Current Concepts in Viscosupplementation: New Classification System and Emerging Frontiers
Abstract
1. Introduction
2. Viscosupplementation’s Dual Mechanism of Action: Biology and Rheology
2.1. Interaction with Cellular Receptors
2.2. Anti-Inflammatory Effect
2.3. Analgesic Effect
2.4. Endogenous Stimulation (Chondroprotection)
3. Revisiting the Classification of Hyaluronic Acid Formulations
Chemical Structure (The Primary Distinction)
- (A)
- Linear HA (Non-modified): Consists of non-modified hyaluronic acid chains, identical to those found endogenously [5]. Their defining characteristics are superior biocompatibility and a physiological mechanism of action. They can be further sub-classified by their molecular weight:
- (B)
- Cross-linked HA (Chemically Modified Hydrogels): Consists of HA chains that have been chemically bonded (e.g., using BDDE) to form a synthetic hydrogel. This modification creates products with a Ultra-High effective Molecular Weight (UHMW), typically cited as >6 MiDa. This places them in a distinct category defined by their non-physiological structure, altered biocompatibility, and different safety profile.
4. The Evolving Controversy (Linear vs. Cross-Linked Products) in Light of the New Classification
4.1. Clinical Effectiveness
4.2. Biocompatibility and Safety
4.3. Physiological Biological Activity: Beyond Symptom Relief
4.4. Natural Degradation
5. Emerging Frontiers: Combination Therapies with Hyaluronic Acid
5.1. Co-Formulations with Corticosteroids
5.2. Association with Platelet-Rich Plasma (PRP) and Other Orthobiologics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA | Hyaluronic Acid |
OA | Osteoarthritis |
AAOS | American Academy of Orthopaedic Surgeons |
OARSI | Osteoarthritis Research Society International |
CD44 | Cluster of Differentiation 44 |
RHAMM | Receptor for Hyaluronan-Mediated Motility |
MMPs | matrix metalloproteinases |
MW | molecular weight |
PRP | Platelet-Rich Plasma |
BMA | Bone Marrow Aspirate |
SVF | Stromal Vascular Fraction |
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef]
- Chow, Y.Y.; Chin, K.Y. The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediat. Inflamm. 2020, 2020, 8293921. [Google Scholar] [CrossRef]
- Karpiński, R.; Prus, A.; Baj, J.; Radej, S.; Prządka, M.; Krakowski, P.; Jonak, K. Articular Cartilage: Structure, Biomechanics, and the Potential of Conventional and Advanced Diagnostics. Appl. Sci. 2025, 15, 6896. [Google Scholar] [CrossRef]
- Iaconisi, G.N.; Gallo, N.; Caforio, L.; Ricci, V.; Fiermonte, G.; Della Tommasa, S.; Bernetti, A.; Dolce, V.; Farì, G.; Capobianco, L. Clinical and Biochemical Implications of Hyaluronic Acid in Musculoskeletal Rehabilitation: A Comprehensive Review. J. Pers. Med. 2023, 13, 1647. [Google Scholar] [CrossRef]
- Tamer, T.M. Hyaluronan and synovial joint: Function, distribution and healing. Interdiscip. Toxicol. 2013, 6, 111–125. [Google Scholar] [CrossRef]
- de Campos, G.C.; de Sousa, E.B.; Hamdan, P.C.; de Almeida, C.S.; Tieppo, A.M.; de Rezende, M.U.; Alchaar, A.A.D.A.; Pinheiro, C.B.; Rocha, E.M.C.; Cunha, F.G.; et al. Brazilian Consensus Statement on Viscosupplementation of the Knee (Cobravi). Acta Ortopédica Bras. 2019, 27, 230–236. [Google Scholar] [CrossRef]
- Glinkowski, W.M.; Tomaszewski, W. Intra-Articular Hyaluronic Acid for Knee Osteoarthritis: A Systematic Umbrella Review. J. Clin. Med. 2025, 14, 1272. [Google Scholar] [CrossRef]
- Brophy, R.H.; Fillingham, Y.A. AAOS Clinical Practice Guideline Summary: Management of Osteoarthritis of the Knee (Nonarthroplasty), Third Edition. J. Am. Acad. Orthop. Surg. 2022, 30, e721–e729. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front. Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef]
- Altman, R.D.; Manjoo, A.; Fierlinger, A.; Niazi, F.; Nicholls, M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskelet. Disord. 2015, 16, 321. [Google Scholar] [CrossRef]
- Bernetti, A.; Agostini, F.; Paoloni, M.; Raele, M.V.; Farì, G.; Megna, M.; Mangone, M. Could Hyaluronic Acid Be Considered as a Senomorphic Agent in Knee Osteoarthritis? A Systematic Review. Biomedicines 2023, 11, 2858. [Google Scholar] [CrossRef]
- Peck, J.; Slovek, A.; Miro, P.; Vij, N.; Traube, B.; Lee, C.; Berger, A.A.; Kassem, H.; Kaye, A.D.; Sherman, W.F.; et al. A Comprehensive Review of Viscosupplementation in Osteoarthritis of the Knee. Orthop. Rev. 2021, 13, 25549. [Google Scholar] [CrossRef]
- Rezende, M.U.d.; Campos, G.C.d. Viscosuplementation. Rev. Bras. De Ortop. 2012, 47, 160–164. [Google Scholar] [CrossRef]
- Budai, L.; Budai, M.; Fülöpné Pápay, Z.E.; Vilimi, Z.; Antal, I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- More, S.; Kotiya, A.; Kotia, A.; Ghosh, S.K.; Spyrou, L.A.; Sarris, I.E. Rheological properties of synovial fluid due to viscosupplements: A review for osteoarthritis remedy. Comput. Methods Programs Biomed. 2020, 196, 105644. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef]
- Maheu, E.; Rannou, F.; Reginster, J.Y. Efficacy and safety of hyaluronic acid in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin. Arthritis Rheum. 2016, 45 (Suppl. S4), S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Park, S.J.; Noh, I.; Kim, C.H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater. Res. 2021, 25, 27. [Google Scholar] [CrossRef]
- Glinkowski, W.; Śladowski, D.; Tomaszewski, W.; Pol-Iaha Study Group. Molecular Mechanisms and Therapeutic Role of Intra-Articular Hyaluronic Acid in Osteoarthritis: A Precision Medicine Perspective. J. Clin. Med. 2025, 14, 2547. [Google Scholar] [CrossRef] [PubMed]
- Bagga, H.; Burkhardt, D.; Sambrook, P.; March, L. Longterm effects of intraarticular hyaluronan on synovial fluid in osteoarthritis of the knee. J. Rheumatol. 2006, 33, 946–950. [Google Scholar] [PubMed]
- Brito, N.L.R.; de Rezende, M.U.; Pasqualin, T.; de Campos, G.C.; Frucchi, R.; Hissadomi, M.I.; Pailo, A.F.; de Camargo, O.P. Analysis of Anthropometric Measurements and Dietary Intake in Patients Undergoing a Multi-Professional Osteoarthritis Education Program (PARQVE-Project Arthritis Recovering Quality of Life by Means of Education). Open J. Orthop. 2016, 6, 32. [Google Scholar]
- Chevalier, X.; Jerosch, J.; Goupille, P.; van Dijk, N.; Luyten, F.P.; Scott, D.L.; Bailleul, F.; Pavelka, K. Single, intra-articular treatment with 6 ml hylan G-F 20 in patients with symptomatic primary osteoarthritis of the knee: A randomised, multicentre, double-blind, placebo controlled trial. Ann. Rheum. Dis. 2010, 69, 113–119. [Google Scholar] [CrossRef]
- Appleton, C.T. Osteoarthritis year in review 2017: Biology. Osteoarthr. Cartil. 2018, 26, 296–303. [Google Scholar] [CrossRef]
- Pereira, T.V.; Jüni, P.; Saadat, P.; Xing, D.; Yao, L.; Bobos, P.; Agarwal, A.; Hincapié, C.A.; da Costa, B.R. Viscosupplementation for knee osteoarthritis: Systematic review and meta-analysis. BMJ 2022, 378, e069722. [Google Scholar]
- Ferkel, E.; Manjoo, A.; Martins, D.; Bhandari, M.; Sethi, P.; Nicholls, M. Intra-articular Hyaluronic Acid Treatments for Knee Osteoarthritis: A Systematic Review of Product Properties. Cartilage 2023, 14, 424–432. [Google Scholar]
- Johal, H.; Devji, T.; Schemitsch, E.H.; Bhandari, M. Viscosupplementation in Knee Osteoarthritis: Evidence Revisited. JBJS Rev. 2016, 4, e11–e111. [Google Scholar] [CrossRef]
- Rayahin, J.E.; Buhrman, J.S.; Zhang, Y.; Koh, T.J.; Gemeinhart, R.A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. [Google Scholar] [CrossRef]
- Malanga, G.; Martins, D.; Nalmachu, S.; Dona, S.; Niazi, F.; Utkina, K.; Farrokhyar, F.; Alyass, A.; Rosen, J. Delay to TKA in Patients Treated with a Multimodal Approach Using High Molecular Weight, Biologically Derived Hyaluronic Acid. J. Long. Term. Eff. Med. Implants 2021, 31, 45–50. [Google Scholar] [PubMed]
- Rosen, J.; Sancheti, P.; Fierlinger, A.; Niazi, F.; Johal, H.; Bedi, A. Potential Potential Impact of Biologically Derived Hyaluronic Acid on Quality of Life in Patients with Knee Osteoarthritis in the United States. Adv. Ther. 2017, 33, 2200–2210. [Google Scholar]
- Gavín, C.; Blanco, F.J.; Pablos, J.L.; Caracuel, M.A.; Rosas, J.; Gómez-Barrena, E.; Navarro, F.; Coronel, M.P.; Gimeno, M. One-year, efficacy and safety open label study, with a single injection of a new hyaluronan for knee OA: The SOYA trial. J. Pain Res. 2021, 14, 2229–2237. [Google Scholar] [CrossRef]
- Gavín, C.; Blanco, F.J.; Pablos, J.L.; Caracuel, M.A.; Rosas, J.; Gómez-Barrena, E.; Navarro, F.; Coronel, M.P.; Gimeno, M. Beyond Boundaries of a Trial: Post-Market Clinical Follow-Up of SOYA Patients. J. Clin. Med. 2024, 13, 6308. [Google Scholar] [CrossRef] [PubMed]
- Leopold, S.S.; Warme, W.J.; Pettis, P.D.; Shott, S. Increased frequency of acute local reaction to intra-articular hylan GF-20 (synvisc) in patients receiving more than one course of treatment. J. Bone Joint Surg. Am. 2002, 84, 1619–1623. [Google Scholar]
- Goldberg, V.M.; Coutts, R.D. Pseudoseptic reactions to hylan viscosupplementation: Diagnosis and treatment. Clin. Orthop. Relat. Res. 2004, 419, 130–137. [Google Scholar]
- Chen, A.L.; Desai, P.; Adler, E.M.; Di Cesare, P.E. Granulomatous inflammation after Hylan G-F 20 viscosupplementation of the knee: A report of six cases. J. Bone Jt. Surg. Am. 2002, 84, 1142–1147. [Google Scholar]
- Doddridge, J.R.; Banner, K.A.; Hunter, N.B.; Beckmann, N.M. Foreign body giant cell reaction due to Durolane (hyaluronic acid derivative) injection—A case report. Skelet. Radiol. 2024, 54, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Lyalina, V.; Eshmotova, G.; Karavan, A.; Korshunov, A.; Zarov, A.; Bonartsev, A.; Serejnikova, N.; Prizov, A.; Airapetov, G.; Volkov, A. Hyaluronan-Related Granulomatous Synovitis, Adipositis, and Osteomyelitis in the Osteoarthritic Knee: A Morphological Case Series of Three Patients. Int. J. Mol. Sci. 2025, 26, 8073. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.H.; Liu, S.Q.; Peng, H. The effect of hyaluronic acid on IL-1beta-induced chondrocyte apoptosis in a rat model of osteoarthritis. J. Orthop. Res. 2008, 26, 1643–1648. [Google Scholar]
- Falkowski, K.; Bączkowicz, D. Single Injection of Highly Concentrated Hyaluronic Acid Provides Improvement of Knee Joint Arthrokinematic Motion and Clinical Outcomes in Patients with Osteoarthritis-Non-Randomized Clinical Study. J. Clin. Med. 2025, 14, 3557. [Google Scholar]
- Jüni, P.; Hari, R.; Rutjes, A.W.; Fischer, R.; Silletta, M.G.; Reichenbach, S.; da Costa, B.R. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 2015, 2015, CD005328. [Google Scholar] [CrossRef] [PubMed]
- de Campos, G.C.; Rezende, M.U.; Pailo, A.F.; Frucchi, R.; Camargo, O.P. Adding triamcinolone improves viscosupplementation: A randomized clinical trial. Clin. Orthop. Relat. Res. 2013, 471, 613–620. [Google Scholar] [CrossRef]
- Glinkowski, W.M.; Gut, G.; Śladowski, D. Platelet-Rich Plasma for Knee Osteoarthritis: A Comprehensive Narrative Review of the Mechanisms, Preparation Protocols, and Clinical Evidence. J. Clin. Med. 2025, 14, 3983. [Google Scholar] [CrossRef]
- Szwedowski, D.; Szczepanek, J.; Paczesny, Ł.; Zabrzyński, J.; Gagat, M.; Mobasheri, A.; Jeka, S. The Effect of Platelet-Rich Plasma on the Intra-Articular Microenvironment in Knee Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 5492. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C. Intra-Articular Platelet-Rich Plasma Injections in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Degree of Efficacy. Int. J. Mol. Sci. 2022, 23, 1301. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, C.; Perez-Valle, A.; Atilano, L.; Andia, I. Unraveling the Signaling Secretome of Platelet-Rich Plasma: Towards a Better Understanding of Its Therapeutic Potential in Knee Osteoarthritis. J. Clin. Med. 2022, 11, 473. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, H.; Liang, G.; Zeng, L.F.; Yang, W.; Liu, J. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2020, 21, 224. [Google Scholar] [CrossRef]
- Zhang, M.; Chew, K.; Goh, P.; Tun, M.H.; Sheah, K.; Tan, V.; Lim, B.; Ng, C.S.; Tan, B. Clinical Efficacy of Platelet-Rich Plasma and Hyaluronic Acid Versus Hyaluronic Acid for Knee Osteoarthritis with MRI Analysis: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 3553. [Google Scholar] [CrossRef]
- Berkani, S.; Courties, A.; Eymard, F.; Latourte, A.; Richette, P.; Berenbaum, F.; Sellam, J.; Louati, K. Time to Total Knee Arthroplasty after Intra-Articular Hyaluronic Acid or Platelet-Rich Plasma Injections: A Systematic Literature Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3985. [Google Scholar] [CrossRef]
- Anil, U.; Markus, D.H.; Hurley, E.T.; Manjunath, A.K.; Alaia, M.J.; Campbell, K.A.; Jazrawi, L.M.; Strauss, E.J. The efficacy of intra-articular injections in the treatment of knee osteoarthritis: A network meta-analysis of randomized controlled trials. Knee 2021, 32, 173–182. [Google Scholar] [CrossRef]
- Wu, Y.T.; Li, T.Y.; Lee, K.C.; Lam, K.H.S.; Chang, C.Y.; Chang, C.K.; Chen, L.C. Efficacy of a Novel Intra-Articular Administration of Platelet-Rich Plasma One-Week Prior to Hyaluronic Acid versus Platelet-Rich Plasma Alone in Knee Osteoarthritis: A Prospective, Randomized, Double-Blind, Controlled Trial. J. Clin. Med. 2022, 11, 3241. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C. Intraarticular Injections of Mesenchymal Stem Cells in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Efficacy. Int. J. Mol. Sci. 2022, 23, 14953. [Google Scholar] [CrossRef] [PubMed]
- Vargel, İ.; Tuncel, A.; Baysal, N.; Hartuç-Çevik, İ.; Korkusuz, F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 13517. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Andriolo, L.; Salerno, M.; Boffa, A.; Giavaresi, G.; Filardo, G. Adipose Tissue-Derived Minimally Manipulated Products versus Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence and Meta-Analysis. J. Clin. Med. 2023, 13, 67. [Google Scholar] [CrossRef]
Category | Acronym | Chemical Structure | Molecular Weight |
---|---|---|---|
Low Molecular Weight Linear HA | LMW | <1 MiDa | |
Intermediate Molecular Weight Linear HA | IMW | Linear | 1–2 MiDa |
High Molecular Weight Linear HA | HMW | >2 MiDa | |
Ultra High Molecular Weight Cross-linked HA | UHMW | Cross-linked | >6 MiDa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Campos, G.C.; Cliquet, A., Jr. Current Concepts in Viscosupplementation: New Classification System and Emerging Frontiers. Bioengineering 2025, 12, 1050. https://doi.org/10.3390/bioengineering12101050
de Campos GC, Cliquet A Jr. Current Concepts in Viscosupplementation: New Classification System and Emerging Frontiers. Bioengineering. 2025; 12(10):1050. https://doi.org/10.3390/bioengineering12101050
Chicago/Turabian Stylede Campos, Gustavo Constantino, and Alberto Cliquet, Jr. 2025. "Current Concepts in Viscosupplementation: New Classification System and Emerging Frontiers" Bioengineering 12, no. 10: 1050. https://doi.org/10.3390/bioengineering12101050
APA Stylede Campos, G. C., & Cliquet, A., Jr. (2025). Current Concepts in Viscosupplementation: New Classification System and Emerging Frontiers. Bioengineering, 12(10), 1050. https://doi.org/10.3390/bioengineering12101050