DNA bioconjugates. Chem. Phys. Lett. 2010, 484, 309–314. [Google Scholar] [CrossRef]
- Sonuç Karaboga, M.N.; Sezgintürk, M.K. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: Towards Alzheimer’s disease detection. Talanta 2020, 219, 121257. [Google Scholar] [CrossRef]
- Tlili, C.; Hou, Y.; Korri-Youssoufi, H.; Ponsonnet, L.; Martelet, C.; Errachid, A.; Jaffrezic-Renault, N. Impedance-Probing of Mixed Amphiphile-Antibody Films onto silver Electrodes. Sens. Lett. 2004, 2, 246–251. [Google Scholar] [CrossRef]
- Hou, Y.; Tlili, C.; Jaffrezic-Renault, N.; Zhang, A.; Martelet, C.; Ponsonnet, L.; Errachid, A.; Samitier, J.; Bausells, J. Study of mixed Langmuir–Blodgett films of immunoglobulinG/amphiphile and their application for immunosensor engineering. Biosens. Bioelectron. 2004, 20, 1126–1133. [Google Scholar] [CrossRef]
- Diouani, M.F.; Ouerghi, O.; Refai, A.; Belgacem, K.; Tlili, C.; Laouini, D.; Essafi, M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater. Sci. Eng. C 2017, 74, 465–470. [Google Scholar] [CrossRef]
- Tlili, C.; Korri-Youssoufi, H.; Ponsonnet, L.; Martelet, C.; Jaffrezic-Renault, N. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta 2005, 68, 131–137. [Google Scholar] [CrossRef]
- Eissa, S.; Jimenez, G.C.; Mahvash, F.; Guermoune, A.; Tlili, C.; Szkopek, T.; Zourob, M.; Siaj, M. Functionalized CVD monolayer graphene for label-free impedimetric biosensing. Nano Res. 2015, 8, 1698–1709. [Google Scholar] [CrossRef]
- Wu, C.C.; Chiang, Y.H.; Chiang, H.Y. A Label-Free Electrochemical Impedimetric Immunosensor with Biotinylated-Antibody for SARS-CoV-2 Nucleoprotein Detection in Saliva. Biosensors 2022, 12, 265. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Mandler, D.; Kraus-Ophir, S. Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem. 2011, 15, 1535–1558. [Google Scholar] [CrossRef]
- Richards, F.M.; Knowles, J.R. Glutaraldehyde as a protein cross-linking reagent. J. Mol. Biol. 1968, 37, 231–233. [Google Scholar] [CrossRef]
- Zhu, X.; Xiong, S.; Zhang, J.; Zhang, X.; Tong, X.; Kong, S. Improving paper-based ELISA performance through covalent immobilization of antibodies. Sens. Actuators B Chem. 2018, 255, 598–604. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef]
- Aissaoui, N.; Bergaoui, L.; Boujday, S.; Lambert, J.F.; Méthivier, C.; Landoulsi, J. Enzyme immobilization on silane-modified surface through short linkers: Fate of interfacial phases and impact on catalytic activity. Langmuir 2014, 30, 4066–4077. [Google Scholar] [CrossRef]
- Cao, H.; Yang, D.P.; Ye, D.; Zhang, X.; Fang, X.; Zhang, S.; Liu, B.; Kong, J. Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing Interfaces for evaluation of cell surface sialic acid. Biosens. Bioelectron. 2015, 68, 329–335. [Google Scholar] [CrossRef]
- Ameri, A.; Shabaninejad, Z.; Movahedpour, A.; Sahebkar, A.; Mohammadi, S.; Hosseindoost, S.; Ebrahimi, M.S.; Savardashtaki, A.; Karimipour, M.; Mirzaei, H. Biosensors for detection of Tau protein as an Alzheimer’s disease marker. Int. J. Biol. Macromol. 2020, 162, 1100–1108. [Google Scholar] [CrossRef]
- Elshafey, R.; Tlili, C.; Abulrob, A.; Tavares, A.C.; Zourob, M. Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker Murine double minute 2 in brain tissue. Biosens. Bioelectron. 2013, 39, 220–225. [Google Scholar] [CrossRef]
- Tlili, C.; Sokullu, E.; Safavieh, M.; Tolba, M.; Ahmed, M.U.; Zourob, M. Bacteria Screening, Viability, And Confirmation Assays Using Bacteriophage-Impedimetric/Loop-Mediated Isothermal Amplification Dual-Response Biosensors. Anal. Chem. 2013, 85, 4893–4901. [Google Scholar] [CrossRef]
- Patel, M.; Agrawal, M.; Srivastava, A. Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater. Adv. 2022, 3, 8864–8885. [Google Scholar] [CrossRef]
- Piro, B.; Reisberg, S. Recent advances in electrochemical immunosensors. Sensors 2017, 17, 794. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef]
- Razzino, C.A.; Seravin, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Meredith, J.E.; Sankaranarayanan, S.; Guss, V.; Lanzetti, A.J.; Berisha, F.; Neely, R.J.; Slemmon, J.R.; Portelius, E.; Zetterberg, H.; Blennow, K.; et al. Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease. PLoS ONE 2013, 8, e76523. [Google Scholar] [CrossRef]
- Dey, S.; Dolci, M.; Zijlstra, P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, H.; Liu, W.; Wang, Y.; Pang, W.; Duan, X. Biofouling Removal and Protein Detection Using a Hypersonic Resonator. ACS Sens. 2017, 2, 1175–1183. [Google Scholar] [CrossRef]
- Kim, H.J.; González-Techera, A.; González-Sapienza, G.G.; Ki, C.A.; Gee, S.J.; Hammock, B.D. Phage-borne peptidomimetics accelerate the development of polyclonal antibody-based heterologous immunoassays for the detection of pesticide metabolites. Environ. Sci. Technol. 2008, 42, 2047–2053. [Google Scholar] [CrossRef]
- Manning, M.; Redmond, G. Formation and characterization of DNA microarrays at silicon nitride substrates. Langmuir 2005, 21, 395–402. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Bagherzadeh, M.; Mozaffari, S.A. Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sens. Actuators B Chem. 2006, 115, 614–621. [Google Scholar] [CrossRef]
- Hintersteiner, B.; Lingg, N.; Zhang, P.; Woen, S.; Hoi, K.M.; Stranner, S.; Wiederkum, S. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs 2016, 8, 1548–1560. [Google Scholar] [CrossRef]
- Pei, R.; Cheng, Z.; Wang, E.; Yang, X. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosens. Bioelectron. 2001, 16, 355–361. [Google Scholar] [CrossRef]
- Tlili, C.; Jaffrezic-Renault, N.; Martelet, C.; Mahy, J.P.; Lecomte, S.; Chehimi, M.M.; Korri-Youssoufi, H. A new method of immobilization of proteins on activated ester terminated alkanethiol monolayers towards the label free impedancemetric detection. Mater. Sci. Eng. C 2008, 28, 861–868. [Google Scholar] [CrossRef]
- Ahmed, A.; Rushworth, J.V.; Wright, J.D.; Millner, P.A. Novel impedimetric immunosensor for detection of pathogenic bacteria streptococcus pyogenes in human saliva. Anal. Chem. 2013, 85, 12118–12125. [Google Scholar] [CrossRef]
- Djebbi, K.; Shi, S.; Weng, T.; Bahri, M.; Elaguech, M.A.; Liu, J.; Tlili, C.; Wang, D. Highly Sensitive Fluorescence Assay for miRNA Detection: Investi-gation of the DNA Spacer Effect on the DSN Enzyme Activity to-ward Magnetic Beads Tethered-Probes. ACS Omega 2022, 7, 2224–2233. [Google Scholar] [CrossRef]
- Elaguech, M.A.; Yin, Y.; Wang, Y.; Shao, B.; Tlili, C.; Wang, D. Highly sensitive solid-state nanopore aptasensor based on target-induced strand displacement for okadaic acid detection from shellfish samples. Sens. Diagn. 2023, 2, 1612–1622. [Google Scholar] [CrossRef]
- Chan, H.N.; Xu, D.; Ho, S.L.; He, D.; Wong, M.S.; Li, H.W. Highly sensitive quantification of alzheimer’s disease biomarkers by aptamer-assisted amplification. Theranostics 2019, 9, 2939–2949. [Google Scholar] [CrossRef]
- Arjun, A.M.; Deshpande, S.; Dunlop, T.; Norman, B.; Oliviera, D.; Vulpe, G.; Moreira, F.; Sharma, S. Alzheimer’s diagnosis beyond cerebrospinal fluid: Probe-Free Detection of Tau Proteins using MXene based redox systems and molecularly imprinted polymers. Biosens. Bioelectron X 2024, 20, 100513. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T.C. Novel biomimetic Prussian blue nanocubes-based biosensor for Tau-441 protein detection. J. Pharm. Biomed. Anal. 2023, 226, 115251. [Google Scholar] [CrossRef]
- Ren, H.; Liu, X.; Wei, S.; Zhao, F.; Chen, Z.; Xiao, H. An Electrochemical Immunosensor with PEDOT: PSS/MWCNTs-COOH Nanocomposites as a Modified Working Electrode Material for Detecting Tau-441. Chemosensors 2023, 11, 573. [Google Scholar] [CrossRef]
- Li, X.; Jiang, M.; Cheng, J.; Ye, M.; Zhang, W.; Jaffrezic-Renault, N.; Guo, Z. Signal multi-amplified electrochemical biosensor for voltammetric determination of tau-441 protein in biological samples using carbon nanomaterials and gold nanoparticles to hint dementia. Microchim. Acta 2020, 187, 302. [Google Scholar] [CrossRef]
Rct (Ω) | ΔRct (Ω) | |
---|---|---|
Au/SAM/anti-HT7 | 364 | -- |
Au/SAM/anti-HT7/Tau-441 (1 ng/mL) | 538.3 | 174.3 ± 14.6 |
Au/SAM/anti-HT7/Tau-441/BT2-Strep | 693.6 | 329.6 ± 16.5 |
NC (Sandwich format without Tau-441) | 380.8 | 16.8 ± 5.8 |
Detection Method | Modified Electrode | Linear Range | LOD/LOQ | Refs. |
---|---|---|---|---|
Sandwich type ELISA (HT7-BT2) | 10–100 pg/mL | 7.8 pmol/L | [18] | |
SWV | SPCE/PBNCs/GO-MIP | 1.09–2.18 nmol/L | 0.01 pmol/L | [51] |
EIS | ITO/rGO-AuNP | 1–500 pg/mL | 0.091 pg/mL | [16] |
DPV | WE/PEDOT:PSS/MWCNTs | 0.00001–50 μg/mL | 7.4 pg/mL | [52] |
DPV | Au/MWCNTs-rGO-CS | 0.023–3.672 pg/mL | 0.021 pg/mL | [53] |
DPV | SPGE/VxPDA-MIP | 5 fg/mL–5 ng/mL | 2.3 fg/mL | [50] |
EIS | Au/Cyst-PDICT | 0.5 pg/mL–10 ng/mL | 0.08 pg/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djebbi, K.; Xiang, Y.; Shi, B.; Douadji, L.; Chen, X.; Liu, J.; Tlili, C.; Wang, D. A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker. Bioengineering 2025, 12, 805. https://doi.org/10.3390/bioengineering12080805
Djebbi K, Xiang Y, Shi B, Douadji L, Chen X, Liu J, Tlili C, Wang D. A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker. Bioengineering. 2025; 12(8):805. https://doi.org/10.3390/bioengineering12080805
Chicago/Turabian StyleDjebbi, Khouloud, Yang Xiang, Biao Shi, Lyes Douadji, Xiaohan Chen, Jin Liu, Chaker Tlili, and Deqiang Wang. 2025. "A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker" Bioengineering 12, no. 8: 805. https://doi.org/10.3390/bioengineering12080805
APA StyleDjebbi, K., Xiang, Y., Shi, B., Douadji, L., Chen, X., Liu, J., Tlili, C., & Wang, D. (2025). A Sandwich-Type Impedimetric Immunosensor for the Detection of Tau-441 Biomarker. Bioengineering, 12(8), 805. https://doi.org/10.3390/bioengineering12080805