Virtual and Augmented Reality for Chronic Musculoskeletal Rehabilitation: A Systematic Review and Exploratory Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. PICO Framework
2.4. Data Extraction and Management
2.5. Risk of Bias Assessment
2.6. Effect Measures and Synthesis Methods
2.7. Assessment of Reporting Bias
2.8. Certainty of Evidence
3. Results/Findings
3.1. Search and Study Selection
3.2. Study Quality and Risk of Bias
3.3. Geographical Distribution
3.4. VR/AR Technologies Used
3.5. Adherence and Response Rates
3.6. Study Characteristics
3.6.1. Demographics and Gender Distribution
3.6.2. Target Conditions
3.6.3. Intervention Design and Delivery
3.6.4. Comparators and Methodological Notes
3.7. Meta-Analysis and Narrative Synthesis Justification
3.7.1. Exploratory Meta-Analysis of Pain Outcomes
3.7.2. Narrative Results and Clinical Variability
3.7.3. Certainty of Evidence (GRADE Assessment)
4. Discussion
4.1. Identified Gaps in the Literature
4.2. Limitations of This Systematic Review
4.3. Implications for Physiotherapy Practice
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Da Veiga, S.; Carneiro, P.; Soares, F.; Nunes, J.; Lima, P. Augmented reality and virtualreality as tools to improve the quality of life in chronic diseases: A systematicreview. Electronics 2022, 11, 2271. [Google Scholar] [CrossRef]
- Toledo-Peral, C.; GMN, ME; BP. A mixed-reality-based human motion simulator for robot imitation learning. Intell. Manuf. Syst. 2021, 2021, 100562. [Google Scholar]
- Lo, H.H.M.; Zhu, M.; Zou, Z.; Wong, C.L.; Lo, S.H.S.; Chung, V.C.-H.; Wong, S.Y.-S.; Sit, R.W.S. Immersive and Nonimmersive Virtual Reality–Assisted Active Training in Chronic Musculoskeletal Pain: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e48787. [Google Scholar] [CrossRef]
- Gumaa, M.; Youssef, A.R. Virtual reality in rehabilitation of chronic musculoskeletal pain: Systematic review and meta-analysis. J. Musculoskelet. Rehabil. 2022, 42, 110–125. [Google Scholar]
- Cao, S. Virtual Reality Applications in Rehabilitation. In Human-Computer Interaction Theory, Design, Development and Practice; Kurosu, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–10. [Google Scholar]
- Li, L. Effect of Remote Control Augmented Reality Multimedia Technology for Postoperative Rehabilitation of Knee Joint Injury. Clin. Rehabil. 2022, 36, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Kotelnikova, A.V.; Pogonchenkova, I.V.; Daminov, V.D.; Kukshina, A.A.; Lazareva, N.I. Virtual reality in the correction of pain syndrome in patients with degenerative-dystrophic joints and spine diseases. Bull. Restor. Med. Rehabil. 2020, 96, 41–48. [Google Scholar] [CrossRef]
- Villafaina, S.; Collado-Mateo, D.; Domínguez-Muñoz, F.J.; Fuentes-García, J.P.; Gusi, N. Benefits of 24-Week Exergame Intervention on Health-Related Quality of Life and Pain in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial. Games Health J. 2019, 8, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Zarapuz, A.; Apolo-Arenas, M.D.; Tomas-Carus, P.; Tornero-Aguilera, J.F.; Clemente Suárez, V.J.; Parraca, J.A. Comparative Analysis of Psychophysiological Responses in Fibromyalgia Patients: Evaluating Neuromodulation Alone, Neuromodulation Combined with Virtual Reality, and Exercise Interventions. Medicina 2024, 60, 404. [Google Scholar] [CrossRef]
- Thomas, J.S.; France, C.R.; Applegate, M.E.; Leitkam, S.T.; Walkowski, S. Feasibility and Safety of a Virtual Reality Dodgeball Intervention for Chronic Low Back Pain: A Randomized Clinical Trial. J. Pain. 2016, 17, 1302–1317. [Google Scholar] [CrossRef]
- Riaz, S.; Shakil Ur Rehman, S.; Hafeez, S.; Hassan, D. Effects of kinect-based virtual reality training on bone mineral density and fracture risk in postmenopausal women with osteopenia: A randomized controlled trial. J. Bone Health 2024, 12, 33–41. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Booth, A.; Clarke, M.; Dooley, G.; Ghersi, D.; Moher, D.; Petticrew, M. The nuts and bolts of PROSPERO: An international prospective register of systematic reviews. Syst. Rev. 2012, 1, 2. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Atkins, D.; Brozek, J.; Vist, G.; Alderson, P.; Glasziou, P.; Falck-Ytter, Y.; Schünemann, H.J. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J. Clin. Epidemiol. 2011, 64, 395–400. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Rojhani-Shirazi, Z.; Yoosefinejad, A.K.; Nami, M. The effects of virtual reality training on clinical indices and brain mapping of women with patellofemoral pain: A randomized clinical trial. BMC Musculoskelet. Disord. 2021, 22, 900. [Google Scholar] [CrossRef]
- Garcia-Palacios, A.; Herrero, R.; Vizcaíno, Y.; Belmonte, M.A.; Castilla, D.; Molinari, G.; Baños, R.M.; Botella, C. Integrating Virtual Reality With Activity Management for the Treatment of Fibromyalgia: Acceptability and Preliminary Efficacy. Clin. J. Pain. 2015, 31, 564–572. [Google Scholar] [CrossRef]
- Gazendam, A.; Zhu, M.; Chang, Y.; Phillips, S.; Bhandari, M. Virtual reality rehabilitation following total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2548–2555. [Google Scholar] [CrossRef]
- Fuchs, L.; Kluska, A.; Novak, D.; Kosashvili, Y. The influence of early virtual reality intervention on pain, anxiety, and function following primary total knee arthroplasty. Complement. Ther. Clin. Pract. 2022, 49, 101687. [Google Scholar] [CrossRef]
- Nambi, G.; Abdelbasset, W.K.; Elsayed, S.H.; Khalil, M.A.; Alrawaili, S.M.; Alsubaie, S.F. Comparative effects of virtual reality training and sensory motor training on bone morphogenic proteins and inflammatory biomarkers in post-traumatic osteoarthritis. Physiother. J. 2020, 66, 56–65. [Google Scholar] [CrossRef]
- Martín-Martínez, J.P.; Villafaina, S.; Collado-Mateo, D.; Pérez-Gómez, J.; Gusi, N. Effects of 24-week exergame intervention on physical function under single- and dual-task conditions in fibromyalgia: A randomized controlled trial. Scand. J. Med. Sci. Sports 2019, 29, 1610–1617. [Google Scholar] [CrossRef]
- Gulsen, P.T.C.; Soke, P.T.F.; Eldemir, P.T.K.; Apaydin, P.T.Y.; Ozkul, P.T.C.; Guclu-Gunduz, P.T.A.; Akcali, D.T. Effect of fully immersive virtual reality treatment combined with exercise in f ibromyalgia patients: A randomized controlled trial. Assist. Technol. 2022, 34, 256–263. [Google Scholar] [CrossRef]
- Pekyavas, N.O.; Ergun, N. Comparison of virtual reality exergaming and home exercise programs in patients with subacromial impingement syndrome and scapular dyskinesis: Short term effect. J. Sports Rehabil. 2017, 26, 282–290. [Google Scholar] [CrossRef]
- Prvu Bettger, J.; Green, C.L.; Holmes, D.N.; Chokshi, A.; Mather, R.C., 3rd; Hoch, B.T.; de Leon, A.J.; Aluisio, F.; Seyler, T.M.; Del Gaizo, D.J.; et al. Effects of Virtual Exercise Rehabilitation In-Home Therapy Compared with Traditional Care After Total Knee Arthroplasty: VERITAS, a Randomized Controlled Trial. J. Bone Joint Surg. Am. 2020, 102, 101–109. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bettger et al. (2020) [23] | + | + | − | + | − | − | − | + | + | + | + | 6/10 |
Fuchs et al. (2022) [18] | + | + | − | + | − | − | − | − | − | + | + | 4/10 |
Pekyavas et al. (2017) [22] | + | + | + | + | − | − | − | + | − | + | + | 7/10 |
Ebrahimi et al. (2021) [15] | + | + | + | + | − | − | + | + | + | + | − | 7/10 |
Thomas et al. (2016) [10] | − | + | + | + | − | − | − | + | − | + | + | 6/10 |
Nambi et al. (2020) [19] | + | + | + | + | + | − | + | + | + | + | + | 9/10 |
Li et al. (2022) [6] | + | + | − | + | − | − | − | + | + | + | + | 6/10 |
Riaz et al. (2024) [11] | + | + | + | + | + | − | + | + | + | + | + | 9/10 |
Villafaina et al. (2019) [8] | + | + | − | + | − | − | + | + | + | + | + | 7/10 |
Martín-Martínez et al. (2019) [20] | + | + | − | + | − | − | + | + | + | + | + | 7/10 |
Garcia-Palacios et al. (2015) [16] | + | + | − | + | − | − | − | + | − | + | + | 5/10 |
Gulsen et al. (2022) [21] | + | + | − | + | − | − | + | − | − | + | + | 5/10 |
Rubio-Zarapuz et al. (2024) [9] | − | + | − | + | − | − | − | − | − | + | + | 4/10 |
RCT | PEDro Score | Downs and Black Score | Quality of Study |
---|---|---|---|
Bettger et al. (2020) [23] | 6/10 | 25/28 | Good |
Fuchs et al. (2022) [18] | 4/10 | 22/28 | Good |
Pekyavas et al. (2017) [22] | 7/10 | 17/28 | Fair |
Ebrahimi et al. (2021) [15] | 7/10 | 27/28 | Excellent |
Thomas et al. (2016) [10] | 6/10 | 22/28 | Good |
Nambi et al. (2020) [19] | 9/10 | 24/28 | Good |
Li et al. (2022) [6] | 6/10 | 16/28 | Fair |
Riaz et al. (2024) [11] | 9/10 | 23/28 | Good |
Villafaina et al. (2019) [8] | 7/10 | 24/28 | Good |
Martín-Martínez et al. (2019) [20] | 7/10 | 25/28 | Good |
Garcia-Palacios et al. (2015) [16] | 5/10 | 26/28 | Excellent |
Gulsen et al. (2022) [21] | 5/10 | 24/28 | Good |
Rubio-Zarapuz et al. (2024) [9] | 4/10 | 22/28 | Good |
Study | Sample Size (n, Age) | Pathology | Intervention | Control Group | Outcome Measures | Main Results | Technology Type |
---|---|---|---|---|---|---|---|
Nambi et al. [19] | 60 (18–25 y) | Post-traumatic OA | VR Pro-Kin System | Conventional physiotherapy | VAS, WOMAC, BMP, inflammatory markers | Improved pain, disability, inflammation (p < 0.001) | VR (immersive) |
Pekyavas et al. [22] | 30 (~41 y) | Shoulder dysfunction | Wii-based exergames | Home exercises | VAS, SPADI, Neer, Hawkins, SAT | Functional improvements (p < 0.05) | Exergaming |
Li et al. [6] | 40 (~33 y) | Post-op knee rehab | AR-based rehab program | Conservative therapy | HSS, VAS | Faster recovery, better HSS scores (p < 0.05) | AR (immersive) |
Riaz et al. [11] | 52 (48–70 y) | Osteopenia | Kinect-based VR training | Regular activity | BMD, FRAX, HFP | Improved BMD, fracture risk reduction (p < 0.001) | Exergaming |
Thomas et al. [10] | 52 (18–50 y) | Chronic low-back pain | VR dodgeball training | No intervention | TSK, CES-D, RMDQ, MPQ | Improved pain expectations (p = 0.001) | VR (immersive) |
Ebrahimi et al. [15] | 26 (~30 y) | Patellofemoral pain | Kinect VR therapy | Lifestyle education | VAS, Kujala, SF-36, mSEBT | Improved function and quality of life | VR (immersive) |
Bettger et al. [23] | 306 (~65 y) | TKA | Virtual PT (tele-rehab) | Traditional PT | KOOS, PROMIS | Non-inferior knee function, fewer readmissions (p = 0.007) | Motion-tracking |
Fuchs et al. [18] | 55 (~70 y) | TKA | VR-assisted CPM sessions | Conventional physiotherapy | VAS, WOMAC, STAI | Pain and anxiety reduction, no functional difference (p > 0.05) | VR (immersive) |
Villafaina et al. [8] | 55 (~54 y) | Fibromyalgia | 24-week exergames (VirtualEx-FM) | No exercise | VAS, EQ-5D-5L | Improved HRQoL and pain (p < 0.05) | Exergaming |
Martín-Martínez et al. [20] | 55 (~54 y) | Fibromyalgia | 24-week exergames (VirtualEx-FM) | No exercise | Arm curl, sit and reach, TUG | Improved strength, mobility, flexibility (p < 0.05) | Exergaming |
Garcia-Palacios et al. [16] | 61 (23–70 y) | Fibromyalgia | VR + activity management | Usual treatment | FIQ, QoL, Coping | Improved disability and quality of life | VR (non-immersive) |
Rubio-Zarapuz et al. [9] | 89 (18–67 y) | Fibromyalgia | EXOPULSE suit + VR | Neuromodulation/exercise/control | NRS, PPT, up-and-go, SmO2 | Improvements in pain and oxygenation (p < 0.05) | VR + neuromodulation |
Gulsen et al. [21] | 20 (~45 y) | Fibromyalgia | Immersive VR + exercise (pilates + aerobic) | Exercise only (pilates + aerobic) | VAS, PPT, functional tests | Greater pain reduction and functional improvement | VR (immersive) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plavoukou, T.; Staktopoulos, P.; Papagiannis, G.; Stasinopoulos, D.; Georgoudis, G. Virtual and Augmented Reality for Chronic Musculoskeletal Rehabilitation: A Systematic Review and Exploratory Meta-Analysis. Bioengineering 2025, 12, 745. https://doi.org/10.3390/bioengineering12070745
Plavoukou T, Staktopoulos P, Papagiannis G, Stasinopoulos D, Georgoudis G. Virtual and Augmented Reality for Chronic Musculoskeletal Rehabilitation: A Systematic Review and Exploratory Meta-Analysis. Bioengineering. 2025; 12(7):745. https://doi.org/10.3390/bioengineering12070745
Chicago/Turabian StylePlavoukou, Theodora, Pantelis Staktopoulos, Georgios Papagiannis, Dimitrios Stasinopoulos, and George Georgoudis. 2025. "Virtual and Augmented Reality for Chronic Musculoskeletal Rehabilitation: A Systematic Review and Exploratory Meta-Analysis" Bioengineering 12, no. 7: 745. https://doi.org/10.3390/bioengineering12070745
APA StylePlavoukou, T., Staktopoulos, P., Papagiannis, G., Stasinopoulos, D., & Georgoudis, G. (2025). Virtual and Augmented Reality for Chronic Musculoskeletal Rehabilitation: A Systematic Review and Exploratory Meta-Analysis. Bioengineering, 12(7), 745. https://doi.org/10.3390/bioengineering12070745