The Ripple Effect: How Hallux Valgus Deformity Influences Ankle and Knee Joint Kinematics During Gait
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Experimental Protocol
2.4. Date Collection
2.5. Statistical Analysis
3. Result
3.1. Characteristics of the Participants
3.2. 3D Kinematic Curves of the Ankle and Knee Joints
3.3. Comparison of 6-DOF of Double Joint Kinematic Parameters at Key Event
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Song, Y.; He, M.; He, W.; Zhong, X.; Wen, H.; Wei, Q. Global Prevalence and Incidence of Hallux Valgus: A Systematic Review and Meta-analysis. J. Foot Ankle Res. 2023, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Glasoe, W.M.; Nuckley, D.J.; Ludewig, P.M. Hallux Valgus and the First Metatarsal Arch Segment: A Theoretical Biomechanical Perspective. Phys. Ther. 2010, 90, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.S.; Young, K.W.; Naraghi, R.; Cho, H.K.; Lee, S.Y. A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans. Foot Ankle Int. 2015, 36, 944–952. [Google Scholar] [CrossRef]
- Shih, K.-S.; Chien, H.-L.; Lu, T.-W.; Chang, C.-F.; Kuo, C.-C. Gait Changes in Individuals with Bilateral Hallux Valgus Reduce First Metatarsophalangeal Loading but Increase Knee Abductor Moments. Gait Posture 2014, 40, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Beyaert, C.; Grumillier, C.; Martinet, N.; Paysant, J.; André, J.-M. Compensatory Mechanism Involving the Knee Joint of the Intact Limb during Gait in Unilateral Below-Knee Amputees. Gait Posture 2008, 28, 278–284. [Google Scholar] [CrossRef]
- Özgüçlü, E.; Kılıç, E.; Kaymak, B. A Knee Osteoarthritis Connected with Hallux Valgus-Related Pes Planus. J. Biomech. 2008, 41, 3523–3524. [Google Scholar] [CrossRef] [PubMed]
- Canseco, K.; Rankine, L.; Long, J.; Smedberg, T.; Marks, R.M.; Harris, G.F. Motion of the Multisegmental Foot in Hallux Valgus. Foot Ankle Int. 2010, 31, 146–152. [Google Scholar] [CrossRef]
- Canseco, K.; Long, J.; Smedberg, T.; Tarima, S.; Marks, R.M.; Harris, G.F. Multisegmental Foot and Ankle Motion Analysis After Hallux Valgus Surgery. Foot Ankle Int. 2012, 33, 141–147. [Google Scholar] [CrossRef]
- Zeidan, H.; Ryo, E.; Suzuki, Y.; Iijima, H.; Kajiwara, Y.; Harada, K.; Nakai, K.; Shimoura, K.; Fujimoto, K.; Takahashi, M.; et al. Detailed Analysis of the Transverse Arch of Hallux Valgus Feet with and without Pain Using Weightbearing Ultrasound Imaging and Precise Force Sensors. PLoS ONE 2020, 15, e0226914. [Google Scholar] [CrossRef]
- Geng, X.; Huang, D.; Wang, X.; Zhang, C.; Huang, J.; Ma, X.; Chen, L.; Wang, C.; Yang, J.; Wang, H. Loading Pattern of Postoperative Hallux Valgus Feet with and without Transfer Metatarsalgia: A Case Control Study. J. Orthop. Surg. Res. 2017, 12, 120. [Google Scholar] [CrossRef]
- Hofmann, U.K.; Götze, M.; Wiesenreiter, K.; Müller, O.; Wünschel, M.; Mittag, F. Transfer of Plantar Pressure from the Medial to the Central Forefoot in Patients with Hallux Valgus. BMC Musculoskelet Disord. 2019, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- Kozaková, J.; Janura, M.; Svoboda, Z.; Elfmark, M.; Klugar, M. The Influence of Hallux Valgus on Pelvis and Lower Extremity Movement during Gait. Acta Gymnica 2011, 41, 49–54. [Google Scholar] [CrossRef]
- Tian, F.; Li, N.; Zheng, Z.; Huang, Q.; Zhu, T.; Li, Q.; Wang, W.; Tsai, T.-Y.; Wang, S. The Effects of Marathon Running on Three-Dimensional Knee Kinematics during Walking and Running in Recreational Runners. Gait Posture 2020, 75, 72–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, W.; Yao, Z.; Ma, L.; Lin, Z.; Wang, S.; Huang, H. Anterior Cruciate Ligament Injuries Alter the Kinematics of Knees With or Without Meniscal Deficiency. Am. J. Sports Med. 2016, 44, 3132–3139. [Google Scholar] [CrossRef] [PubMed]
- Güler, Ö.; Perwög, M.; Kral, F.; Schwarm, F.; Bárdosi, Z.R.; Göbel, G.; Freysinger, W. Quantitative Error Analysis for Computer Assisted Navigation: A Feasibility Study: Quantitative Error Analysis for Computer Assisted Navigation. Med. Phys. 2013, 40, 021910. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Z.; Wang, S.; Huang, W.; Ma, L.; Huang, H.; Xia, H. Motion Analysis of Chinese Normal Knees during Gait Based on a Novel Portable System. Gait Posture 2015, 41, 763–768. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, X.; Xie, Z.; Ma, L.; Zhong, G.; Li, L.; Huang, W.; Zhang, Y. Kinematic Alterations of the Ankle in Subjects with Generalized Joint Hypermobility Compared with the Controls: A Cross-Sectional Study. J. Orthop. Surg. 2022, 30, 10225536221125951. [Google Scholar] [CrossRef]
- Matsas, A.; Taylor, N.; McBurney, H. Knee Joint Kinematics from Familiarised Treadmill Walking Can Be Generalised to Overground Walking in Young Unimpaired Subjects. Gait Posture 2000, 11, 46–53. [Google Scholar] [CrossRef]
- Hallinan, J.T.P.D.; Statum, S.M.; Huang, B.K.; Bezerra, H.G.; Garcia, D.A.L.; Bydder, G.M.; Chung, C.B. High-Resolution MRI of the First Metatarsophalangeal Joint: Gross Anatomy and Injury Characterization. RadioGraphics 2020, 40, 1107–1124. [Google Scholar] [CrossRef]
- Kawakami, W.; Iwamoto, Y.; Ota, M.; Ishii, Y.; Takahashi, M. Individuals with Asymptomatic Hallux Valgus Exhibit Altered Foot Kinematics during Gait Regardless of Their Foot Posture. Clin. Biomech. 2024, 118, 106319. [Google Scholar] [CrossRef]
- Kawakami, W.; Iwamoto, Y.; Takeuchi, Y.; Takeuchi, R.; Sekiya, J.; Ishii, Y.; Takahashi, M. Young Females with Hallux Valgus Show Lower Foot Joint Movement Stability Compared to Controls: An Investigation of Coordination Patterns and Variability. Clin. Biomech. 2022, 94, 105624. [Google Scholar] [CrossRef]
- Martin, H.; Bahlke, U.; Dietze, A.; Zschorlich, V.; Schmitz, K.-P.; Mittlmeier, T. Investigation of First Ray Mobility during Gait by Kinematic Fluoroscopic Imaging-a Novel Method. BMC Musculoskelet. Disord. 2012, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Arinci İncel, N.; Genç, H.; Erdem, H.R.; Yorgancioglu, Z.R. Muscle Imbalance in Hallux Valgus: An Electromyographic Study. Am. J. Phys. Med. Rehabil. 2003, 82, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, J.; Liu, R.; Chen, C.; Wan, X.; Yu, W.; Lu, H.; Ouyang, J.; Liu, G.; Qian, L. High Risk of Falling in Elderly with Hallux Valgus Evaluated by Muscle and Kinematic Synergistic Analysis. Gait Posture 2025, 118, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, Y.; Zhou, L.; Qian, L.; Chen, C.; Wan, X.; Wang, Y.; Yu, W.; Liu, G.; Ouyang, J. Muscle Synergy and Kinematic Synergy Analyses during Sit-to-Stand Motions in Hallux Valgus Patients before and after Treatment with Kinesio Taping. BioMed. Eng. OnLine 2024, 23, 74. [Google Scholar] [CrossRef]
- Rosemberg, D.L.; Gustafson, J.A.; Bordignon, G.; Bohl, D.D.; Leporace, G.; Metsavaht, L. Biokinetic Evaluation of Hallux Valgus during Gait: A Systematic Review. Foot Ankle Int. 2023, 44, 763–777. [Google Scholar] [CrossRef]
- Xiang, L.; Mei, Q.; Wang, A.; Fernandez, J.; Gu, Y. Gait Biomechanics Evaluation of the Treatment Effects for Hallux Valgus Patients: A Systematic Review and Meta-Analysis. Gait Posture 2022, 94, 67–78. [Google Scholar] [CrossRef]
- Biswas, D.K.; Sinclair, M.; Le, T.; Pullano, S.A.; Fiorillo, A.S.; Mahbub, I. Modeling and Characterization of Scaling Factor of Flexible Spiral Coils for Wirelessly Powered Wearable Sensors. Sensors 2020, 20, 2282. [Google Scholar] [CrossRef]
- Geng, X.; Shi, J.; Chen, W.; Ma, X.; Wang, X.; Zhang, C.; Chen, L. Impact of First Metatarsal Shortening on Forefoot Loading Pattern: A Finite Element Model Study. BMC Musculoskelet. Disord. 2019, 20, 625. [Google Scholar] [CrossRef]
- Nguyen, L.Y.; Harris, K.D.; Morelli, K.M.; Tsai, L.-C. Increased Knee Flexion and Varus Moments during Gait with High-Heeled Shoes: A Systematic Review and Meta-Analysis. Gait Posture 2021, 85, 117–125. [Google Scholar] [CrossRef]
- Mochizuki, T.; Sato, T.; Koga, Y.; Tanifuji, O.; Yamagiwa, H.; Endo, N.; Kobayashi, K.; Omori, G. In Vivo Pre- and Postoperative Three-Dimensional Knee Kinematics in Unicompartmental Knee Arthroplasty. J. Orthop. Sci. 2013, 18, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Arno, S.; Maffei, D.; Walker, P.S.; Schwarzkopf, R.; Desai, P.; Steiner, G.C. Retrospective Analysis of Total Knee Arthroplasty Cases for Visual, Histological, and Clinical Eligibility of Unicompartmental Knee Arthroplasties. J. Arthroplast. 2011, 26, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Pomajzl, R.; Maerz, T.; Shams, C.; Guettler, J.; Bicos, J. A Review of the Anterolateral Ligament of the Knee: Current Knowledge Regarding Its Incidence, Anatomy, Biomechanics, and Surgical Dissection. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 583–591. [Google Scholar] [CrossRef]
- Shea, K.G.; Musahl, V.; Stavinoha, T.J. Editorial Commentary: Anterolateral Ligament—Anatomy, Evaluation, and Future Applications to Knee Stability. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 2143–2145. [Google Scholar] [CrossRef]
- Shabani, B.; Bytyqi, D.; Lustig, S.; Cheze, L.; Bytyqi, C.; Neyret, P. Gait Changes of the ACL-Deficient Knee 3D Kinematic Assessment. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3259–3265. [Google Scholar] [CrossRef]
- Resende, R.A.; Deluzio, K.J.; Kirkwood, R.N.; Hassan, E.A.; Fonseca, S.T. Increased Unilateral Foot Pronation Affects Lower Limbs and Pelvic Biomechanics during Walking. Gait Posture 2015, 41, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, H.; Mallakzadeh, M.; Sadat Farshidfar, S.; Givehchian, B.; Daneshparvar, H.; Behensky, H. The Effect of Tibial Rotation on Knee Medial and Lateral Compartment Contact Pressure. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 79–83. [Google Scholar] [CrossRef]
- Steinbrück, A.; Fottner, A.; Schröder, C.; Woiczinski, M.; Schmitt-Sody, M.; Müller, T.; Müller, P.E.; Jansson, V. Influence of Mediolateral Tibial Baseplate Position in TKA on Knee Kinematics and Retropatellar Pressure. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2602–2608. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Huri, G.; Yataganbaba, A.; Paczesny, Ł.; Szwedowski, D.; Zabrzyńska, A.; Łapaj, Ł.; Gagat, M.; Wiśniewski, M.; Pękala, P. Current Concepts on the Morphology of Popliteus Tendon and Its Clinical Implications. Folia Morphol. 2021, 80, 505–513. [Google Scholar] [CrossRef]
- Faschingbauer, M.; Kasparek, M.; Waldstein, W.; Schadler, P.; Reichel, H.; Boettner, F. Cartilage Survival of the Knee Strongly Depends on Malalignment: A Survival Analysis from the Osteoarthritis Initiative (OAI). Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1346–1355. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Li, J.-S.; Wang, S.; Lin, H.; Malchau, H.; Li, G.; Rubash, H.; Kwon, Y.-M. A Novel Dual Fluoroscopic Imaging Method for Determination of THA Kinematics: In-Vitro and in-Vivo Study. J. Biomech. 2013, 46, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Laganà, F.; Pratticò, D.; Angiulli, G.; Oliva, G.; Pullano, S.A.; Versaci, M.; La Foresta, F. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques. Signals 2024, 5, 476–493. [Google Scholar] [CrossRef]
- Lin, Z.; Du, H.; Cheng, J.; Han, X.; Wang, D.; Liu, Z.; Huang, Y. Can Foot Orthoses Be an Effective Supplement to Brace Therapy for Adolescent Idiopathic Scoliosis? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Back Musculoskelet. Rehabil. 2025, 10538127251337689. [Google Scholar] [CrossRef] [PubMed]
- Gur, G.; Ozkal, O.; Dilek, B.; Aksoy, S.; Bek, N.; Yakut, Y. Effects of Corrective Taping on Balance and Gait in Patients With Hallux Valgus. Foot Ankle Int. 2017, 38, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, R.R.; Mendes, A.A.M.T.; Barbosa, G.M.; De Souza, M.C. Effects of Custom Insoles for Symptomatic Hallux Valgus: Protocol for a Sham-Controlled Randomised Trial. BMJ Open 2023, 13, e069872. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Jie, T.; Zhou, Z.; Yuan, Y.; Jemni, M.; Quan, W.; Gao, Z.; Xiang, L.; Gusztav, F.; et al. Data-Driven Deep Learning for Predicting Ligament Fatigue Failure Risk Mechanisms. Int. J. Mech. Sci. 2025, 301, 110519. [Google Scholar] [CrossRef]
- Pratticò, D.; Laganà, F.; Oliva, G.; Fiorillo, A.S.; Pullano, S.A.; Calcagno, S.; De Carlo, D.; La Foresta, F. Integration of LSTM and U-Net Models for Monitoring Electrical Absorption With a System of Sensors and Electronic Circuits. IEEE Trans. Instrum. Meas. 2025, 74, 1–11. [Google Scholar] [CrossRef]
HV Group | Control Group | p Value | |
---|---|---|---|
N | 23 | 23 | |
Age (Years) | 36.9 ± 9.2 | 34.7 ± 5.8 | 0.783 |
Sex (n, Male/Female) | 3/20 | 3/20 | 0.968 |
Height (cm) | 161.9 ± 4.6 | 160.6 ± 5.0 | 0.344 |
Weight (kg) | 58.0 ± 7.1 | 55.4 ± 6.4 | 0.212 |
Body mass index (kg/m2) | 22.2 ± 2.8 | 21.5 ± 2.8 | 0.378 |
Variable | HV Group | Control Group | p Value | |
---|---|---|---|---|
N | 23 | 23 | ||
Ankle | Var-Val (+), deg | −0.54 ± 3.97 | −3.40 ± 4.83 | 0.003 * |
Int-Ext (+), deg | −0.14 ± 3.60 | −1.90 ± 4.30 | 0.035 * | |
Ext-Fle (+), deg | −3.50 ± 4.94 | −7.90 ± 4.44 | <0.001 * | |
Pos-Ant (+), mm | −0.06 (0.64) § | 0.11 (0.61) § | 0.078 | |
Med-Lat (+), mm | 0.36 (0.78) § | 0.57 (0.62) § | 0.106 | |
Knee | Var-Val (+), deg | −0.87 ± 3.20 | 0.53 ± 2.70 | 0.023 * |
Int-Ext (+), deg | 1.96 ± 3.16 | 2.78 ± 5.42 | 0.39 | |
Ext-Fle (+), deg | 9.59 ± 8.02 | 8.18 ± 6.27 | 0.35 | |
Pos-Ant (+), mm | 0.69 ± 0.81 | 1.53 ± 0.52 | <0.001 * | |
Med-Lat (+), mm | 0.26 ± 0.43 | 0.00 ± 0.70 | 0.036 * |
Variable | HV Group | Control Group | p Value | |
---|---|---|---|---|
N | 23 | 23 | ||
Ankle | Var-Val (+), deg | −4.01 ± 4.57 | −4.20 ± 5.00 | 0.853 |
Int-Ext (+), deg | −2.36 (6.52) § | −5.05 (7.82) § | 0.043 § | |
Ext-Fle (+), deg | 5.90 (12.18) § | 2.29 (7.12) § | 0.006 § | |
Pos-Ant (+), mm | −0.57 (0.61) § | −0.41 (0.65) § | 0.128 | |
Med-Lat (+), mm | 0.80 (0.53) § | 0.85 (0.72) § | 0.827 | |
Knee | Var-Val (+), deg | −4.89 ± 5.60 | −3.18 ± 4.60 | 0.112 |
Int-Ext (+), deg | −1.22 (6.04) § | 1.37 (7.92) § | 0.009 § | |
Ext-Fle (+), deg | 30.56 ± 11.98 | 29.6 ± 9.39 | 0.669 | |
Pos-Ant (+), mm | 0.04 (0.83) § | −0.05 (0.56) § | 0.809 | |
Med-Lat (+), mm | 0.41 (0.70) § | 0.25 (0.80) § | 0.182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, L.; Wu, C.; Luo, Y.; Li, L.; Liu, M.; Huang, A.; Li, F.; Shi, Z.; Wang, S. The Ripple Effect: How Hallux Valgus Deformity Influences Ankle and Knee Joint Kinematics During Gait. Bioengineering 2025, 12, 744. https://doi.org/10.3390/bioengineering12070744
Hua L, Wu C, Luo Y, Li L, Liu M, Huang A, Li F, Shi Z, Wang S. The Ripple Effect: How Hallux Valgus Deformity Influences Ankle and Knee Joint Kinematics During Gait. Bioengineering. 2025; 12(7):744. https://doi.org/10.3390/bioengineering12070744
Chicago/Turabian StyleHua, Longzhou, Chenglin Wu, Ye Luo, Longxiang Li, Mingwei Liu, Aoqing Huang, Fangfang Li, Zhongmin Shi, and Shaobai Wang. 2025. "The Ripple Effect: How Hallux Valgus Deformity Influences Ankle and Knee Joint Kinematics During Gait" Bioengineering 12, no. 7: 744. https://doi.org/10.3390/bioengineering12070744
APA StyleHua, L., Wu, C., Luo, Y., Li, L., Liu, M., Huang, A., Li, F., Shi, Z., & Wang, S. (2025). The Ripple Effect: How Hallux Valgus Deformity Influences Ankle and Knee Joint Kinematics During Gait. Bioengineering, 12(7), 744. https://doi.org/10.3390/bioengineering12070744