Artificial Intelligence and Machine Learning in Spine Research: A New Frontier
1. Introduction
2. The Role of AI and ML in Spine Research
3. AI and ML in Analyzing Imaging Data
4. AI and ML in Personalized Treatment Planning
5. AI and ML in Predicting Therapeutic Outcomes
6. Challenges and Ethical Considerations
7. The Future of AI and ML in Spine Research
8. Conclusions
Conflicts of Interest
References
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Jovel, J.; Greiner, R. An Introduction to Machine Learning Approaches for Biomedical Research. Front. Med. 2021, 8, 771607. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Farzan, R. Artificial intelligence in Immuno-genetics. Bioinformation 2024, 20, 29–35. [Google Scholar] [CrossRef]
- Fathi, M.; Eshraghi, R.; Behzad, S.; Tavasol, A.; Bahrami, A.; Tafazolimoghadam, A.; Bhatt, V.; Ghadimi, D.; Gholamrezanezhad, A. Potential strength and weakness of artificial intelligence integration in emergency radiology: A review of diagnostic utilizations and applications in patient care optimization. Emerg. Radiol. 2024. [Google Scholar] [CrossRef]
- Huang, J.; Shlobin, N.A.; DeCuypere, M.; Lam, S.K. Deep Learning for Outcome Prediction in Neurosurgery: A Systematic Review of Design, Reporting, and Reproducibility. Neurosurgery 2022, 90, 16–38. [Google Scholar] [CrossRef]
- Lee, S.; Jung, J.Y.; Mahatthanatrakul, A.; Kim, J.S. Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances. Neurospine 2024, 21, 474–486. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Deng, A. Prediction of treatment outcome for branch retinal vein occlusion using convolutional neural network-based retinal fluorescein angiography. Sci. Rep. 2024, 14, 20018. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Santiago, F.; Láinez Ramos-Bossini, A.J.; Wáng, Y.X.J.; Martínez Barbero, J.P.; García Espinosa, J.; Martínez Martínez, A. The value of magnetic resonance imaging and computed tomography in the study of spinal disorders. Quant. Imaging Med. Surg. 2022, 12, 3947–3986. [Google Scholar] [CrossRef]
- Gilberg, L.; Teodorescu, B.; Maerkisch, L.; Baumgart, A.; Ramaesh, R.; Gomes Ataide, E.J.; Koç, A.M. Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans. Appl. Sci. 2023, 13, 8140. [Google Scholar] [CrossRef]
- Hallinan, J.T.P.D.; Zhu, L.; Yang, K.; Makmur, A.; Algazwi, D.A.R.; Thian, Y.L.; Lau, S.; Choo, Y.S.; Eide, S.E.; Yap, Q.V.; et al. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Radiology 2021, 300, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Yu, K.; Xie, Z.; Wang, P.; Zhang, W.; Huang, Y.; Wang, Y.; Wu, X. Current Applications of Machine Learning in Spine: From Clinical View. Glob. Spine J. 2022, 12, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Charles, Y.P.; Lamas, V.; Ntilikina, Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop. Traumatol. Surg. Res. 2023, 109, 103456. [Google Scholar] [CrossRef] [PubMed]
- Chin-Hung Chen, V.; Yang, Y.H.; Chen, P.Y.; Yang, J.T.; Chen, C.P.C.; Chen, C.J.; Lu, M.L.; Lee, Y.; McIntyre, R.S.; Huang, Y.C. Factors affecting lumbar surgery outcome: A nation-wide, population-based retrospective study. J. Affect. Disord. 2017, 222, 98–102. [Google Scholar] [CrossRef]
- Finkelstein, J.A.; Stark, R.B.; Lee, J.; Schwartz, C.E. Patient factors that matter in predicting spine surgery outcomes: A machine learning approach. J. Neurosurg. Spine 2021, 35, 127–136. [Google Scholar] [CrossRef]
- Rasouli, J.J.; Shao, J.; Neifert, S.; Gibbs, W.N.; Habboub, G.; Steinmetz, M.P.; Benzel, E.; Mroz, T.E. Artificial Intelligence and Robotics in Spine Surgery. Glob. Spine J. 2021, 11, 556–564. [Google Scholar] [CrossRef]
- Arvind, V.; Kim, J.S.; Oermann, E.K.; Kaji, D.; Cho, S.K. Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning. Neurospine 2018, 15, 329–337. [Google Scholar] [CrossRef]
- Habibi, M.A.; NaseriAlavi, S.A.; SoltaniFarsani, A.; MousaviNasab, M.M.; Tajabadi, Z.; Kobets, A.J. Predicting the Outcome and Survival of Patients with Spinal Cord Injury Using Machine Learning Algorithms: A Systematic Review. World Neurosurg. 2024, 188, 150–160. [Google Scholar] [CrossRef]
- Kim, J.K.; Wang, M.X.; Chang, M.C. Deep Learning Algorithm Trained on Lumbar Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Chronic Lumbosacral Radicular Pain. Pain Physician 2022, 25, 587–592. [Google Scholar]
- Tragaris, T.; Benetos, I.S.; Vlamis, J.; Pneumaticos, S. Machine Learning Applications in Spine Surgery. Cureus 2023, 15, e48078. [Google Scholar] [CrossRef]
- Wang, M.X.; Kim, J.K.; Chang, M.C. Deep Learning Algorithm Trained on Cervical Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Radicular Pain from Cervical Foraminal Stenosis. J. Pain Res. 2023, 16, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Chiruvella, V.; Guddati, A.K. Ethical Issues in Patient Data Ownership. Interact. J. Med. Res. 2021, 10, e22269. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.C. Artificial Intelligence and Machine Learning in Spine Research: A New Frontier. Bioengineering 2024, 11, 915. https://doi.org/10.3390/bioengineering11090915
Chang MC. Artificial Intelligence and Machine Learning in Spine Research: A New Frontier. Bioengineering. 2024; 11(9):915. https://doi.org/10.3390/bioengineering11090915
Chicago/Turabian StyleChang, Min Cheol. 2024. "Artificial Intelligence and Machine Learning in Spine Research: A New Frontier" Bioengineering 11, no. 9: 915. https://doi.org/10.3390/bioengineering11090915
APA StyleChang, M. C. (2024). Artificial Intelligence and Machine Learning in Spine Research: A New Frontier. Bioengineering, 11(9), 915. https://doi.org/10.3390/bioengineering11090915