Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical and Mechanical Property Analysis of Materials
2.2.1. Pore Size and Printing Accuracy
2.2.2. Biomechanical Analysis
2.2.3. Compression Test
2.2.4. Fatigue Test
2.3. In Vivo Animal Study
2.3.1. Preparation of Animals
2.3.2. Sprague Dawley Rat Calvarial Defect Model
2.3.3. New Zealand White Rabbit Calvarial Defect Model
2.4. Statistical Analysis
3. Results
3.1. Physical and Mechanical Properties
3.1.1. Pore Size and Printing Accuracy
3.1.2. Biomechanical Analysis—Compression Testing
3.1.3. Compression Test
3.1.4. Fatigue Test
3.2. In Vivo Animal Study
3.2.1. Evaluation of PLA/GO Scaffold in a Rat Preclinical Model
3.2.2. Evaluation of PLA/GO Scaffold in a Rabbit Preclinical Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boga, J.C.; Miguel, S.P.; de Melo-Diogo, D.; Mendonça, A.G.; Louro, R.O.; Correia, I.J. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids Surf. B Biointerfaces 2018, 165, 207–218. [Google Scholar] [CrossRef]
 - Hoveidaei, A.H.; Sadat-Shojai, M.; Nabavizadeh, S.S.; Niakan, R.; Shirinezhad, A.; MosalamiAghili, S.; Tabaie, S. Clinical challenges in bone tissue engineering—A narrative review. Bone 2025, 192, 117363. [Google Scholar] [CrossRef]
 - Saravanan, S.; Chawla, A.; Vairamani, M.; Sastry, T.; Subramanian, K.; Selvamurugan, N. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int. J. Biol. Macromol. 2017, 104 Pt B, 1975–1985. [Google Scholar] [CrossRef] [PubMed]
 - Todd, E.A.; Mirsky, N.A.; Silva, B.L.G.; Shinde, A.R.; Arakelians, A.R.L.; Nayak, V.V.; Marcantonio, R.A.C.; Gupta, N.; Witek, L.; Coelho, P.G. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J. Funct. Biomater. 2024, 15, 280. [Google Scholar] [CrossRef] [PubMed]
 - Belaid, H.; Nagarajan, S.; Teyssier, C.; Barou, C.; Barés, J.; Balme, S.; Garay, H.; Huon, V.; Cornu, D.; Cavaillès, V.; et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater. Sci. Eng. C Mater Biol. Appl. 2020, 110, 110595. [Google Scholar] [CrossRef] [PubMed]
 - Seehanam, S.; Khrueaduangkham, S.; Sinthuvanich, C.; Sae-Ueng, U.; Srimaneepong, V.; Promoppatum, P. Evaluating the Effect of Pore Size for 3D-Printed Bone Scaffolds. Heliyon 2024, 10, e26005. [Google Scholar] [CrossRef]
 - Unagolla, J.M.; Jayasuriya, A.C. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 1–11. [Google Scholar] [CrossRef]
 - Sharma, A.; Gupta, S.; Sampathkumar, T.; Verma, R.S. Modified graphene oxide nanoplates reinforced 3D printed multifunctional scaffold for bone tissue engineering. Biomater Adv. 2022, 134, 112587. [Google Scholar] [CrossRef]
 - Jang, H.J.; Kang, M.S.; Kim, W.-H.; Jo, H.J.; Lee, S.-H.; Hahm, E.J.; Oh, J.H.; Hong, S.W.; Kim, B.; Han, D.-W. 3D printed membranes of polylactic acid and graphene oxide for guided bone regeneration. Nanoscale Adv. 2023, 5, 3619–3628. [Google Scholar] [CrossRef]
 - Tavakoli, M.; Emadi, R.; Salehi, H.; Labbaf, S.; Varshosaz, J. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. Int. J. Biol. Macromol. 2023, 253 Pt 1, 126510. [Google Scholar] [CrossRef]
 - Keshtiban, M.M.; Taghvaei, H.; Noroozi, R.; Eskandari, V.; Arif, Z.U.; Bodaghi, M.; Bardania, H.; Hadi, A. Biological and Mechanical Response of Graphene Oxide Surface-Treated Polylactic Acid 3D-Printed Bone Scaffolds: Experimental and Numerical Approaches. Adv. Eng. Mater. 2024, 26, 2301260. [Google Scholar] [CrossRef]
 - Yang, Z.; Yin, G.; Sun, S.; Xu, P. Medical Applications and Prospects of Polylactic Acid (PLA). iScience 2024, 27, 109093. [Google Scholar] [CrossRef] [PubMed]
 - Wang, W.; Caetano, G.; Ambler, W.S.; Blaker, J.J.; Frade, M.A.; Mandal, P.; Diver, C.; Bártolo, P. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials 2016, 9, 992. [Google Scholar] [CrossRef]
 - Seyedsalehi, A.; Daneshmandi, L.; Barajaa, M.; Riordan, J.; Laurencin, C.T. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Sci. Rep. 2020, 10, 22210. [Google Scholar] [CrossRef] [PubMed]
 - Guo, W.; Yang, Y.; Liu, C.; Bu, W.; Guo, F.; Li, J.; Wang, E.; Peng, Z.; Mai, H.; You, H.; et al. 3D Printed TPMS Structural PLA/GO Scaffold: Process Parameter Optimization, Porous Structure, Mechanical and Biological Properties. J. Mech. Behav. Biomed. Mater. 2023, 142, 105848. [Google Scholar] [CrossRef] [PubMed]
 - Toosi, S.; Javid-Naderi, M.J.; Tamayol, A.; Ebrahimzadeh, M.H.; Yaghoubian, S.; Mousavi Shaegh, S.A. Additively Manufactured Porous Scaffolds by Design for Treatment of Bone Defects: A Review. Front. Bioeng. Biotechnol. 2024, 12, 1252636. [Google Scholar]
 - Herath, B.; Laubach, M.; Suresh, S.; Schmutz, B.; Little, J.P.; Yarlagadda, P.K.D.V.; Delbrück, H.; Hildebrand, F.; Hutmacher, D.W.; Wille, M.-L. Modular Design Workflow for 3D Printable Bioresorbable Patient-Specific Bone Scaffolds: Extended Features and Clinical Validation. Front. Bioeng. Biotechnol. 2024, 12, 1404481. [Google Scholar] [CrossRef]
 - Alazab, M.H.; Abouelgeit, S.A.; Aboushelib, M.N. Histomorphometric evaluation of 3D printed graphene oxide-enriched poly(ε-caprolactone) scaffolds for bone regeneration. Heliyon 2023, 9, e15844. [Google Scholar]
 - Patil, R.; Khandelwal, P.; Mungray, A.K.; Alimperti, S. Graphene in 3D Bioprinting: Recent Advances and Biomedical Applications. Bioengineering 2024, 15, 82. [Google Scholar]
 - Sánchez-Cepeda, A.; Pazos, M.C.; Leonardo, P.-A.; Ingrid, S.-C.; Correa-Araujo, L.S.; de Lourdes, C.G.M.; Vera-Graziano, R. Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application. RSC Adv. 2024, 14, 39804–39819. [Google Scholar]
 - Li, Y.; Yang, L.; Hou, Y.; Zhang, Z.; Chen, M.; Wang, M.; Xie, C.; Lu, X. (Polydopamine-Mediated Graphene Oxide and Hydroxyapatite Conductive Scaffold Promotes Bone Regeneration in Periodontal Defects of Diabetic Rats. Mater. Today Bio 2022, 16, 100388. [Google Scholar]
 - ASTM D695-15; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2015.
 - Patel, J.M.; Saleh, K.S.; Burdick, J.A.; Mauck, R.L. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2019, 25, 683–696. [Google Scholar] [CrossRef]
 - Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone/Elsevier: London, UK, 2008. [Google Scholar]
 - Motulsky, H. Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking, 4th ed.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
 - GraphPad Software, Version 10.0. GraphPad Prism User Guide. GraphPad Software: Boston, MA, USA, 2023.
 - Calore, A.R.; Srinivas, V.; Groenendijk, L.; Serafim, A.; Stancu, I.C.; Wilbers, A.; Leoné, N.; Sanchez, A.A.; Auhl, D.; Mota, C.; et al. Manufacturing of Scaffolds with Interconnected Internal Architecture by Combining Additive Manufacturing with In-Situ Foaming and Porogen Leaching. Acta Biomater. 2023, 156, 376–393. [Google Scholar]
 - Ustrell-Barral, M.; Zamora-Olave, C.; Khoury-Ribas, L.; Rovira-Lastra, B.; Martinez-Gomis, J. Reliability, reference values and factors related to maximum bite force measured by the Innobyte system in healthy adults with natural dentitions. Clin Oral Investig. 2024, 28, 620. [Google Scholar] [CrossRef]
 - Mushtaq, R.T.; Askari, G.H.; Bao, C.; Wang, Y.; Ahmed, K.; Khan, A.M.; Sharma, S.; Alkahtani, M. Optimization of 3D-Printed Bio-Based Super-Tough PLA (ST-PLA) for Cancellous Bone Applications. Int. J. Biol. Macromol. 2025, 281, 131709. [Google Scholar]
 - Cojocaru, V.; Marghitu, D.; Vasile, O.; Marginean, G. The Influence of Process Parameters on the Mechanical Properties of PLA Specimens Manufactured by Fused Filament Fabrication: A Review. Polymers 2022, 14, 886. [Google Scholar] [CrossRef] [PubMed]
 - Mukasheva, F.; Kudaibergen, D.; Beisenbayeva, A.; Akilbekova, D. Optimizing Scaffold Pore Size for Tissue Engineering: A Review. Front. Bioeng. Biotechnol. 2024, 12, 1444986. [Google Scholar] [CrossRef] [PubMed]
 - Lv, N.; Li, L.; Guo, X.; Zhou, Z.; Hou, M.; Hong, L.; Li, H.; Qian, Z.; Liu, M. Research Progress of Vascularization Strategies of Tissue Engineering Scaffolds. Front. Bioeng. Biotechnol. 2024, 12, 1291969. [Google Scholar]
 - Cheng, J.; Liu, X.; Zhao, Y.; Wang, Z.; Tang, P. Graphene and Its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front. Bioeng. Biotechnol. 2021, 9, 734688. [Google Scholar] [CrossRef]
 - Kuznetsova, E.; Smirnov, A.; Gusarov, A.V.; Pinargote, N.W.S.; Tarasova, T.V.; Grigoriev, S.N. Influence of Graphene Oxide on Printability, Rheological and Mechanical Properties of Highly Filled Alumina Filaments and Sintered Parts Produced by FFF. Appl. Sci. 2024, 14, 11986. [Google Scholar] [CrossRef]
 - Qiu, Z.; Li, Q.; Chen, L.; Zou, L. Effect of Graphene Oxide/PLLA Composite Scaffold on DPSCs: Proliferation and Osteogenic Differentiation In Vitro. BMC Oral Health 2024, 24, 4197. [Google Scholar]
 - Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea. Development of Photo-Curable Polymer Composites for 3D-Printed Scaffolds and Barriers for Bone Defect Treatment (Project No. 20014399); Final Report; Luvantix ADM Co., Ltd., Seoul National University Dental Hospital, and Pusan National University: Daejeon, Republic of Korea, 2025. [Google Scholar]
 - ISO 10993-5:2009; Biological Evaluation of Medical Devices–Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
 




| Structure 1 (Lattice-Type) | Structure 2 (Dode-Type) | ||||||
|---|---|---|---|---|---|---|---|
| Pore Size | Reference Pore Rate | Printed Object Pore Rate | Error | Pore Size | Reference Pore Rate | Printed Object Pore Rate | Error | 
| 558 μm | 44.01% | 49.01% | 5.00% | 750 μm | 32.87% | 33.01% | 0.14% | 
| 652 μm | 56.36% | 53.30% | −3.06% | 875 μm | 50.78% | 51.04% | 0.26% | 
| 750 μm | 65.88% | 59.38% | −6.50% | 1000 μm | 58.39% | 57.70% | −0.68% | 
| 875 μm | 73.35% | 73.33% | −0.01% | 1125 μm | 66.11% | 66.07% | −0.04% | 
| 1000 μm | 78.40% | 76.59% | −1.81% | 1250 μm | 72.27% | 65.53% | −6.74% | 
| Average | 3.28% | Average | 1.57% | ||||
| Pore Size  | Yield Displacement (mm) | Yield Load (N) | Yield Strain (%) | Yield Strength (MPa) | Elastic Modulus (MPa) | 
|---|---|---|---|---|---|
| 930 μm | 0.98 ± 0.11 | 664.23 ± 80.47 | 3.85 ± 0.41 | 4.29 ± 0.50 | 164.87 ± 24.93 | 
| 690 μm | 1.02 ± 0.06 | 1107.06 ± 114.56 a | 3.78 ± 0.22 | 6.72 ± 0.68 a | 230.20 ± 25.08 a | 
| 562 μm | 0.84 ± 0.10 | 432.34 ± 53.23 b | 3.33 ± 0.38 | 2.80 ± 0.37 b | 144.22 ± 22.70 b | 
| 558 μm | 1.04 ± 0.11 * | 582.05 ± 17.40 *,a,b | 4.23 ± 0.45 *,c | 4.02 ± 0.18 *,a,b,c | 148.68 ± 12.10 *,b | 
| Pore Size | Dynamic Compressive Load (N) | Number of Cycles | Test Result | Fracture Type | 
|---|---|---|---|---|
| 930 μm | #1: Min. = −30/Max. = −300 (R = 10) | 5,000,000 | Run out | |
| #2: Min. = −70/Max. = −700 (R = 10) | 5,000,000 | Run out | ||
| 690 μm | #3: Min. = −30/Max. = −300 (R = 10) | 5,000,000 | Run out | |
| #4: Min. = −70/Max. = −700 (R = 10) | 5,000,000 | Run out | ||
| 562 μm | #5: Min. = −30/Max. = −300 (R = 10) | 5,000,000 | Run out | |
| #6: Min. = −70/Max. = −700 (R = 10) | 10 | Failure | Block fracture | |
| 558 μm | #7: Min. = −30/Max. = −300 (R = 10) | 5,000,000 | Run out | |
| #8: Min. = −70/Max. = −700 (R = 10) | 10 | Failure | Block fracture | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-T.; Lee, D.; Jung, Y.-S.; Lee, S.-H.; Kim, S.; Kim, B.; Han, D.-W. Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration. Bioengineering 2025, 12, 1192. https://doi.org/10.3390/bioengineering12111192
Lee J-T, Lee D, Jung Y-S, Lee S-H, Kim S, Kim B, Han D-W. Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration. Bioengineering. 2025; 12(11):1192. https://doi.org/10.3390/bioengineering12111192
Chicago/Turabian StyleLee, Jung-Tae, Dajung Lee, Ye-Seul Jung, Sung-Ho Lee, Sungtae Kim, Bongju Kim, and Dong-Wook Han. 2025. "Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration" Bioengineering 12, no. 11: 1192. https://doi.org/10.3390/bioengineering12111192
APA StyleLee, J.-T., Lee, D., Jung, Y.-S., Lee, S.-H., Kim, S., Kim, B., & Han, D.-W. (2025). Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration. Bioengineering, 12(11), 1192. https://doi.org/10.3390/bioengineering12111192
        
                                                
